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1. INTRODUCTION AND PRELIMINARIES

For T' a bounded linear operator on a Banach space X and z € X, the
following implication is well-known,

n—1
Tn .
1 > T*z converges = lim T 0. (1)

—
=0 n—oo N

The operator T is said to be ergodic if it satisfies the converse of (1) for every
z € X. Dunford [5] proved that, if 1 is a pole of the resolvent operator, then

13 ™

k : : —
— » T" converges in norm <=> lim =0.
n = n—oo 1

Other generalizations and local versions of these results are given in [3], [4],
[7] and [8].

Gelfand-Hille theorems give information about the behaviour of the opera-
tor I—T'. In particular, these theorems give necessary and sufficient conditions
for I — T to be nilpotent or for the sequence T"(I — T') to be convergent to
zero. The last kind of results are called Katznelson-Tzafriri theorems.

In this paper, we study some conditions implying that an operator T locally
satisfies the converse of (1); i.e. it is locally ergodic at some point z € X. In
fact, we prove local versions of some results of [9] and [8], and a local version
of the Gelfand-Hille theorem (see [10]).
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Along the paper, X denote a complex Banach space and L(X) the Banach
algebra of all bounded linear operators defined on X. If T' € L(X), we denote
the kernel and the range of T by N(T') and R(T), respectively. Moreover,
a complex number A belongs to the resolvent set p(T") of T if there exists
(A=T)"! € L(X). We denote by o(T) := C\ p(T) the spectrum of T.

We say that a complex number A belongs to the local resolvent set of T
at z, denoted p(z,T), if there exists an analytic function w : U — X, defined
on a neigbourhood U of A, which satisfies

(n—Tw(p) = =. (2)

for every p € U. The local spectrum set of T" at z is the complement o (z,T) :=
C\ p(z,T).

An operator T' € L(X) satisfies the Single Valued Extension Property
(hereafter referred to as SVEP) if (A — T')h()\) = 0 only has trivial analytic
solutions on any open subset of the plane. If T satisfies the SVEP, then for
every z € X there exists a unique analytic function Zr on p(z,T) satisfying
(2), which is called the local resolvent function of T' at z.

We say that T € L(X) satisfies property (C) if X(T,H) := {z € X:
o(z,T) C H} is closed for all closed sets H C C. For T € L(X) we consider
the following subsets of X:

Bri={z€X: lim —2% —0)
n—o00 N
n—1 .
Mr:={zeX: M,(T)z := ” > T*z converges }
k=0

Clearly, these sets are (not necessarily closed) subspaces which are invariant
for any operator commuting with 7. Moreover, we have M7 C Er (see the
Introduction).

The operator T is said to be ergodic if Er = Mr.

2. GLOBAL AND LOCAL ERGODIC OPERATORS

In this section we prove some basic results and local versions of some
ergodic theorems.

PROPOSITION 1. Let T' € L(X). Then the following assertions hold:
1. ExrNN(I -T)"*"' =N —T), for every n € N.
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2. If 1 € p(T), then Er = (I — T)Er = Mr. In particular, T is ergodic.

Although z € Mr when T"z converges, the converse implication is not
true, as the following example shows.

EXAMPLE 1. Let T € L(¢;(N)) be the weighted shift defined by

Te, :=1/(n+1)/nens1-

Taking z := (I — T)e,;, we obtain that z € Mr (since e; € Er) and T"z does
not converge (since 7"z = v/n + leny1 — vV + 2€n42)-

The next result will be useful to descrii)e operators with an ergodic power.

PROPOSITION 2. Let T € L(X). Then for every k € N we have Er« = Erp
and Mp+ C Mry. In particular, if T* is ergodic, then T is ergodic.

DEFINITION 1. Let T € L(X) and z € X. We say that T is a local ergodic
operator at z if x ¢ Er or z € M. '

Remark 1. (1) An operator T is ergodic if and only if T is local ergodic
operator at  for all z € X.

(2) T <1and z € NI —T)® R(I —T), then T is a local ergodic
operator at z, by the mean ergodic theorem (see [6]). In particular, if
IT)| <1 and 1 € p(z,T), then T is a local ergodic operator at z.

(3) If Tz — 0 as n — oo, then z € My; hence T is a local ergodic operator
at z. »

In the following proposition we prove a local ergodic result using global
ergodic properties.

PROPOSITION 3. Suppose that T € L(X) has property (C) or 1 is an
isolated point of o(T). ‘
1. Ifz € X and 1 € p(z,T), then T is a local ergodic operator at z.

2. Ifz € X and 1 is a pole of Zr of order n, then T is a local ergodic
operator at . :

COROLLARY 1. Let T € L(X). If 1 is a pole of (A —T)~!, then T is
ergodic.
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In general, if T' is a local ergodic operator at z, then 1 is neither an isolated
point of o(z,T) nor an essential singularity (see the examples below).

EXAMPLE 2. Let T € L(¢5(N)) and z € £,(N) as in Example 1. We have
that * € Mr and o(z,T) = D, the closed unit disc. Then 1 is not an isolated
point of o(z,T). ’

EXAMPLE 3. Let S € L(¢5(N)) be the weighted shift with weights {1/n}.
Define T := (I + S)~!. Then ||T"|| < 1 and R(I —T) # ¢»(N). Moreover
1 cannot be a pole of Zr, because 1 is not an eigenvalue of T' [2, Corollary
3.2]. Hence Er = 4,(N) and using the mean ergodic theorem, there exists
z € Er \ M.

3. LOCAL POWER BOUNDED OPERATORS

For T € L(X), the local spectral radius rr(z) of T at z € X is defined by
rr(z) = max{|z|: z € o(z,T)}.

If T has the SVEP, then r¢(z) = limsup,_, ., ||T"z||*/". Henceforth we denote
by I' the unit circle. : ' '

Next we obtain some local results using similar ideas to that of [9,
Theorem 1] and local spectral theory.

THEOREM 1. Let T € L(X) and let z € X such that | T"z|| < M for all
n €N Ifo(z,T)NT C {1}, then T"z — T"*'z — 0 as n — oo.

The converse of Theorem 1 is not true, as the next example shows.

EXAMPLE 4. Let T' € L(C([—1,1])) be the multiplication operator defined
by Tf(t) :=tf(t), for f € C([-1,1]). Taking z(t) :=t(1 — |t]); t € [-1,1], we
obtain that 7"z — 0 as n — oo and o(z,T) = [— 1 ,1].

Remark 2. We could think that it would be possible to obtain a localiza-
tion of [10, Theorem 4] similar to Theorem 1; i.e., that o(z,T) = {1} and
(I — T)*M,,(T)z| — 0 for some positive integer k implies (I — T)*z = 0.
Unfortunately, the following example shows that this is not so.

EXAMPLE 5. The Volterra operator V on the Hilbert space H := L*(|0, 1])
is defined by

V) /f
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Take T := (I + V)™ ! So, 1 ¢ 0,(T) and hence 1 is not a pole of the resolvent
operator. Then My = H (since T"z — 0 as n — oo for all z € H by [1,
Theorem 5.1]), and T # 1.

The following result is a localization of the Gelfand-Hille theorem (see [4]
and [10]).

THEOREM 2. Assume that T € L(X) has the SVEP and let x € X such
that o(z,T) = {1}. If 1 is a pole of Tr of order k, then T"z/n* — 0
as n — oo.

Example 5 shows that Theorem 2 is false when 1 is an essential singularity.

An operator T € L(X) is Riesz if every nonzero complex number is a pole
of (21 —T)~! with finite multiplicity. In the same way that [8, Théoréme 3],
we obtain the following results.

THEOREM 3. For a Riesz operator T, the following assertions are equiva-
lent.

1. T"z is bounded.

2. x € Er.

3. x € M.

4. r7(z) <1 and o(z,T) NT consists of poles of Zr of order 1.

Our final result is the converse of Theorem 1 for a certain class of operators
and vectors.

THEOREM 4. Let T' € L(X) be an operator with the SVEP, and let x € X
such that ry(z) < 1 and o(z,T) NT consists of poles of Zr of order 1. If
Trz —T™z — 0 as n — oo, then o(z,T)NT C {1}.
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