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1. INTRODUCTION ,

The main problem in Celestial Mechanics is the so called n-body problem,
i.e. to describe the motion of n point particles of positive mass moving under
Newton’s law of gravitation when we know their positions and velocities at a
given time.

The two-body problem is completely solved in the sense that we can de-
scribe explicitly all its solutions. For n > 3 we have many partial result about
the n-body problem, but we are far to understand all its solutions.

A restricted three-body problem consists in describing the motion of a mass-
less particle ms under the gravitational action of two positive masses m; and
ms, called primaries. Since mgz does not perturb the motion of the primaries,
then these are moving following a solution v of the two body problem. Then
we call this particular restricted three-body problem the -y restricted three-
body problem. ‘

In Section 2 we prove that there are exactly 30 different restricted three-
body problems in dimension 1, 2 and 3. At least 10 of these problems have
been studied by several authors.

The rest of the paper is dedicated to study the elliptic collision restricted
1sosceles three-body problem, i.e. the restricted three-body problem when the
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two primaries with equal positive masses are moving in a collision elliptic orbit
solution of the two-body problem, and the infinitesimal body mj is moving
on the perpendicular straight line to the line containing the motion of the
primaries which pass through the center of mass of the system.

In Section 3 we present the equations of motion of the elliptic collision
restricted isosceles three-body problem, and the proof that its solutions either
are defined for all time ¢ € R, or begin or end in triple collision.

The elliptic collision restricted isosceles three-body problem has three dif-
ferent kinds of singularities, namely triple collision, escape to infinity, and
escape to infinity with infinite velocity. Since binary collisions are regulariz-
able we do not consider them as singularities. In Sections 4 and 5 we prove
that the unique non-regularizable singularity of the collision restricted isosce-
les three-body problem is the triple collision.

Using the blow-up techniques introduced by McGehee, ElBialy in [16] also
proved the non-regularization of the triple collision of the restricted isosceles
three-body problem. As far as we know all studies about the regularization or
non-regularization of triple collision are based in the McGehee variables, with
the exception of the topological surgery regularization introduced by Easton
[15]). Our study of the triple collision in the elliptic collision restricted isosceles
three-body problem neither use McGehee variables, nor surgery techniques.

2. THE RESTRICTED THREE-BODY PROBLEMS IN DIMENSION 1, 2, 3
We describe all restricted three-body problems in R* with n =1, 2, 3.

PROPOSITION 2.1. There are 13, 10 and 7 restricted three-body problems
in dimension 1, 2 and 3 respectively.

Proof. Let v be a fixed solution of the two-body problem. We assume
that two mass points m; and m, are describing the solution . If v is not a
collision orbit, let IT be the plane containing it. If «y is a collision orbit, let [
be the straight line containing it.

First suppose that m; = my. If v C II, let R be the unique perpendicular
straight line to plane II passing through the center of mass of m; and m,
fixed at the origin of the coordinate system. If v C [, let R be a straight line
perpendicular to | passing through the center of mass of m; and m, fixed at
the origin of the coordinate system. We assume that the mass point m3 =~ 0
is on the straight line R.
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Figure 1: The circular Sitnikov problem.

Due to the symmetric position of the masses m; = m, with respect to the
line R, the gravitational force on mj is given by a vector containted on the line
R. Therfore, if ms has its initial velocity on the line R, the In consemotion of
mg will remain on the line R forever. Thus the motion of m; is given by a v
restricted three-body problem in dimension 1. We note that the three masses are
forming an isosceles triangle which eventually can degenerate to a segment.
So these  restricted three-body problems are known as one-dimensional vy
restricted isosceles three-body problems.

According with the kind of the orbit v and being m; = m, we obtain in
dimension 1 seven differents restricted isosceles three-body problems: circular
Sitnikov if v is a circle [30], [28], [4] (see Figure 1); elliptic Sitnikov if «y is
an ellipse [30], (1], [28]; parabolic if « is a parabola [14]; hyperbolic if v is a
branch of a hyperbola [11]; elliptic collision if 7 is a collision elliptic orbit
[25]; parabolic collision if «y is a collision parabolic orbit [12]; and hyperbolic
collision if -y is a collision hyperbolic orbit [26], [13].

The restricted circular Sitnikov problem is integrable and its solution are
explicitly known, see for example [24] and [4].

In the study of the qualitative dynamic of a three-body problem an im-
portant fact is to know where end or start its solutions. Let a be a solution
of the three-body problem (restricted or not). If o is defined for all ¢ > 0
(respectively ¢ < 0) then the behavior of the particles when time tends to
+o00o (respectively —oo) is called the final evolution of a. A final evolution is
oscillatory if the upper limit of the distances between the particles is infinite,
while the lower limit is finite.
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In 1922-32 Chazy [7], [8], [9] (see also [2]) gave a classification of the fi-
nal evolutions of the three-body problem with masses m; > 0, getting seven
possible kinds of final evolution, and proved that six of these are realizable.
However the existence or non-existence of oscillatory final evolutions remained
an open question until the 1960’s. In 1960 Sitnikov [30] gave heuristic argu-
ments for showing the existence of such orbits for the restricted three-body
problem that nowdays is known as the elliptic Sitnikov problem. Alekseev [1]
in 1968-69 gave the first proof for the existence of these final evolutions in
the elliptic Sitnikov problem (ms; = 0) and after he extended it to mz > 0;
that is, to the isosceles three-body problem. In 1973 Moser [28] simplified the
Alekseev’s proof on the existence of oscillatory final evolutions for the elliptic
Sitnikov problem giving a more geometrical proof. Later on Llibre and Simé
[21] shown the existence of oscillatory final evolutions in the planar circular
restricted three-body problem and after extended this result to the planar
three-body problem.

Final evolutions for the restricted three-body problems can be different
with respect to final evolutions for the general three-body problem with pos-
itive masses. Thus in the hyperbolic collision restricted isosceles three-body
problem there exist final evolutions that do not appear in the three-body prob-
lem with positive masses. More specifically, Meyer and Wang [26] shown for
the hyperbolic collision restricted isosceles three-body problem the existence
of orbits with final evolution such that m; and m, escapes hyperbolically to
infinity, while m3 = 0 tends to an arbitrary finite distance to the origin.

For the parabolic and hyperbolic restricted three-body problems of dimen-
sion 1, it is possible to describe the qualitative global flow (see for example
[11], [12], [13], [14]). However for the elliptic (respectively elliptic collision)
restricted three-body problem in dimension 1, the motion of the primaries
is periodic (respectively periodic after a regularization) and consequently the
study of the global flow becomes more difficult. For instance, in these last two
problems there are periodic orbits that they do not exist in the parabolic and
hyperbolic restricted three-body problems (see [6]).

Let v be a collision orbit of the two-body problem, and let | be the line
which contains it. We choose appropiate units in order that the masses of the
primaries m; and m, become 1 — u and p respectively, with p € (0,1). We
can take ms &~ 0 on the line [ between the primaries, or not. This double
option and the fact that v can be a collision elliptic, parabolic or hyperbolic
orbit give place to six restricted collinear three-body problems.
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If m; and m, are moving in a collision elliptic orbit and m3 is not between
the primaries, we call it the restricted elliptic collinear problem. This problem
was studied in [22] and [17].

In short, there are thirteen restricted three-body problems in dimension 1.

Now we consider the restricted three-body problems in dimension 2. Con-
sider that mg is moving on the plane II defined by the -y orbit of the primaries,
this motion defines a 7y restricted planar three-body problem. As < can be a
circular, elliptic, parabolic or a branch from a hyperbola orbit, we have four
restricted planar three-body problems.

When m; and m, are moving around their center of mass in circular (re-
spectively elliptic) orbits, and ms moves in the plane defined by m; and m,
we have the circular (respectively elliptic) restricted planar three-body problem
[32].

The circular restricted planar three-body problem is the most classical and
studied restricted three-body problem. The elliptic restricted planar three-
body problem is a model used, for instance, for studing the motion of an
asteroid ms = 0 inside the solar system just formed by the Sun and Jupiter
which are moving in elliptic orbits, see for example [10].

Suppose now that the motion of the primaries is contained in the straight
line l. Let IT' be a plane such that contains the line [. Consider that m3 = 0 is
moving in the plane II' under the influence of the gravitational attraction of
the primaries m; and m, that are describing the collision orbit v C I. So the
motion of ms is given by a -y restricted planar three-body problem. As v can
be an elliptic, parabolic or hyperbolic collision orbit, we get three additonal
restricted planar three-body problems.

Let v be a collision orbit, and let | be the straight line that contains this
orbit. We take m; = my and m3 = 0 moving on the perpendicular plane
to line [ passing through center of mass of the primaries m; and m,. The
fact that y can be an elliptic collision, parabolic or hyperbolic collinear orbit
allows us to say that there exist three restricted planar isosceles three-body
problems (see for example [5]).

In short, there are ten restricted three-body problems in dimension 2.

In dimension 3 we consider that the primaries m; and m, are moving in
a <y orbit solution of the two-body problem and the infinitesimal particle mg
is moving freely in R®. As Kepler’s problem has seven differents solutions, we
have that there are seven restricted three-body problems in dimension 3. The
circular restricted spacial three-body problems and the elliptic one have bee-
studied for several authors, see for example [32] and [20]. §
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In summary, we can say that there are thirty restricted three-body prob-
lems for dimension < 3.

In this work we will study the global flow of the collision elliptic restricted
three-body problem in dimension 1.

3. EQUATIONS OF MOTION

We consider two equal mass points m; = m, (called primaries) and a third
infinitesimal mass point m3 = 0 at the vertices of an isosceles triangle, in such
way that the infinitesimal mass is on the symmetry axis of the triangle. We
suppose that the two primaries are moving under Newton’s law of gravitation
in an elliptic collision orbit on the z-axis with their center of mass fixed at
the origin of coordinates. The mass mj is moving under the gravitational
attraction of the primaries on the z-axis (the symmetry line of the triangle).
Taking the initial velocity vector of m; =~ 0 on the z-axis, the particles will
remain always at the vertices of some isosceles triangle. Since ms = 0 the
motion of the primaries is not affected by the third, and from the symmetry
of the motion it is clear that the third mass point will rest on the z-axis.
The elliptic collision restricted isosceles three-body problem in dimension 1
consists in describing the motion of ms. In what follows will call it simply the
restricted isosceles three-body problem.

Let z be the distance between the center of mass and m;, and let z be
the distance of ms at the center of mass. So (z,0) denotes the position of
my, consequently (—z,0) denotes that of m,, and (0, 2) the position of m;. In
these coordinates (z, z) the equations of motion are

fz 1
2~ z?’
1)
dz 3 z
Cdi2 (22 +22)8/2

We have taken the units of length, mass and time in such way that m; = m, =
1/2, the time between two consecutive binary collision of the primaries equals
to 27 and the gravitational constant equals to 1. Then the energy integral for

the primaries is
1., 1
—3*— —=h.
23: T

In order that the primaries describe an elliptic collision solution of the two-
body problem we must take h < 0. The first equation of (1) defines a vector
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m,

Figure 2: The restricted isosceles three-body problem.

field with a singularity when z = 0, due to the binary collision between the
primaries. However, this singularity can be removed through a new inde-
pendent time variable s defined by dt = zds. The solution of the differential
equation

zz" -z +1 =0,

where ' = d/ds, gives the position of the primaries explicitly in function of
time ¢ through

z(E) = %(1 —cosE), t=FE-sinE,

where we have a choosen z(0) = ¢(0) = 0, being F the eccentric anomaly.
Note that binary collisions between m, and m, are only possible when
E =0 (mod 27) and z(F) = z(E + 2x) for all E € R
The equation of motion for mj is

d?z z
w2 @ L 2 @)

where z(t) = z(E(t)). So (2) is the equation of motion for the restricted
isosceles three-body problem.

We have a binary collision precisely when z = 0, i.e. whent =0 (mod 27),
and we have a total collapse or triple collision whenever £ = z =0, i.e. when
z=0and t=0 (mod 2n).

Notice that the phase space of differential equation (2) is {(z,2,t) € R3 :
(2,2,t) # (0,2,0 (mod 27))}. That is, the motion of the restricted isosceles
three-body problem is not defined in triple collision.
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Now we want to show that any solution z(¢) which do not begin or end in
triple collision is defined for all time, i.e. for all t € R.

Let A be an open set of R* and let X(x,t) be a vector field of class C",
with 1 < 7 < 400 or 7 = w (that is, analytic), defined on the open set of -
A x R. The vector field X has associated the differential system

x = X(x,1), 3)

and vice versa. By a solution of the differential equations (3) we mean a
differentiable function ¢ : I — A defined on some open interval I C R such
that d¢(t)/dt = X(¢(t),t) for all ¢ € I. The image ¢(¢) in A is called a
trajectory, orbit or an integral curve.

Let x € A. A solution ¢ : I — A of (3) such that 0 € I and ¢(0) = x is
called mazimal if for every solution ¢ : J — A such that I C J, ¥(0) = x,
and ¢ = ¢ |, it follows that I = J and, consecuently, ¢ = 1. In this
case I, = I = (w_(z),w4(z)) is called mazimal interval of the solution ¢(t)
which passes through x when ¢ = 0, and this solution ¢(¢) will be denoted
by ¢:(x). We say that the solution ¢;(x) tends to the boundary of A when
t /M wy (respectively t \, w_) if for every compact for every compact K C A
there exists € = ¢(K) > 0 such that if ¢t € [wi(zo) — €,w(z0)) (respectively
t € (w_(zo),w_(xo) +€]) then ¢;(zo) ¢ K. Here the notation ¢t / w, (respec-
tively ¢ \, w_) means that we choose any monotonally increasing (respectively
decreasing) sequence of the values of ¢ tending to w, (respectively w_).

THEOREM 3.1. Let X(z,t) be a vector field of class C™, with1 < r < 400
or r = w, defined on an open set A x R C R* x R.

a) For any x € A there is an open interval I, C R where the maximal
solution ¢;(z) of (3) satisfying ¢o(z) = z is defined and unique.

b) Ify = ¢t(x, and t € I, then Iy =I,—-t= {’I‘—t rc Ix} and
¢s(y) = ¢ris(2z) for all s € I,,.

Proof. See [31, pp. 209-210]. N

PROPOSITION 3.2. Let X(x,t) be a vector field of class C", with 1 < r <
+00 or 7 = w, defined on an open set A Xx R C R* x R. If (zg,t) € A x R,
we denote by (w_(xg),w, (%)) the maximal interval of the solution ¢;(xy) of
X = X(x,t) such that ¢y (x0) = xp. If wy < +00 (respectively w_ > —o0),
then ¢;(z,) tends to the boundary of A whent / w, (respectively t \, w_).
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Proof. See [31, p. 210]. 1

The circular Sitnikov problem for masses m; = my, = 1 and radius of
the circular orbit of m; and m, around their center of mass equal to 1/2 is
governed by the Hamiltonian

1, 1)
H=3p (q+4

Some analytic expressions for the solutions of this problem have been given
by several authors, see MacMillan [24] and Belbruno-Llibre-Ol1¢é [4]. The next
theorem is proved in [4]

-1
2

THEOREM 3.3. The solution of the circular Sitnikov problem can be writ-
ten as

1
r= 2 if |hl <2
1— 2—;&5112(%,@ ’

1

r= 2 if |hl>2,
1—2sn2(%s,k‘1)

5 40+ VEr—Tr _ exp(—/3s)

2r+1

if h=2,

wherer = ¢*+%, k = 1(2+h)'/?,t = [r%ds and sn(u, k) is the sinus amplitude
Jacobi elliptic funct1on

Now we are ready to prove the announced result.

PROPOSITION 3.4. The maximal interval (w_,w, ) of every non-triple eJec-
tion or collision solution (z(t),v(t)) of the system

dz
dt 4)
dv
dt (z2(t) + 22)%/%’

is (—o0, +00).

Proof. We suppose that w, is finite and we will find a contradiction. In
a similar way we would show that w_ cannot be finite. If w, is finite, from
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Proposition 3.2 we have that the solution (2(t),v(¢)) tends to the boundary of
the phase space where ¢t ,/* w,. This boundary has three components: z = ¢
(mod 27r) = 0 (triple collision); z = oo (infinity in position); and v = +oo
(infinity in velocity).

Since (z(t), v(t)) is a non-triple collision orbit, we have that lim, »,, 2z(t) =
to0 or limy »,, v(t) = +oo. Since v(t) = £(t), if lim, »,, v(t) = Foo then
lim; »,,, 2(t) = fo0.

Now we assume that lim; »,, 2(t) = +oco. In a similar way we would get a
contradiction for the case lim; »,, 2(t) = —oco. Then there exist ¢, € (0,w,)
such that for every t € [to,w,) we have that z(t) > 0. Cleary we have

z z

@O+ 2R S Lt AR

zZ=

The differential equation

. S

s = —m (5)
corresponds to the equation of motion of the circular Sitnikov problem with
primaries of mass equal to 1/2 and when the radius of the circular orbit of
the primaries around their center of mass is 1. From Theorem 3.3 it follows -
that the flow of the circular Sitnikov problem is complete, i.e. all its solutions
are defined for all t € R.

Let s(t) be the solution of (5) such that s(to) = 2(to) and $(to) = 2(to).
Since the solution s(¢) is less braked than the solution z(¢) of (4) and at
t = to they coincide, we get that s(t) > z(¢) for t € [tp,w,). Hence, since
lim; ~,, 2(t) = +oo0, we get that lim, »,, s(t) = +o0, in contradiction with
the fact that solution s(t) is defined for allt € R.

PropoSITION 3.5. The followings statments hold.

a) If the solution (z(t),v(t)) starts at triple collision then its maximal in-
terval of definition (w_,w, ) satisfies that w_ > —o0.

a) If the solution (z(t),v(t)) tends to triple collision then its maximal in-
terval of definition (w_,w, ) satisfies that w, < +oo.

Proof. The existence of a triple collision forces the existence of a binary
collision between the two primaries. Since the binary collisions take place
when t = 2kn for k € Z, and all those times are finite, the proposition
follows. K
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4. BOUNDARY MANIFOLDS

Trying to extend the flow of equation (2) to the boundary manifolds of its
phase space we make the following changes of coordinates.
Using the time scale transformation

dt
15 =1-cosE,
equation (2) becomes
dz
B = (1 — cos E)v,
dv z (6)
5= —(1 - cos E) @2(E) + )

Note that from now on the variable E will be the new time, moreover FE

module 27 allows us to know the position of the primaries, but E runs over

all R. Then the system (6) is 2w-periodic on the variable E.

: We introduce polar coordinates through the change of variables (z,v, E) —
(r,, E) defined by

T =rcosyp, =z=rsiny,

see the geometrical meaning of r and ¢ in Figure 2. We note that r = v/z2 + 22
and ¢ = tan~! z/x, where 7 > 0 and —% < ¢ < Z. Then r gives the distance
between m,; and mgs, or m, and mg, r = 0 corresponds to triple collision, and
¢ = x7Z correspond to other double collision between the primaries, or to the
escape a.t infinity of ms.

The equations of motion (6) in the variables (7, p, E) are

dr . 1.

15 = coscp(2r'usmtp+ EsmE),

dep 2 1o ;

= — - - 7
75 2v cos? ¢ 5T sin ¢ sin E, (7)
dv 1.

15 = —2r~" sinpcos .

We remark that the variables r, ¢ and E are not independent because we can
obtain each one of them in function of the other two:

1—cosFE 1—cosFE

- — cos—1
r= , p=cos ( o

E =cos™'(1 -2 .
Zoos ), cos™ (1 — 2r cos p)
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Nevertheless, we work with the four variables 7, ¢, v and E because each one
gives different information which allows a better description of the problem.
Thus, for instance 7 = 0 (or similary z = 0 and z = 0) is associated to triple
collision, E = 0 to double collision of the primaries, r = +o00 to escape to
infinity of the infinitesimal mass mj3, and ¢ = 0 to collinear configuration.

We note that in equations (7) there is the term r~!, so they are not de-
fined in the triple collision. Trying to extend the solutions to the boundary
associated to the triple collision r = 0, we make the change (r,¢,v, E;E) —
(R, p,w, E;s) through

dE _ .

R=r? w =%y, - =
ds

Since

1 E . cos'/?
z(t) = 5(1 — cos E) = sin® 5 T=rCcosy, 2 = i %('DI,

the expression

sinE sinE - cos'/Z¢p
R rt/2 |sinZ |

sin E = 2 cos/? ¢ cos %sign (sin g) ,

is well defined in R = 0, and equations of motion (7) go over to

@ = cosgo(Rwsingo + lsinE),
ds 4
Z—f = cos'/? tp(Zw cos®/? p — sin p cos %sign (sin g—) ) ,
(8)
dw _ cos ( — 2sing + w?sing + 1w cos!/? p cos —E—si n (sin E) )
ds ® P 14 2 ¥ D) g B) )
dE
2 _R
ds

We remark that since the factors sign (sin %) and cos % appear in system (8),
this system is 4m-periodic in the F variable. Since R = 0 implies E = 0, it
follows that dR/ds = 0; that is, the manifold R = 0 is invariant by the flow.

We must note that system (8) splits into three discontinuous systems ac-
cording the values of sign (sin £). Clearly, any of these two systems corre-

sponding to sign (sin %) = =+1 have physical meaning.
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For knowing the asymtotic behavior of the orbits when R — Zoo, the
next step is to scale the position R and the velocity w through the change of
variables (R, ¢, w, E;s) = (p, ¢, 0, E;s) given by

p=1+—R, w=tanf with —§§0§g-.
In such way 6 = +7 corresponds to velocity of ms equal to +oo; p = 0 to

triple collision; and p = 1 to infinity in the position of m;.
The equations of motion (8) can be writen down as

Zi (1-p)? coscp(p(l —p) tsinptanf + isin E) ,

dp i ( 3/2 . E . ( . E))

2 = o5 e 2cos®/2 ptan O — sin p cos 5 sign (sin - ) ),

dg 2 . . 2

g5 = cospcos 0 —2sinp +sinptan® 0 : 9)

L 1 E . . E
+ 5 cos ptan @ cos 5 Sign (sm 5) ),

—_— — -1

The above equations still have singularities at p = 1 and 6 = +7, but
these singularities can be removed by a new time s defined by

d
dj- (1 — p) cosb.
Thus, the equations (9) become
d
o = (1 —p)? cos<p<psm(,osm0+ —(1- )cos&sinE),
dr 4
d E E
0 _ (1 — p) cos'/? <p<2 cos®/2 psin § — sin p cos O cos —sign (sin —) ) ,
dr 2 2
dy _ T
i (1 —p)cospcosf| — 2sinpcos” O + sinpsin®
T (10)
1 E
+ = cos'/? psin @ cos O cos —sign (sin §> ) ,
2 2 2
dE
— = pcosf.

dr
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" 5. TRIPLE COLLISION

Our goal in this section is to show that triple collision cannot be regular-
ized. This means that we cannot read off the local behaviour of solution
which pass very near of triple collision. In other words, system (10) de-
fines analytic vector fields on the phase space (p, 9,0, E) € (0,1] x [-5, 2] x
[—%, 5] x (R\ {2k~ : k € Z}), which cannot be extended to the phase space

[O 1] -E’E]x[—zaz]XR
We note that if p = 0 then F =0 (mod 27), and that p can tends to zero
either in a region with sign (sinZ€) =1,orina reglon with sign (sin £) = —1.

Since the function sin £ is 47r-penod1c sign (sin£) = 1if E € (0,27) mod 4,
sign (sinZ) = -1 if E € (2m,4m) mod 4, and sign(sin€) = 0if E =0
(mod 27r). In the phase space (p, , 0, E) we may dlstmgmsh three cases. We
will denote by p \, 0 a monotonally decreasing sequence of the values of p
tending to 0. In the same way E \, 0,27 (respectively E 2w, 4m) means
that we choose any monotonally decreasing (respectively increasing) sequence
of the values of E tending 0, 27 (respectively 2, 4m).

CASE 1: sign (sin£) = 1. We start by studying the limit flow of system
(10) when p \y 0 and E N\, 0 (mod 4); that is, when the primaries are leaving
the triple collision and the corresponding flow is given by

d
% = cos'/? <p(2 cos®2 psin § — sin ¢ cos 0),
(11)

dé 1
i cosgocos()(—— 25sin ¢ cos® @ + sinpsin® § + §cos1/2<psin0cose).

The system (11) is defined on the square [~Z,Z] x [-Z,Z] and has the
following equilibrium points:

i T T
_ _l<h< =
(:i:z,9> for all <6< 5

2
il \ﬁ T \/§
(0, 0), (3,tan 2), <3, tan 5 |-

Now, we compute the linear part of system (11) at these last three isolated
equilibrium points. At (0,0) the linear part is given by the matrix

o)



RESTRICTED THREE-BODY PROBLEMS 87

Since its eigenvalues are \; o = —0.25+1.85404962 - - - ¢, (0,0) is a stable focus
[3]. The linear matrix at the equlibrium points

L ) T -1\/§
(3,tan \/;>, (3, tan 2),

is in both cases equal to

1 1/5
45 2V 2
__1 _T_
410 45

having eigenvalues A\; = —1.1982826232--- y A, = 0.7510726368 - - - ; so, these
two points are saddles [3]. By Hartman Theorem [19] since these singular
points are hyperbolic, their local flow is qualitatively the same as their linear
flow. .

Once we know the local flow at the equilibrium points the following step
is to obtain the global phase portrait. According with the nonlinear nature
of system (11), it is not easy to make an analytic study for determining the
flow outside a neighborhood of the equilibrium points, more especifically to
determinate the global behavior of the separatrices of the saddles points.

On the other hand, close to (0,0) the divergence of system (11) given by

Z—z + g% = sin cos ¢ sin §(9cos® § — 5) + % sin® ¢ cos™/2 @ cos @

3
+ cos®/? pcos b (5 cos® 0 — 2) ,

and consequently it is always negative. So there are no periodic orbits near
the focus (0,0) (for more details see [33]).

To analyse the vector field over the zero velocity curves defined by ¢ =
do/dT = 0 and 6 = df/dr = 0 is very useful for describing the global flow in
[-%,Z]>. Moreover, the local phase portrait at equilibrium points, together
with the global behavior of the separatrices of the saddle points of the system
(11) computed numerically, allows us to show that the phase portrait of the
system (11) is topologically equivalent to the phase portrait of Figure 3.

Note that the system (11) is invariant under the symmetry (¢,6,7) —
(_(pa -0, T) :

For analyzing the nonlinear system (10) when p \, 0 and £ \, 0 (mod 4),
we start analysing the local phase portrait of system (10) near its equilibrium
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Figure 3: Phase portrait when p \, 0 and £ \, 0 (mod 4r).

points given by

E* =(0,0,0,0), Lf = (o, g,tan'l \/g,o), i = (o, —g, — tan~? \/g 0),

which is again qualitatively determined by the behavior of the linear part of
system at these equilibrium points.

We remark that the equilibrium point E+ correspond to the collinear Euler
central configuration, and both L;L@) corresponds to the equilateral triangu-
lar Lagrange central configuration; see [29] for more details about Euler and
Lagrange central configurations of the three-body problems.

Since the variable £ may be obtained in function of p y ¢, we study the
flow in the phase space (p, p,8).

The linear part of the system (10) at E* is given by the matrix

0 0 0 025

0 -1 2 0
0 -2 05 O
1 0 O 0

having eigenvalues A, = §, Ay = —%, A3 4 = —0.25 + 1.85404962 - - - 1.

We have that the local phase portrait at (0,0,0,0) restricted to the flow
(p,0) is a sink; that is, the flow in a neighborhood tends to (0,0). On the
other hand, in a neighborhood of E* with p =~ 0, ¢ 0, # = 0 and EZO0 is
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satisfied dp/dr = (sin E)/4 > 0. We denote by E {0 the positive values of E
near 0. Therefore in the phase space (p, p,0) the flow is leaving E* along the
p-axis. Using the Hartman Theorem we get that in the phase space (p, ¢,0)
the equilibrium point E* has an unstable manifold of dimension one, and one
stable manifold of dimension two.

We compute now the linear part of the system (10) at the equilibium point
LT. The resulting matrix is

(e 0 0 )
0_1

—

N
-
o
[T
N
o

0 -7= L o

\WZ o o o)

having eigenvalues A\; = —0.1118033988---, A, = 0.4472135954---, A3 =
—1.1982 86232 --- and Ay = 0.7510726368 - - - .

We have that in the phase space (¢, 8) the equilibrium point LT is a saddle.
Furthermore, in a neighborhood of L with p = 0, p =~ 7/3, 6 =~ tan™! 1/3/2
and E20 (mod 47) we have that dp/dr = (sin E)/(4/10) > 0. Consequently
in the phase space (p, @, 0) the flow is leaving L] along the p-axis.

From Hartman Theorem we can say that in the phase space (p,p,0) the
Lagrange point L} has one unstable manifold of dimension 2, and one stable
manifold of dimension 1. ~

In a similar way we can study the linear part of system (10) at Lagrange
point L7, and we would get similar results to those of L. More precisely, we
have proved the following proposition.

'S
3
(=]

PROPOSITION 5.1. For the restricted isosceles three-body problem and in
a neighborhood of the triple collision in the region where sign (sin £) = 1 for
EZ0 (mod 47), the following statements hold.

(a) There exists a unique orbit which begins at triple collision in the Euler
configuration Et.

(b) There exists a 2-dimensional manifold formed by orbits which begin at
triple collision in the Lagrange configuration L.

(c) There exists a 2-dimensional manifold formed by orbits which begin at
triple collision in the Lagrange configuration Ly .
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Figure 4: The phase portrait when p /0 and E /27 (mod 4).

Now we consider the limit of system (10) when p \, 0 and E ~* 2«
(mod 4), this means that the primaries are going to collision with mj3 and
this limit flow is giving by the system "

d—f = cos'/? <,o<2 cos®/2 psin @ + sin ¢ cos 0> ,

i . . (12)

o= cosgpcos@(— 2sin @ cos? @ + sin ¢ sin® § — 3 cos'/? psin 6 cos 0).
System (12) can be obtained from system (11) through the symmetry

(,0,7) = (—p,—06,7). So its phase portrait is given in Figure 4.

PROPOSITION 5.2. For the restricted isosceles three-body problem and in
a neighborhood of the triple collision in the region where sign (sin£) =1 for
E <27 (mod 47), the following statements hold.

(a) There exists a unique orbit which ends at triple collision in the Euler
configuration E™. ‘ ‘

(b) There exists a 2-dimensional manifold formed by orbits which end at
triple collision in the Lagrange configuration Li .

(c) There exists a 2-dimensional manifold formed by orbits which end at
triple collision in the Lagrange configuration L; .
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So the triple collision manifold for a component of the phase space (0,1] x
[-2,2] x [-Z, 2] x (R\ {2kn : k € Z}) with sign (sin £) = 1 has two compo-
nents having different phase portraits.

CASE 2: sign (sin £) = —1. The objective is to describe the limit flow of
system (10) when p \, 0 with E \, 27 (mod 47) or E 4w (mod 4n). Simple
cumputations show that these limit flows are exactly the same than in Case 1.
That is, the case E \, 2r (mod 47) corresponds with E N\, 0 (mod 4~), and
the case E 4w (mod 4m) corresponds with E 7 27 (mod 47). Hence,
Propositions 5.1 and 5.2 are satisfied when sign (sin £) = —1 for E& 2r and
E S 4n respectively. Of course, E £ 27 denots values larger than and near 27.
Similary for E S 4.

Let

¢t ={(p,0,0,E): p\0, —3 S p, 0 7, BEN,Q, 27 (mod 4m)}
and

¢ ={(p0,0,5): 00, -

™

5 <ep, 0< g, E /2m, 4r  (mod 47r)},

be the two different components of the limit flow of the triple collision. Since
the phase portraits of these two components of the limit flow at triple collision,
C* and C*® do not coincide, we cannot extend in a continuous way the flow of
system (10) given in ’

(0, 0,6, B) € (0,1] x [-g g] v [-g g] « (R\ {2k : k € Z))

to the boundary p = 0. Hence we have proved the following result.

THEOREM 5.3. The triple collision of the restricted isosceles three-body
problem is not regularizable. That is, we loss the continuous dependence on
the inicial conditions for the orbits which pass near triple collision.

On the other hand we also study the following case.
CAsE 3: sign(sinZ) = 0. Now we describe the flow of system (10) on
p = 0, which is giving by
do

- = 2 cos® psin 6,

de
o= sin ¢ cos ¢ cos O (—2 cos® @ + sin” 9) .
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Of course, this flow has no physical meaning. The (0, 0) is the unique isolated
equilibrium point of system (13). The linear part at this point has eigenvalues
+27. Then the origin is a linear center.
Removing the time 7 in system (13) we obtain
df _ sinycos§(—2cos? 6 + sin’ 6)

dy 2 cos psinf

Separating variables and integrating, we get that the integral curves are con-
tained into the level curves

G(p,0)

cos? 0

cos p(—3cos? 6 + 1) © (14)

wherece R, -7 <p < Zand -5 <6< 7.

Since G(p,0) is a first integral of system (13), if ¢¢ € R is a regular
value of G, then there exists a neighborhood U of ¢y such that G~!(c,) is
a differentiable curve in (—Z,2) x (=%,2) and all G7'(c) with ¢ € U are
differentiable curves (for more details see [18]). So, G™!(c,) is diffeomorphic
either to S' or to an open interval (see for instance [27]). Furthermore, the
topology of G™*(c) can only change when c is a critical value of the function
G(p,0).

The unique critical point of G(y,0) on (=%, %) x (=%,%) is (0,0). Since
the level curve (14) is invariant by the symmetry (p,0) — (—p, —8), if the
point (i, #) satisfies G(p,0) = ¢ then (—¢p, —0) also satisfies it. Moreover, if

such level curve crosses the y-axis in two points, then it is closed. From

1

G(90>9=0)=j2c0—s(p=

¢,

it follows that the level curve intersects the y-axis at point (0,0) if and only
if 0 < cosp = —1/(2¢) < 1; that is, if only if —co < ¢ < —1/2. For these
values of ¢ the integral curves are closed because due to the symmetry always
intersect the y-axis in two points. Therefore the curves G(p,8) = c are closed
if and only if —oo < ¢ < —1/2. In particular ¢ = —1/2 at (0,0).

Notice that 6 = +cos™! % are straight line solutions of system (13). At
these straight lines ¢ = +00, and the function G(yp, 6) is not defined over them.
Moreover, from (14) we have that ¢ — 0 when § — £7.

In short, the integral curves G(y, #) = ¢ are homeomorphic to S* if —oco <
¢ < —1/2, to two open intervals if —1/2 < ¢ < 400, and to an equilibrium
point if ¢ = —1/2. The phase portrait of system (13) is topologically equivalent
to the phase portrait shown in the Figure 5.
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