EXTRACTA MATHEMATICAE Vol. 13, Nim. 2, 249 -253 (1998)

On the Structure of the Dual Complexity Space:
The General Case

SALVADOR ROMAGUERA* AND MICHEL SCHELLEKENS

Escuela de Caminos, Departamento de Matemdtica Aplicada, Universidad Politécnica de
Valencia, Apartado 22012, 46071- Valencia, Spain. e-mail: sromague@mat.upv.es

Fachbereich Mathematik, Theoretische Informatik, Universitat Siegen, HdolderlinstraBe 3,
D-57068 Siegen, Germany. e-mail: michel@informatik.uni-siegen.de

(Research announcement presented by F. Montalvo)

AMS Subject Class. (1991): 54E15, 54E50, 46A15 Received January 27, 1998

The purpose of this note is to report the main results obtained by the
authors in [8] and [9], respectively. :

The notion of a Smyth completable quasi-uniform space provides an effi-
cient tool to give a topological foundation for many kinds of spaces which arise
naturally in Theoretical Computer Science; in particular in Domain Theory
(e.g. [5], [13] and [14]) and Complexity Theory (e.g. [9] and [10]). In fact,
Smyth presented in [13] and [14] a topological framework for denotational se-
mantic based on the theory of complete (and totally bounded) quasi-uniform
and quasi-metric spaces. Later on, Matthews introduced in [5] the weightable
quasi-metric spaces, or the equivalent partial metric spaces, as a part of the
study of denotational semantics of dataflow networks. It was proved by Kiinzi
[4] that, in fact, every weigthable quasi-metric space is Smyth completable.
Recently, Schellekens [10] introduced the complexity (quasi-metric) space to
the study of complexity analysis of programs and proved, among other results,
that every complexity space is weightable and, thus, Smyth completable.

Our basic references for quasi-metric spaces are [3] and [4].

In our context by a quasi-metric on a (nonempty) set X we mean a
nonnegative real-valued function d on X x X such that for all z,y,2z € X:
(i) d(z,y) = d(y,3) = 0 & & = y, and (ii) d(z,y) < d(=,2) + d(z,1).

If d is a quasi-metric on X, then the function d* defined on X x X by
d*(z,y) = max{d(z,y),d(y,z)} is a metric on X.
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A quasi-metric d on X is called bicomplete [3], [4], if d° is a complete
metric on X.

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and
d is a quasi-metric on X.

Kiinzi characterized in [4] both Smyth completable and Smyth complete
quasi-uniform spaces in terms of left K-Cauchy filters as discussed in [7]. By
using [12, Proposition 4], it is possible to formulate these characterizations,
for quasi-metric spaces, in terms of sequences:

A quasi-metric space (X, d) is Smyth completable if and only if every left
K-Cauchy sequence in (X, d) is a Cauchy sequence in the metric space (X, d°),
where a sequence (z,)nen in (X, d) is left K-Cauchy provided that for each
€ > 0 there is an n, € N such that d(z,,z,) < € whenever m > n > n. [6].

Let us recall [10] that the complexity space (with range (0, +o0]) is the
pair (C,dc), where

C={f:w—(0,+00] | 2,2 "} < +o0},

f(n)
and d¢ is the quasi-metric defined on C by
N onry 1 1
dC(fvg):ZZ [(_'__—)VO]’ fagec-

oy g(n)  f(n)

dc is called in [10] “the complexity distance”, and intuitively it measures
relative improvements in the complexity of programs.

The dual complexity (quasi-metric) space (C*,dc+) is introduced in [8].
A motivation for the use of the dual instead of the original complexity space
is the fact that the dual is mathematically somewhat more appealing, since
dc- is “derived” from the restriction to [0, +o00) of the quasi-metric u defined
on R x R by u(z,y) = max{y — z,0}. Consequently, the presentation of the
proofs becomes somewhat more elegant. Furthermore, it is possible to carry
out the complexity analysis of algorithms based on the dual complexity space
and from a Computer Science point of view the dual complexity space respects
the interpretation usually given to the minimum L in semantic domains (8,
Section 4].

The dual complexity space (with range [0,+00)) is the pair (C*,dg-),
where

C*'={f:w—[0,400) | Yo y27"f(n) < +o0},

and dg- is the quasi-metric defined on C* by

do-(1,9) = 327" {(g(m) ~ W) VO], fr9 € O
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In (8], via the analysis of the dual, several quasi-metric properties of the
complexity space are obtained. In particular, by using that every weightable
bicomplete quasi-metric space is Smyth complete [4], we prove the following

THEOREM 1. The complexity space (C,d¢) is Smyth complete.

If F C C, we say that (F,dc) is a complexity space. A complexity space
(F,dc) has a lower bound L € C provided that L(n) < f(n) for all f € F and
n € w. Given L € C, we define

CL={feC|Ln) gf(n), Vn € w}.

By using that every weightable hereditarily precompact quasi-metric space
is totally bounded [4], we also show in [8] the following results.

THEOREM 2. Every complexity space with a lower bound is totally
bounded.

THEOREM 3. Let L € C. Then, (Cy,(dc)®) is a compact metric space.

Since the complexity of a given program is frequently obtained by a sum-
mation of complexity functions or by a product of a complexity function by a
constant, where these operations intuitively correspond to operations carried
out by the program on data structures, it is interesting and useful to obtain
an appropriate context both for realizing these operations and for developing
a consistent theory for the analysis of the dual complexity space. In [9] it is
shown that the notion of a quasi-normed semilinear space provides a suitable
setting to carry out the analysis claimed above, even in the general case that
the range space is any structural biBanach semilinear space. :

A quasi-normed space (E, || - ||) (in the sense of [1] and [2]) whose induced
quasi-metric is bicomplete is called a biBanach space [9]. '

DEFINITION 1. A biBanach semilinear space is a pair (F, || - ||r) such that
F is a nonempty subset of a biBanach space (E,|| - ||), F' is closed in the
Banach space (E,| - ||*) and (F,| - ||r) is a quasi-normed semilinear space.
If in addition, the quasi-metric space (F,d),) is an optimal order-convex
quasi-metric join semilattice and it has a maximum (in the sense of [11]),
then (F,| - ||r) is called a structural biBanach semilinear space.

Structural biBanach semilinear spaces are called biBanach norm-weightable
spaces in [9]. A
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Let (F,| - |lr) be a biBanach semilinear space. Then, there exists a
biBanach space (E, || - ||) for which F' satisfies the conditions in Definition 1.
Now put

Cr={f:w—=F| L 27"(IlF (n)llF)* < +o0},

and, for each f € Cy,,

n=0

1flle- = 3217 ()]

It is shown in [9] that the central (quasi-metric) theorems in (8], cited above,
still hold for the general theory of structural biBanach semilinear spaces. Fur-
thermore, we prove the following results.

PROPOSITION 1. Let (F,| - ||r) be a biBanach semilinear space. Then,
(C3y 1l - llc+) is a biBanach semilinear space. '

It follows from Proposition 1 that the quasi-metric dj.|.. defined on C} by

e (F,9) = LoZo 27" lg(n) — F()]

is bicomplete.

DEFINITION 2. Let (F,|| - || r) be a structural biBanach semilinear space.
Then, the quasi-metric space (Cj,d)...) is called the dual complexity space

of (F, || - lIr)-

PROPOSITION 2. The dual complexity space (Ck,d)...) is an optimal
order-convex quasi-metric join semilattice and it has a maximum.

From Propositions 1 and 2, we deduce the main result of [9].

THEOREM 4. Let (F,| - ||[r) be a structural biBanach semilinear space.
Then, (Cy, || - |lc+) is a structural biBanach semilinear space.
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