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1. INTRODUCTION

This paper will consider the closure of the set of operators which may be
expressed as a sum of lattice homomorphisms whose range is contained in a
Dedekind complete Banach lattice.

Finite sums of lattice homomorphisms have been studied in [2] and [3].
In section 3 we review (and slightly extend) some of these results. In section
4, we consider the band generated by lattice homomorphism, as well as the
norm closure of the set of lattice homomorhpisms and additional questions
regarding weakly compact operators and the band generated by lattice homo-
morphisms. We show that an operator is in the band generated by sums of
lattice homomorphisms from C(X) to Dedekind complete C(Y') if and only if
its transpose maps each point measure at y for y in a residual subset of Y to
an atomic measure on X. We give a corresponding result in case F and F are
Banach lattices, F' is Dedekind complete, and E has a quasi-interior point.
Weakly compact operators are also considered, as well as the norm closure of
the set of sums of lattice homomorphisms.

2. PRELIMINARIES

For Riesz spaces E and F, L(E,F) will represent the space of order
bounded operators from E to F. T € L(E,F) is a lattice homomorphism
if T satisfies Tf ATg =0 for f and g in E which satisfy f Ag = 0. A band-
preserving operator in L(E, E) will be called an orthomorphism. Let C(X)
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and C(Y) represent the Banach lattices of continuous functions on compact
Hausdorff spaces X and Y, respectively. Orthomorphisms in L(C(X), C(X))
coincide with the set of multiplication operators on C(X), i.e. those op-
erators defined by Tf(z) = g(z)f(z) for some fixed g (See [1, 8.27]). If
Tf = gf for g € C(X), we denote such an orthomorphism 7' by the symbol
g. T e L(C(X),C(Y)) is a lattice homomorphism, then there is a positive
g € C(Y) and a function ¢ : Y — X which is continuous when g(y) > 0, so
that T'f =g f o ¢; in other words T'f(y) = g(y)f(¢(y)). (See [1, 7.22]).

For a Riesz space E, E~ will denote the dual space of (order) bounded
linear functionals. If E is a Banach lattice, E~ coincides with E’, the norm
dual of E. E; denotes the subspace of E~ consisting of order continuous
linear functionals. C'(X) may as usual be identified with the set of bounded
Baire measures on X, and each x € X may be considered as a point measure
in C'(X). The band of C'(X) of atomic measures, i.e. all 4 € C'(X) such that
(4, f) = > a;f(z;) for a sequence {a;} C IR and a sequence {z;} C X, will
be denoted by C'(X), (or C.). The disjoint complement in C'(X) of diffuse
measures will be denoted by C'(X),.

Note that if E = C(X) and F = C(Y), L(E, F) is also the collection
of continuous operators from E to F. An operator S in L(C(X),C(Y))
is determined by its adjoint mapping S* : C'(Y) — C'(X) restricted to Y
where Y is identified with a subset of C'(Y"). Any mapping from Y to C'(X)
which is continuous for the o(C'(X),C(X)) topology determines an element
of L(C(X),C(Y)) (see [4, VL.7.1]). The above representation of a lattice
homomorphism T is equivalent to the condition that for each y € Y, there are
a real number a and an z € X such that T*y = aZ where £ € C'(X) is the
point measure associated with z, i.e. a = g(y) and z = ¢(y).

For a positive operator T', suppose that, for each y € Y, there are z,, ...,
z, € X and a,,as, ...,a, € Rsuch that Tf(y) = Y1, a;f(z;) for all f € C(X)
(ie. T*y = 31, a;%;). In [3], we determined that this condition was not
sufficient to guarantee that T is a finite sum of lattice homomorphisms, but
there is an increasing net of orthomorphisms {g,} with supremum the identity
operator such that each g, oT is such a finite sum. Such an operator is called
a local homomorphism. However, if n is fixed and C(Y") is Dedekind complete,
then T itself is a sum of n lattice homomorphisms. In addition we will show
that for any positive T' € L(C(X),C(Y)) there is a projection P, on C(Y') so
that P, o T may be written as such a sum.

In section 4, we consider the band generated by lattice homomorphisms
and situations in which operators in this band may be expressed as infinite
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sums. The characterization of finite sums of homomorphisms using mappings
from Y to finite sums of point measures on X suggests a similar result using
infinite sums of point measures (atomic measures) for the band generated by
lattice homomorphisms. We show that such a representation is indeed possible
(except on a set of first category). We also describe the projection of weakly
compact operators on this band. Our final result concerns the norm closure
of the set of sums of lattice homomorphisms.

Bernau, Huijsmans, and de Pagter have also studied the collection of sums
of lattice homomorphisms ([2]), giving a disjointness property which charac-
terizes such sums when F' is Dedekind complete (providing Theorem 4 below
as a corollary).

We begin with two lemmas concerning lattice homomorphisms. The proof
of lemma 1 follows directly from the definition of lattice homomorphism.

LEMMA 1. Let {S,} be a net of operators from a Riesz space E to a
Dedekind complete Riesz space F. If S, T S and each S, is a lattice homo-
morphism, then S is also.

LEMMA 2. Let S and T be lattice homomorphisms from a Riesz space E
to a Dedekind complete Riesz space F. If T is the projection of T onto the
band of L(E, F) generated by S, then S+ Ts is also a lattice homomorphism.

Proof. Note that Ts = V,(T AnS) and let z Ay = 0. Then Tsz A Sy =
(Va(TARS)Z)ASy = Vo ((TARS)zASy), but (TAnS)zASy < n(SzASy) =0,
which implies that (Tsz + Sz) A (Tsy + Sy) < Tsz ATsy +Tsz A Sy + Sz A
Tsy+ Sz ASy=0. 1

ProprosSITION 3. Let T be a bounded operator from a Riesz space E to a
Dedekind complete Riesz space F. If T is a sum of lattice homomorphisms,
then we may assume these homomorphisms are disjoint.

Proof. Suppose that T = S; + S, where S; and S, are (not necessarily
disjoint) lattice homomorphisms. Let R; = S; + (S2)s, and Ry = S5 — (S2)s, -
Then R; and R, are lattice homomorphisms, R; A R, = 0 and R; + R, =
S1 + S,. An induction argument completes the proof. |

3. FINITE SUMS OF HOMOMORPHISMS

In [3], we noted that the local homomorphism condition was unnecessary
for the characterization of sums of homomorphisms in case C(Y’) is Dedekind
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complete. A proof of this fact (Theorem 4) was given by Bernau, Huijsmans,
and de Pagter in [2].

THEOREM 4. Let X and Y be compact Hausdorff spaces and let T' €
L(C(X),C(Y)), where C(Y') is Dedekind complete. For a fixed n, the follow-
ing are equivalent:

(i) T =8 + ... + Sp, S; € hom(C(X),C(Y)).

(ii) For each y € Y there are z,...,z, € X and real numbers ay, ..., a, such
that T*y = Z:?:l aia“:i .

The above may be extended to certain Banach lattices represented by
continuous extended real valued functions. For a discussion of such Banach
lattices, see [6].

THEOREM 5. Let E and F be Banach lattices. Suppose that E has a
quasi-interior point e, F' is Dedekind complete, and T' € L(E, F). For a fixed
n, the following are equivalent:

(i) T=S8,+..+S,, where each S; is a lattice homomorphism.

(if) IfX is a representation space for E (withe = 1x ) and Y a representation
space for T(E) with T(e) finite on Y, then there exists a dense open
subset G of Y so that for each y € G there are z,,...,z, € X and
non-negative real numbers a;, ...,a, such that

Tf(y) = i aif(zi).

Proof. For (i) = (ii), recall that each S; can be viewed as a weighted
composition operator (see Theorem 1 in [5]), i.e. S;f(y) = r(y)f(¢(y)) for
a real valued function r» and an X valued function ¢ defined for each y in a
dense open subset H; of Y. Thus (ii) is satisfied for the dense open subset

G = ﬂ H;. For (ii) = (i), consider the collection of all Z, which are clopen

inY and subsets of G. Now |J Z, = G and {Z,} is directed by inclusion. The
restriction of each Pz oT to C(X) satisfies (ii) of the previous theorem so

that (on C(X)) Pz, oT = Z S;,o for lattice homomorphisms S; ,. Now V Py,
is the identity operator on C(Y) For S; = V S; .« and T restricted to C (X)
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(again denoted by T'), we note that

T=\/ P oT=\/3 8 =3V Sia =35

a i=1 =1l « i=1

Since each S; extends to a lattice homomorphism on E, we conclude that T
is a finite sum of lattice homomorphisms. [

THEOREM 6. Let T' : C(X) — C(Y) be positive with C(Y') Dedekind
complete. Then for any positive integer n there is a projection P, on C(Y)
such that P, oT is a sum of n homomorphisms and @ o T is not such a sum
for any non-zero projection on C(Y) satisfying Q A P, = 0.

Proof. Let Z = {y € Y : T*y = a1%; + ... + anZ, for some a; > 0 and
z; € X}. Note that Z is closed and let Z° denote the interior of Z (implying
that Z° is clopen). Letting P, = Pzo (the projection on Z°), note that P,oT
is a sum of n homomorphisms by Theorem 4.

Let @ be a projection on C(Y) with Q@ A P, = 0, and suppose that Q
is the projection determined by the clopen set A C Y. Since AN Z° = 0,
there is a yo € A ~ Z. Since (Q o T)*y, = T*y, cannot be written in the
form a;%; + ... + a,%,, we conclude that Q o T is not the sum of n lattice
homomorphisms. |

4. THE BAND GENERATED BY LATTICE HOMOMORPHISMS

For Dedekind complete C(Y'), finite sums of lattice homomorphisms in
L(C(X),C(Y)) and the vector lattice generated by these sums are character-
ized by the adjoint mapping restricted to Y in Theorem 4. We consider now -
the related question for the band generated by lattice homomorphisms. A
parallel condition may be given for this band, using atomic measures rather
than finite sums of point measures as in Theorem 4. The principle result is
Theorem 10, where this condition is established, along with the generalization
in Theorem 11.

First, however, we give a result for the following special case.

THEOREM 7. Let T : C(X) — C(Y) be positive with C(Y) Dedekind
complete and C;(Y) separating on C(Y). Then T is in the band generated by
the lattice homomorphisms if and only if T = 32, R; (order) where R; AR; =
0 for 7 # j and each R; is a homomorphism.
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Proof. The implication (<) is clear. For (=), consider T,{T,} where
T.T,: C(X)—=C(Y). 0<T, 1T and each T, is a finite sum of lattice ho-
momorphisms. For each p € (C'(Y))+, let P, be the projection onto the band
(€))% in C(Y) dual to u (C,, is the band in C' generated by u, (C},) . consists
of all f € C(Y) satisfying (u,|f]) =0, and (C},) is the disjoint complement
of (C,)1 in C(Y).) P, oT, is then also a sum of lattice homomorphisms.
Since P, o T, 1 P, o T, we may find an increasing sequence {T,,} C {T,} such
that P, oT, 1 P, oT by choosing T, to satisfy (u, (T —T,)1) < 27". Suppose
that

PooTi=Ti1+ .+ Tim,

where the T} ; are disjoint lattice homomorphisms. We may then express
P,oT, as
Pp o T2 = T2,1 + ... +T2’m2

where my > my, T ; are disjoint and
Ty = (P,oTs)r,, -
For j < m;. In general, let
PooTi =Ty + ... + Ty,
where T; ; are disjoint (in j) homomorphisms which satisfy
T;= (Pu ° Ti)ﬂq,,~

for j < m;_,. Let R;, = V,T;;, and note that R; , is a lattice homomorphism.
If A is a maximal collection of pairwise disjoint elements of (C;(Y)) 4, let R; =
VueaR; ,, from which we conclude that the R; are disjoint homomorphisms
and T = V;R; = 332, R; since A is separating on C(Y). 1

We now turn to the question of the relation between the band generated by
lattice homomorphisms and o(C’, C) continuous mappings from Y to C'(X).
In the following, for p € C', p® will be the atomic part of x4 (the projection
onto C'(X),), and u¢ = p — p® its disjoint complement (the projection onto
C'(X)a). |

LEMMA 8. Let S : C(X) — C(Y) be positive. Suppose (S*y)* = 3" b;%;
with z; distinct. Givene > 0 let ¢. : Y — C! be given by ¢.(y) = > (b;i—e€)ti;
and define S.f(y) = (¢c(y), f). Then S.f(y) is upper semicontinuous on Y
when f > 0.
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Proof. Suppose net yo, — yo and S.f(ya) — yll)“;l S.f(y). We must show
0

that S.f(yo) > lim, S.f(y.). For convenience, let S*(yo) = fo and pf =
¢.(yo). By taking subnets if necessary we may assume p, — [, fg —> p,
pl — n, pé, — v in the o(C’,C) topology for some p,p,n and v. We will
complete the proof by showing v < ¢.(yo)-

There is a fixed N so that ¢, is the sum of at most N non-zero point mea-
sures (N < ||S]|/€). Thus v is the sum of at most N non zero point measures;
v=3Xas with K < N.If €, = YK 0, 025 0, let g, = YK (50 + €)Fia-
We have then uf, < p, < p2. By again taking a subnet, we may assume
p, = p' (o(C',C)). p' is also the sum of at most N point measures, and
Y ¥(a; + €)&; < p' < p°, where v = YK a;2; as above. If we let p* = 3 ¢;3;
and p? = Y (¢; — €)t2;, then we may conclude v < p¢. Since p = p + 1, we
have ¢.(yo) > pe, and the proof is complete. 1

LEMMA 9. Let C(Y) be Dedekind complete. For f upper semicontinuous
onY let {(f) =N{g e C(Y)|g(y) > f(y) Vy € Y} (infimum in C(Y)). Then
¢ has the following properties.

(i) £(f) < f (as functionson Y').

(ii) £(f) =Vv{h e C(Y) | h(y) < f(y) Vy e Y}.
(iii) If f, and f, are upper semicontinuous then ﬁ(f 1+ f2) = L(f1) + £(f2).

(iv) {y| fly) > &(f)(y)} is of first category.

Proof. Property (i) follows from the fact that f is the pointwise infimum
of the set in the definition of £(f), and this exceeds the infimum in C(Y). This
implies property (ii); since g > h for every g in the definition of £(f) and A in
the set in statement (ii). To prove (iii) suppose that g;,9» € C(Y) and that
g1 > f1, g2 > fo. Hence g1 + g2 > fi + f2 and g1 + g2 > £(f1 + f2). Taking
the infimum over all possible g; yields £(f1) + go > £(f1 + f2), and repeating
for all g, implies £(f1) + £(f2) > £(f1 + f2). If we consider hy, hy € C(Y) with
h; < fi1 and hy, < fy and modify the preceding argument usmg property (ii),
we conclude £(f;) + £(f2) < £(f; + f2) Wthh proves (iii).

For (iv), note that {y | £(3) > £(f)(®)} = Usly | F¥) — £N)®) > 1} 1

THEOREM 10. Let C(Y) be Dedekind complete. Then the following are
equivalent:

(i) T € L(C(X),C(Y)) is in the band generated by lattice homomorphisms.
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(ii) T*y € C'(Y), for y outside a set of first category.

(iii) For eachy € Y outside a set of first category, there are sequences {a;} C
R and {z;} C X, so that Tf(y) = X1 a;f(z;).

Proof. 1t is clear that (ii) and (iii) are equivalent.

For (i) = (ii), we may assume T' > 0. Let 0 < T, 1 T where T, =
To1,+... + Ta,n and each T, ; is a homomorphism. Note that ||T*y|| = T'1(y)
and that, for e > 0, {y € Y | ||(T*y)|| 2 e} C {y € Y | T1(y) — Tul(y) > €},
since (T2y)¢ = 0. (Recall that u? = p—p2, where p° is the atomic part of p.) If
s(y) = VaTal(y) (pointwise) then {y | [|[(T*y)¢|| > e} € {y | T1(y)—s(y) > €}.
The set {y | T1(y) — s(y) < €} is open; it is also dense, since T,,1 1+ T'1. Since
{y LIIT*y)?|| > 0} = N;{y | [I(T*y)?|| > }}, the proof is complete.

For (ii) = (i), again assume T' > 0, let ¢ > 0 and consider 7, as in the
Lemma 8. Each T, f is an upper semicontinuous function on Y when f > 0.
Let T.f = £(T.f) when f > 0 and T.f = £(T.(f*)) — &(T.(f~)) for arbitrary
f. T. is then a positive (bounded) transformation from C(X) to C(Y), and
property (iii) of Lemma 9 implies that T. is linear. Te*y is the sum of at
most N point measures (N as in the lemma), so that T. is a finite sum of
homomorphisms. Let ¢; = % in the following. Note that {y | (T™y)* > 0} =
Ui{y | T;1(y) > 0} and that {y | T,;1(y) > 0} = {y | T;;,1(y) > 0} U{y |
T.;1(y) > T.;1(y)}. The definition of T;; implies that {y | T;1(y) > T;1(y)}
is first category, so that Tejl # 0 for some j, since {y | (T*y)* > 0} is
not of first category. Since every T in (ii) thus dominates a lattice homomor-
phism (or sum of homomorphisms), and T minus this homomorphism also
satisfies (ii), we conclude that T is in the band generated by lattice homomor-
phisms. |

THEOREM 11. Let E and F be Banach lattices. Suppose that E has a
quasi-interior point e, F' is Dedekind complete, and T € L(E, F).

Let X be a representation space for E (with e = 1x) and let Y be a
representation space for T(E) with T(e) finite on Y Suppose that for each
y € Y outside a set of first category, there are sequences {a;} C R and
{z;} C X, so that Tf(y) = Y>.1"a;f(z;). Then T € L(E,F) is in the band
generated by lattice homomorphisms.

Proof. Assume T > 0 and restrict T' to C(X) C E. The previous theorem
implies that we may find T, on C(X) so that T, 1 T and each Ty, is a finite
sum of lattice homomorphisms. If T, = S, + ... + S,,, where each S; is a



HOMOMORPHISMS ON BANACH LATTICES 279

lattice homomorphism on C(X), the homomorphisms S; may be extended to
homomorphisms on F in such a way that the extended T,, = S; +...+ 5, < T.
(Extend S; to a homomorphism on E with §; < T. Since S < T - 5
on C(X), extend S, to E so that S, < T — S;. Repeat the above through
S, <T-S8 —-..—8,.1.) Thus, T = VT, in L(E, F), where each T, is a sum
of homomorphisms in L(E, F). 1

We now consider compactness and weak compactness of operators in the
band generated by homomorphisms.

PROPOSITION 12. Let T € L(C(X),C(Y)) be positive and satisfy T* :
Y — C.(X). Then T weakly compact implies T compact.

Proof. For yo € Y and y, — Yo, suppose that T*y, = > 1o, a;Z; (a; > 0, z;
distinct). For a given N > 0, write T*y = a;(y)Z; + ... + an(¥)En + D ooq biZ:
with 2; # z; for any j = 1,...,N and ¢ € N. Since T is weakly compact, we
have T*y, — T*y, in o(C',C"), and we may conclude a;(y,) — a; = a;(yo)
for i = 1,..., N by applying T*y, to 1,,, the projection of the unit 1 on the
band of C" dual to C;,.

Given € > 0 find N so that Y} 3., a; < €/5 and write T*y, as above.
Choose a; so that |a;(ys) — ai| < £ for o > ;. For these , we conclude

IT"ya — T"yll

N N N
< Z lai — ai(Yo)| + [T Yo — Zai(ya)ﬁin + T yo — Zaiiiﬂ
1 1 1
N
€

. R €
< g + “T ya” - ”Zai(ya)xill + g
1

N
€ . f_ L4
< g+l + 5 leal+5+5

4e . N .
= €'+”T yg—Zaiwi|l<e.
1

Thus T*y, — T™yo in norm, and we conclude that 7" is compact. §

THEOREM 13. Let T € L(C(X),C(Y)) be weakly compact. If T, €
L(C(X),C(Y)) is the operator determined by T}y = P, o T*y where P, :
C'(X) — C.L(X) is the projection onto C.(X), then T, is compact and is in
the order closure of the set of sums of homomorphisms. If C(Y') is Dedekind
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complete, then T, is the projection of T onto the band generated by lattice
homomorphisms.

Proof. Note first that T,y = P, o T*y defines a weakly compact element
of L(C(X),C(Y)), since T* : Y — C'(X) maps convergent nets to o(C’,C")
convergent nets and P, : C' — C. preserves o(C’,C") convergence. The
preceeding proposition implies that T;, is compact.

By [3, Theorem 5], T, is in the norm closure (hence the order closure) of
the set of local homomorphisms, which are in turn the suprema of finite sums
of homomorphisms.

For C(Y) Dedekind complete, let T} be the projection onto the band gen-
erated by lattice homomorphisms. For any § < T which is a finite sum of
lattice homomorphisms, we have S < T, (since S* < T) and thus T; < Tj,.
Since T; > T, (T, is in the band generated by finite sums of homomorphisms),
we conclude T} =T,. 1

Finally, we state and prove a characterization of the norm closure of the
set of finite sums of lattice homomorphisms.

THEOREM 14. Let T' € L(C(X),C(Y)) be positive with C(Y') Dedekind
complete. T is in the norm closure of the set of sums of lattice homomorphisms
if and only if T = }°;2, R; (norm) where R; A R; = 0 ifi # j and each R; is
a lattice homomorphism.

Proof. The implication (<) is clear. To prove (=) suppose that ||S, —
T|| = 0 where each S, is a sum of lattice homomorphisms. We may assume
Sn < T, replacing S,, with S, AT if necessary. We may further assume that
Sn < Spi1, by replacing S, with (S; — S;) V0+ S;, and repeating for S, Sy, ...
(recall that finite sums of lattice homomorphisms form an ideal).

Write S; = Ry + ... + Ry, , where the R, ; are disjoint lattice homomor-
phisms. S, — S is also a sum of lattice homomorphisms, hence, we may write
Sg "'Sl = R2,1 +...+R2,k2, kz 2 kl, where Rz,i = (SQ_SI)RL.., 1 < ) < kl, and
R, ; are disjoint. Proceed inductively, writing S, — Sp—1 = Ro1 + ... + Ru.,
kn > kn_; with

Rn,i = (Sn - Sn_l)(z;:ll Rj:)"

Define R; = 332, R;;, letting R;; = 0 if not previously defined. Each R;
is a lattice homomorphism by lemma 1 and R; A R; = 0 when ¢ # j. Also,
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T -5 R;>0and

kn kn n
IT =Y Rill <IIT =D D Riall = IT = Sall
=1

i=1 j=1
kn :
and we conclude ) ;”; R; = T in norm. |
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