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1. INTRODUCTION

We consider two-dimensional autonomous systems of differential equations
of the form :

(1) d;=_y+X8($’y)a y=a;+Y,,(a:,y),

where . .
Xi(z,y) =D az*y*™, Yi(z,y) = baty**,
k=0 k=0

are homogeneous polynomials of degree s, with s > 2; being a; and by,
k=0,1,...,s, arbritrary real coefficients. Recently, these systems have been
studied by several authors (see for instance [1], [2], [4], (5], [11] and [12]), es-
pecially in order to obtain information about the number of small amplitude
limit cycles and to determine the cyclicity of the origin (see for instance [1] and
[12]). Our aim is to find solutions V' (z,y) = 0 of system (1) where V(z,y) is
an inverse integrating factor (this notion will be defined below). The method
consists in characterizing the systems which have an inverse integrating fac-
tor. This paper contains a natural generalization of the results developed in
[3]. Theorem 1 gives an explicit method for obtaining such inverse integrating
factor, which is used in Theorem 2 to construct some particular class of inte-
grable vector fields: The method shows that if V(z,y) is a product of n linear
factors, elevated each factor to a;, we always arrive to a partial differential

*The first author is partially supported by DGICYT grant number PB96-1153.
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equation of n—th order, where only appear partial differentials with respect
to one variable, and we can consider this partial differential equation as a lin-
ear differential equation respect to this variable. In this work we only study
the case n = 1 (see Theorem 2) and some particular cases for n = 2. In the
other cases, n = 3, we can not totally characterize the systems which have
this inverse integrating factor, but we show that the known cases verify the
equations we obtain.

We can write the system (1) (see [2]) in polar coordinates z = 7 cos(yp)
and y = rsin(yp) as

(2) T = Ps((P)'rs7
(P =1+ QS((P)Ts—la

where P,(y) and Q,(yp) are trigonometrical polynomials of the form

Ps(p) = Rsy1cos ((s + 1) + s1) + Rs_r1cos ((s = L)p +p51) + ...
N R; cos(p + 1) if s is even;
R, if s is odd;
Qs(9) = —Rysasin((s + 1) + ps11) + Roysin((s = Do + @o1) + ...
N Rsin(p + @) if s is even;
R, if s is odd;

where R;, R;, p; and ; are real constants.
If we do the change R = r*~!, the system (2) becomes

(3) R=(s—1)P,(p)R?,
p=1+ Qs(‘p)R

In the study and determination of the first integrals for homogeneous sys-
tems (see [2-5]), we used a technique consisting in the research of polynomial
particular solutions of system (3) of the form

(4) V(R"P) =1 +V1(‘P)R+V2(‘P)R2 + o +Vp(‘70)Rp =0,

where Vi (p), K = 1,2,...,p, are homogenous trigonometrical polynomials of
degree k(s — 1) in the variables cos ¢ and sin ¢.
By using the functions z;, i = 1,2,...,p defined implicity by

P P
(5) V1=Z:1:j,V2=ijwk,...,X/;,:mlxz...xp,
j=1

J k=1
i<k
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function (4) can be written V(R, ) = [T7_; (1 +z;(¢)R). The following result
appears in [3].

PROPOSITION 1. Function (4) is a particular solution of system (3) if the
homogeneous trigonometric polynomials Vi (¢), k = 1,2,...,p, verify the fol-
lowing differential system

(6) Vier +ViQs + k(s — 1)V P, =ViVY, k=1,2,...,p—1,
VZQS +p(3 - 1)1/17Ps = ‘/p‘/ll:

d

where ' = ot
P

2. INVERSE INTEGRATING FACTORS

A function V(z,y) will be called an inverse integrating factor for system
(1) if V(z,y) = 0 is a particular solution for this system and the divergence
of the vector field

C= _y+Xs(xay) -'L'+Ys(z)y)
Viz,y) ~ V(z,y)

defined at R? \ {(z,y) : V(z,y) = 0} is zero.

We notice that if the divergence of a vector field is zero, then system (1)
defined for this vector field is integrable. In particular, if system (1) has an
inverse integrating factor, then the system is integrable and the origin is a
center. In [6-10] it has been shown that the inverse integrating factor plays
a fundamental role in the problem of the center and in the determination of
the limit cycles.

If system (1) is written in polar coordinates, see (2), then the function
V(R, ) is an inverse integrating factor for system (1) if

U 1S R i

THEOREM 1. If V(R, ) = [17.,(1 + z;(p)R)* is an inverse integrating
factor for system (1) with o; are real numbers, then the functions z;(y),

i1=1,2,...,p, must verify the following system of differential equations
dz: _Ti

(8) — = SF1 == CIETIE i=1)2>"'pa
dz G+ YL

being z = Q,(p)-
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Proof. We develop the expression (7) for V(R,p) = [T%-,(1 + z:(¢)R)™
with respect to the powers of R; we have

9) (zi — Qs)zi = (s — 1)Pyz;, 1=1,2,...,p,
with the condition
Y4
(10) (s+1)P,+Q, — Zaimg =0.
i=1

If we take z = ), as independent variable instead of ¢, then we have

dz; dz; dQ,
= = ]. 2 “ee
d(P dQs d(p 3 1 ,p7
and (10) transform into
L dcr:z

(s+1)P, + Q. Qz =0,

which gives

) P et -1 @

i=1
By inserting expression (11) in system (9), and considering the change of
variable z = (), we can write

do;  (s—1) [Shaos 1]

= ; =12,.
dz  (s+1) Ti— 2 To TEHSP
Then, isolating ‘%, 1 =1,...,p, in the above system we get
d:z:i Hz;,:l, (Z - .’L'j)

== # zi, i=1,2...,p

3 | INCEESES N1 SYCEEN] P9

If we divide the numerator and denominator of the previous fraction by the
product [T7_, (2 — z;), we obtain the system (8). 1§

Note that the system (8) is symmetric with respect to the variables z;,
1=1,2,...,p, with the corresponding o;.
We want to find functions of the form

(12) U(z1,2s,...,%p,2) = H(z1,22,...,2,) + 2G(z1,T2,...,Zp),

so that, for system (8), 2 = 0.
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PROPOSITION 2. In order to find the fuctions of the form (12) for the
system (8) it is sufficient to find solutions of the partial differential system

O0H 0G .

Bwi+xi5z—~+aiG_0’ 1=1,2,...,p,
(13) »

Z +: g0

b T S—].

Proof. If we differentiate (12) with respect to z, we have

0H dx, P0G dzx;

dz Z O0x; dz ~ dz; dz +G=0.

By replacing in the previous expression the value of %, 1=1,2,...,p, given

in (8) it becomes
"BH z; P z; s+1 & oz
1 i At} G:O
2; 2= T (s—1+z:z—:vi) ’

=1 0TiZz — Z; i=1
or
OH Z; z? s+1 Ld o;T;
G
Z@:fxzz—xz Z z—x,)+(3—l+;z—mi)
z; H+m2’9G+a~m-G P OG s+1
i3z, i Bz; g _
_Z z—x +Zx’8xi+s—lG_O'

i=1
For this last expression to be null it is sufficient that conditions (13) hold.

Notice that these conditions are not necessary in order that the previous
expression be null. I

If we make the change of variable y; = 2—;'{—’—, 1=1,2,...,p—1, and we take
the functions G and H as follows:

G(z1, %25, Tp) = 219 (Y15 Y25 - -5 Yp1),
H(z1,Zay...,Tp) = T3 *h(Y1,Y2, - - -y Yp—1)5
then the last equation of system (13) is satisfied identically, and system ( 13)

takes the form

dg Oh .
a,-g+y,~5y-;+ayi =0, 1=1,2,...,p—1,

(14) .
(1-a)h-(a }: g+z W =0,
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where a = ?_%

3. LINEAR INVERSE INTEGRATING FACTORS

We first consider the case p = 1; in this case system (8) is
r _ s
dz a+ z"—_"';

(15)

If we make the change of variable z = Az the expression (15) takes the
form
d  (I1—a+(a—a)d)A
dz~ (a—(a—a)N\)z
The general solution of this equation is given by
/\a.
l—a+(a—a)A
where C] is an arbitrary constant. By going back through the change of
variables it is easy to see that
1

2=Q8=01(1“a)

Since @, is a homogeneous trigonometric polynomial of s — 1 degree, then
z must be a homogeneous trigonometric polynomial of first degree elevated to
the power of s — 1 if s is even and a homogeneous trigonometric polynomial
of second degree elevated to the power of 3—51— if s is odd. We take z =
Cs~ ' cos*1 (¢ + ¢p) for s even and z = (Cy + Cs cos(2p + 2,))*T for s odd
where Cy and C; are arbitrary constants. Using the last expression of (), and
equation (10) we have the following result.

— l—-a
- Clz )

(z* — Cy(a — a)z).

THEOREM 2. For s € N with s > 2, system (2) with

(sin(p + o) (K1 C5+ cos® (¢0 + o)
+(Ky — 1)C5 7 cos* 2 + ) if s is even,

Py(¢) 4 =
Cz Sm(2<p + 2(,00)(K1(Co + 02 COS(2(,0 + 2(,00))_2—

{ +(Ky — 1)(Cy + Cy cos(2 + 20))*T°)  if s is odd,
(K1 (Cy cos(p + o))+t + K, (Cycos(p + )t if s is even,

Qs(#) { K, (Co + Cy cos(2 + 20)) "4
{ + K5 (Cy + Cy cos(2¢ + 2p,)) T if s is odd,
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where K, = ;%f and K, = H'—aﬂzl—_—ak, it is integrable and the inverse in-

tegrating factor is V(R,p) = (1 + C5~'cos®* (¢ + @o)R)* if s is even and
V(R,©) = (1+ (Co + Cycos(2¢p + 2¢0)) = R) if s is odd. '

4. QUADRATIC INVERSE INTEGRATING FACTORS

We now consider the case p = 2, in this case system (14) is

19 + dg + dh _ 0
(1—a)h—(a—al—a2)9+(1—y)g— =0,
Y
or
dg dh
g +ys 4+ 2 =0,
(17) dy dy

(1 - a)h = [(a — @) — enylg + (1 —y)fl’—j |

If we differentiate the second equation of (17) respect to y, we have

dh d d?
(1-a)g = —ag+la—a+1) = (@ + 2yl g +y(1-y) g2
Replacing the value of 3—’; obtained from the first equation of system (17) in
the previous expression, we find

d*g dg
(18) y(l—y)(—:l—3+[(l+a——az)—(1+a1 +a)y]—= —ac1g =0.
Y dy

Relation (18) is a hypergeometrical second order linear differential equa-
tion. In [3], the particular case @; = a3 = @ and a — @ = 1/2 was studied.
This last relation is verified by certain integrable systems (1) in the quadratic
case s = 2. In this case if s is odd we obtain reversible systems.

Other important case is &; = oy = o and a — o = —1/2. This last relation
is verified by certain integrable systems (1) in the homogeneous cubic case
s=3. ‘

Since a; = oz = o @ — a = —1/2, equation (18) can be written as

d*g 1 3 dg 1
y(l—-y)d—y2+ [5— [2a+§]y}@+a[a+§}g—0.
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The general solution of this equation is given by

1 —2a —2a
9(y) = 5[01(1'*'\/?7) 24+ Co(1- )7,
where C; and C, are arbitrary constants. We will have for this solution of

g9(y) that

(1+2a/y+y)
2(a—1)

(1—2a/y+y) 2

By going back throughout the change of variables it is easy to see that

G(x1,22) = C1 (V&L + VE2) ™" + G (Va1 — V&) %,

h(y) = C

1+ y) 2 +C,

and
T + 2a4/ + %
H(zy,2,) = Cl( - 2a ilif)z z2) (Vz1 +/z2) 2
z —‘2a\/ + 2%
02( 1 Z1T2 1?2) ( B — $2) 2 .
2(a —1) v v
Therefore
20 [T+ 2ay/T 125 +
Ui(21,%3,2) = (VI1 + /3) ’ [ : 2(a ——11)2 : +z] J
and

are two independent functions of the form (12) for system (8), which can be
written into the from

_a [Z1 4+ 20/T125 +
Ul(x17$2)2) = (zl + Z4 +2\/$1$2) [ ! 2(a _11)2 2 +z] ,

—o [Z1 — 2ay/T1Z5 +
Us(z1,22,2) = (21 + 22 — 24/Z123) [ ! 2 _11)2 2 +z] .

As Vi =z, + 23, Vo = 2125, 2 = Q, and a = £&1 we can write

Vi + 24/ Vs Q]

U1(‘/1a1/2)z) = (Vl +2\/72)_a [ 2(0— 1)

Uy (W1, Va, 2) = (V1 - 2\/‘72)—(1 [%\/)Z + Qs -
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that is,

[___‘/'12?;2_(1\1/)172 + Qs] =K (Vi+2v%)",

(19)
Vi — 2075 a
[———2(a 5+ Qs] =K, (i —2vV3) ,

where K; and K, are arbitrary constants.
By multiplying the two previous equations, we have
V2 —4a’V, | QW
4(a —1)? a—1

+Q® = K1 K, (V) — 4V,)™.

As V; and V, are homogeneous trigonometrical polynomials of degrees .
(s — 1) and 2(s — 1), respectively, then V2 — 4V} is a trigonometrical poly-
nomial of degree 2(s — 1). As a = 2t if s is even, then V? — 4V, must
be a homogeneous trigonometric polynomial of second degree elevated to the
power of s — 1 and if s is odd, then V}* — 4V, must be a homogeneous trigono-
metric polynomial of fourth degree elevated to the power of #3*. Hence, as
V2 =4V, = (V; + 2 V3) (Vi — 2¢/V3), we can take V; + 2y/V; and V; — 2/V;
homogenous trigonometric polynomials of first degree elevated to the power of
s — 1 if s is even an homogeneous trigonometric polynomials of second degree
elevated to the power of sgl if s is odd. Therefore we have Vi 4+ 2/V, = A*~!
and V; —2v/V, = B*~! where A = a, sin p+b; cos ¢, and B = a, sin ¢-+b, cos ¢,
if s is even, and we have Vi + 2V, = C*= and V; — 2/V, = D*T where
C = a;s8in2¢p + b; cos2¢p + ¢; and D = aysin2¢p + by cos2p + ¢, if s is odd,
then we have

s—1 s—1 s—1__ps—1 . .
Vi=4"—-48" and V,=4"3B" ifsiseven,

s—1 s—1 s—1 s—1
V=S4T and T, =9F3R % ifsisodd.

Subtracting the equations of system (19) and using the previous expres-
sions we can write the following conditions

a

z(a _ 1) (As_l - Bs_l) = (I{IAS—H - KzBs-H) P if s is even, -
)
om0 07

) = (K.0*F — KD, it s is odd.
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We can write these conditions into the form

'3—1 ___a’__ _ 2 — s—1 a _ 9 . .
4 [2(0, —-1) KA ] B [2(a gy K,B ] , if s is even,
(21)
c* [2(aa—l) - KIC] =D [5'(le) - KzD] ) if s is odd.

The first condition of (21) is only satisfied for s = 2 if A do not divide B,
in the case that A divide B we have that A = B and in this case V;, = 0 and
we obtain particular cases of Theorem 2.

The second condition is only satisfied for s = 3 and s = 5 if C do not
divide D, in the case that C divides D we have that C = D and in this case
Vo = 0, and we obtain particular cases of Theorem 2. Using the condition
for s = 3 we obtain the integrable homogeneous cubic system which verifies
a —a = —1/2. In the case s =5 C and D have a linear common factor.

Remark 1. Let a — a = —1/2, for s = 3 we have o = 5/3 from condition
(21) we obtain

= _ b2v/a2 + b2 _ bib,
aV/ai + b6 a

cos 2¢p + by sin2¢p

and

_ a2va§ + b%

In this case V; = S2, V, = (G2 @ = K,C? - Yittla and P = 344

i—%. Taking a; = by = sint,b; = cost,t =T — § and ¢ = ¢ + I we obtain
the following system

+ ay cos 2¢ + b,y sin 2¢p.

P(y) =cosdyp +2cos(2¢p + T), Q(¢) = —sindep + sin(2¢ + T),
which corresponds to integrable case (iii) of [2].

Remark 2. Let a—a = —1/2, for s = 5 we have o = 2 from condition (21)
we obtain

VO —bib, + 62 by —2b
C= +
V3 V3

2 cos 2¢p + by sin2¢p
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and

VB —biby + B2 2b, —b
D=- +
V3 VE]

In this case V; = €30% 1, = (@DY g — K 0% — (W + 3V,) and

P =144 — 199 Taking by = gt 4 S0k p, = sBl o =4 + £ + I we obtain

the following system

P() = —sin 6y + sin 4y — sin 29,

2 cos 2 + b, sin 2¢.

(22) 1 1
Q(¢) = —cos 69 — 3 cos 41y + cos 29 + 3

which is integrable and the inverse integrating factor is
Vi) = |1+ % (cos® (2 — cos 2¢)) rt 4+ %(cos6 1) sin® 1,[;)7'8] ’ .

In cartesian coordinates system (22) takes the form
i=3B+2),  §=3

which is a time-reversible system (see [11]) because it is invariant under the
transformation z —» —z, y > y, and t — —¢.

(3 +4z™y” — 3y*),

5. CUBIC INVERSE INTEGRATING FACTORS

We now consider the case p = 3; in this case system (14) is

0g Oh
ag+yp—+-—=0,
19T E e
dg Oh
23 axg+yYyo—+ —=0,
( ) 29 T Y2 Bys O,

oh oh
(1-ah-(a—o "az—as)g+(1—y1)a—y:+(1—yz)a—y2 =0.

If we differentiate equations (23) respect to y; and y, up to third order,
we obtain 18 linear relations, which are not independent, in the 20 variables

ho Oh Oh B9 09 Oh B Oh Py Fg O
" By1" By, Oy Oa” BT Byrys’ B3 047 Dy’ O3

Bh Ph 3h 8h 8¢ 08¢ g &g

) 3 ) ) ) and .
Oyt Oyiy.’ Oyrys’ Ov3’ Oyl Oyiys’ Oyl Y3
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. . . 2 3
We can eliminate all the variables except h, gThl’ g—y%, and gT’;
1 1

leagued by the following partial differential equation of third order

which are

O3h l+oy+as l+a—ars—oa3 1+a;+a] 8%h
24 —+[, + + ]—
29 oy? Y1 —1 Y1 y1—y2 |0y}
! a — Oig O3 —a o) + as + a3 oh
+(1+a [ + - }—
( 2 vy —1)  wilya—w1) (1 —1)(y2 — 1)l O

o1+ a)(a—1)

(1 —y1)(y2: — y1)h =0

In this partial differential equation does not appear partial differentials
respect to the variable y, does not appear, therefore we can consider the
equation (24) as a linear differential equation respect to the variable y;. Using
the equation (24) we are going to find some integrable cases that have a cubic
inverse integrating factor.

First we will study an integrable system in the quadratic case s = 2, which
verifies a = 3 and oy = o = a3 = 2 (see [2]). In this case equation (24) takes
the form

d3h 9 d?h
(25)  9yi(yr — 1) (y2 — yl)_3 + 3(15y, — 28y; — 2y, + 15y192) 5
dyl dyl
dh
+ 8(4 — 23y; + 4y,)— — 80h = 0.
dy,

Integrating twice the previous expression and making the change ;‘Z’T = h,
we have

2

d d
(26) 9y1(yr — 1)(y2 — yx)a—zz) + 3(33/1—10?4? + 4y, + 3y1yz)d—
Y1 ()

— (4 +10y; — 4y2)p = 0.

If we make the change of variable z = -yLy(l—“yl’?l and the change of function

p(z) = %/:& (2), equation (26) results
af 4 5\df 4
(27) z(l—z)ﬁﬂ'(—g"l-gZ)a—g =0.

The relation (27) is a hypergeometrical second order linear differential
equation which has a polynomial particular solution which allow us to make
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the change f(z) = (1 — z — ‘;—z)w(z) By using this change expression (27)
takes the form
d*w

(28) (8 — 62+ 62> — 7z )dE—+32(z—1)(2 2z — 2* )dz2 =0

From (28) we obtain

(z=2)(z = 1)M3213 1

w(e) = S +ﬁ/(z(z—1))—2/3dz

and A
_(—m—2Pl-z-%)
p(Z) - (1 _2)4/3
(s = )z = 1) S / )-2/34
6(—2+2:+22) 18 “

Using this particular solution and making a change of variables in equation
(25) we finally obtain the three independent solutions of equation (25). By
going back throughtout all the changes of variables, these three independent
solutions are

A1 (Y1, 92) _
((y1 = D(y2 —y1) (32— 1))°

(y1y2)%A2(y1>y2)
18(1 — y1)2%(y2 — y1)(y2 — 1)?
yZ%Al(ylay2) —2,
BT et ] @ = D)y,
As(y1,Y2)
10(1 = y1)2(y2 = 1)%(y2 — 1)?

A;(y1,92) _3
B 60(y, 1) (yl — 1) (y, yl)g /((yl — 1)(y2 — 1)) " 3dys,

hl(ylay2) =

I

hZ(ylay‘Z) =

h’3(y1a y2) =

where

Ay, y2) = =y — 43 + 412 — 2972 + 43y — y3 — 2u192 — 29392 — iyl — 42
+ 4195 — y3vs,

Az(Y1,y2) = y1 + Y3 + Y2 — 6y1y2 + Yiv2 + Y3 + Y193,

As(y1,92) = U3 — y1v2 — Yiv2 + v — y13 + 433,
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and from equations (23) we have

Bi (y1,92) _
(31 = D(y2 —w)(y2 — 1))®

_ (y1y2)%B2(y1’y2)
g2(ylay2) - 9(y1 _ 1)2(y2 _ y1)2(y2 _ 1)2

_ yz%Bl(yl,yz) _ 3 _3
54(y> — 1)2(us — V¥ (v - w1)¥ [t =D -9,
B3(y1’y2)
Y1 — 1) (y2. — 11)2(y2 — 1)2

Bl(y17y2) 3
©60(y: — 1)2(1 — ¥ (v — )} /((yl —1)(y2 ~ 1))~ *dys,

[} (ylay2) =

bl

g3(y1) y?) = 20(

where

Bi(y1,y2) = —y1 + 495 — ¥} — y2 — 20192 — 25502 — Y3v2 + 443 — 20105
+4y7ys — y3 — %3,

By(y1,92) = =1+ y1 — 42 + y2 + 1112 — 3,

B3(y1,42) = —th — yf — Yy + 6y1y2 — yfyz - y§ - y1y§.

If we recall that y;, = ff and y, = fl" and we take V; = z; + x5 + 3,
Vo = 2123 + 7123 + T273 and V3 = ,7,23, the functions H and G are

2y, _ 2
H (Vi Vy, V) = Vs = ViVy = V¥

D? ’
6V2 — V2V, — 9V, V.
Gl(‘/la‘/%%)= 2 ng ! 37
1
VR (Vi V, — VX
a1V, v, v5) = A=) (v, v,
1
6V, (3V, — V2
G2(V'17V'27V'3) = 2 ( 5 1) _Gl(‘/l,‘/%‘/:i)Lla

where Ly = (y2(y> — 1))¥ [ (42(y1 — 1)(y2 — v1)) ¥ dys and

6(Vy —3ViVs)
D

3(9Vs — i1s)
D

H;(V1,V,, V3) = - Hi(V1, V3, V3) L,

G3(1/1a‘/21‘/3) = _Gl(‘/l)‘/'l’ %)L%
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where L, = (y2 — 1)} [ (11 — 1)(v2 — 1)) dys, where D = V2V — 4V3 —
AV3V3 + 18V VoV — 27V2.

We have checked that the values of V;, V; and V; of the quadratic integrable
case (case (iii) in appendix of [2]) verify that functions (12) are constants, that
is, H, + Q,G, = K,, Hy + Q:G5 = K, and H; + QQ,G3 = K3. In this case

Vi = 6R3sin(p + ¢1),

V, = 12R3 cos (8—3-—_2—2?1) sin (cp + f%sol) sin(yp + ¢1),

Vi = 8R3sin (?_3;:221) cos® (cp + —%;—%) ,

and it is easy to see that

K, =0,
1 2 (p3— 901) (‘P3—3<P1)

K, = Iy cos3 ( 2 sin” 5 and
1

K3 = E-R—g

Second we will study a integrable system in the quadratic case s = 3,
which verifies a = 2 and o; = oy = a3 = g—‘ (see [2]). In this case equation
(24) takes the form

d*h d?h
(29) 9y (1 — 1)(y2 — y1) =5 +3(12yy — 25y; + ¥z + 12y130) —
dyl dyl
dh
+8(1 — 17y; +y2)>— — 40h = 0.
dy,

Integrating the previous expression we have

d2h dh
(30) 9yi(y1 — 1)(y2 — yl)ﬂ + 6(3y,—8y} + 2y. + 3:(/1112)01—?!1
—10(1 + 4y, + y2)h = 0.

If we make the change of variable z = y—‘y{l_;;’fl and the change of function

z) = ﬁlzzvﬁzl—)zﬁ_ f(2), eqﬁation (30) results
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Relation (31) is a hypergeometrical second order linear differential equation
which has a polynomial particular solution given by f(z) = (2—32z—32%+22%).
From (29) we find three independent particular solution which, by going back
throughout all the changes of variables, have the form

Ch (1,
h’l (ylay2) = l(yl y2) )
((y1 = D) (y2 — v1)(y2 — 1))°
6(y1y2)%02(y1,y2)
ho(y1, ya) =
2(0v2) = N e — )Py — 1
Z/z%cl»(yl, Y2) / 2
y1(yr — 1) (y2 — 1)) " ° du,
(2~ D2(s — Dy ¥ ] (7 Dl m w2
3C3(y1, y2)
ha(yr, ya) =
W0v2) = N, — e 1 |
Cl('ylay2) / -2
+ 7 7 U — 1 Y2 — Y 8 dy )
(r — Do~ DiGgs —gnF J (17 Dl —m) = dn
where
Ci(y1,¥2) = (Y1 — 2y2 + %192) (=241 + ¥2 + ¥192) (=41 — Y2 + 20172),
Cs(y1, y2) =y —yi1vs — Yous + Y3 — n1ys + yiy3, '
03(141792) = yf

+ Ui — 20192 — 20302 + 2 YV + U2 — 2018 + LY,
and from equations (23) we have |

D, (yl,yz)
((y1 = D(y2 —v1)(y2 — 1))
3(yly2)%D2(y1ay2)
9(y1 — 1)%(y2 — 11)2(y2 — 1)?
Y5 D1 (y1,Y2)
(y2 = 1)2(y1 — 1)%(3/2 - '!/1)%
o 6D3(y1,y2)
9Wn ) = 1Ty, — )2 (s — 1

D1 (y1,92) B PV
e e ACRRCR R

91(y1,92) =

gZ(y17y2) =

+

/(’yl(yl —1)(y2 — y1))_§dy1,

+
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where

Dy (y1,9:) = —v2 — v + 4u1ys — 207y, + 493y2 — v3 — 2u193 — 2455 — YIS

-y +4nys — vivs,
Dy(y1,92) = =1 + 42 — y2 + 6y1y2 — Y1y — Y5 — v1V3,
Ds(y1,92) = —y2 + 4192 + Yive — Ya + Y1ys — Yiy3.

If we recall that y, = fla and y, = %’1* and we take Vi = z; + z5 + z3,
Vo = 21%9 + T1Z3 + 273 and V3 = z,2,13, the functions H and G are

2V — ViV, V; + 27V

Hl(‘/la%avé) =

D3 ’
MAAPEAG A A
Vi) = VI |y v,
GV, i) = B VYA G v, v,

where L, = (ya(y2 — 1))% [ (%1 (31 — 1)(y2 —%1)) " ¥dy, and

ViV — 12V2V; + 9V, Vs

D

18V1V; — 6V
D

HS(‘II) ‘/—2’ ‘/3) =

- Hi(V1, V2, V3) Lo,

Gs(Vi, W, V3) = — G1(V1, Vo, V3) Ly,
where Ly = (y2 — 1) [((1 — 1)(y2 — v1))~#dyy, where D = V2V — 4V} —
AV3V; + 18V, V5 — 27V2.

We have checked that the values of Vi, V;, and V; of the cubic homogeneous
integrable case (case (iii) in [2]) verify that functions (12) are constants, that
is, H, + Q3G, = K, Hy + Qs3G5 = K, and Hs + Q3G5 = Ks. In this case

Vi = 3R4(sin™" (04 — 2¢2) +sin(2p + 2)),

- 30, —
Va = 12R} sin® (o + Z-22) cos(ip + P2) sin™ (1 — 202),
Vo = 8R}sin®(p + Z-E2) sin™ (g1 — 20),
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and it is easy to see that

K, =0,

K, = _tan(2¢s — ¢4) and
Ry

K, = sin (205 — 4)

R4 cos? (2(p2 - (,04) ’

Finally we will study a integrable system in the quadratic case s = 5,

which verifies a = 2 and oy = o, = 1 and a3 = 1 (see [5]). In this case
equation (24) takes the form

d®h d*h
(32)  4yu(yn — 12 —y1) o5 + (17y1 — 267 — 5yo + 14y192) ——

dy; dys

dh
dy:
Integrating twice the previous expression we have

dh
(33) dy1(y1 — 1) (2 — yl)d_y: + (y1 — 242 + 3y2 — 2y1y2)h = 0.

Relation (33) is a first order linear differential equation which has a par-
ticular solution given by

Ay, v2) = 8 (41 — 1) "% (g, — 1) "

From (32) we find only two independent particular solutions which have
the form

hy (y1,yz) =
Y.

ha(y1,92) = (y

and from equations (23) we have

1
91(y1,92) = 1 )
(y2 — 1)3y3 (y2 — v1)
. 1
92(y1,92) =
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Since y;, = flz and y, = :aj-, the functions H and G are

T
Hl(mlamZV"BS) = (x2 _ x3)(3$3 _ xl)% )
1
Gl(xl,fﬂz,xa) = 1 D
(z2 — z3)(z3 — 21) 523
3
md
H2($1,$2,$3) = (233 T )(:;2 z )%7
— Ig — I
1

Ga(Z1, T2, T3) = 1
(z3 — z2) (T2 — 21) 325

In this case the inverse integrating factor is V(R, p) = (14+W,; R+W,R?)(1+
UlR)% where W, = z5 + z3, Wy = 2523 and U; = z;. It is difficult and not
interesting to find the fuctions H and G in function of W, W, and U;. We
know that these functions verify H, + QsG; = K, and H,+ QsG, = K, where
K; and K, are constants. It is easier to use these two algebraic combinations
KK, = (Hi+QsG1)(Hy+QsGs) and K+ K3 = (Hi+Q5G1)* +(Hz+Q5G2)*
in order to find their expression in function of W, W, and U,, and we obtain

Q — QsW, + W,
(W2 — aW,) (W (W, — U, W, + U3))7’

(34) K1K2 ==

K4 K = QE(WE —2W, — U, Wy) + Q§(4W2(2Ul - W)
Wy(Wy — Uy Wy + UZ) (W — 4W,)?
+ QE(6Wo(2W, — Uy W) + Qs (AW, (UL (W2 — 2W,) — WoW1))
Wy (W, — UW, + UR)(WE — 4W5)?
Wo(Wo (W2 —2W,) — U, W, (WE — 3Wy))
Wo(Wy — Uy W, + UR)(WE — 4W,)2

We have checked that the values of U;, W; and W, of the integrable case
(case (iii) in [5]) verify the functions (34) are constants, in this case
P4

Uy = 4Rssin’ (2 + £ + Z—),

W1 = 2Re(1 + 2sin(2p + ;) + sin(4de + ¢4)), ‘
4
W, = 4R§sin® (2 + % + g) cos(p + %) + sin(p + %3) ,
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and it is easy to see that

1
K K, = and
T2 2V/2R, [sin(ps — £) — cos(ip2 — %]
1
Ki+Ki= .
PP T R = sin(Zes — w0))
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