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1. INTRODUCTION

As is well-known, a differential geometric model of classical continuum
mechanics is a medium B, a m—dimensional differentiable manifold moving
and deforming in the ambient space C, a n—-dimensional differentiable manifold
(m < n). We note that the medium B consists of material points without
internal degrees of freedom. The corresponding configuration space is £(B,C),
i.e. the space of smooth embeddings from B into C; the dynamics of the
motion is given by the choice of an appropriate Lagrangian (cf. [10, 19, 20]
and references therein).

However, there exists a large class of continua, whose constituting elements
are material points with internal degrees of freedom, the so—called media with
microstructure. For instance liquid cristals are fluids made up of particles
which might be rodlike in shape and rather rigid in behaviour, so that locally
a preferred direction is in evidence.

In order to understand the behaviour of a liquid cristal, let us consider at
first a dumbbell-shaped particle, consisting of two masses m; and my that
are located near to each other (cf. [21]).

If the masses m; and mo are situated at Z; and Z5 respectively then the
linear momentum p’ of the particle is given by

P = miZ¥1 + moTs = MmZT,
where m = mq + mo is the mass of the particle and # is the center of mass.
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Introducing a vector d

- mimsa , -
d= (5131 - IEQ) y
m
we obtain
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Hence the angular momentum k and the kinetic energy T of the particle are
given respectively by

- -

1Xmla_c’l—i-fgXmngZm(fo+dXd),

N = 8y

k=
9 oy _ 1o

T = =(m1 @] + mads) = Em(m +d7).

Thus the dumbbell-shaped particle can be considered as a particle with mi-

crostructure, the microstructure being introduced by a preferred direction of

the particle.

The above discrete model can be generalized to obtain a simple model of
an anisotropic fluid, i.e. a fluid in which each particle has a preferred direction.
The theory of anisotropic fluids (cf. [11]), is an outcome of an effort to explain
the behaviour of liquid cristals, and, more generally, the behaviour of fluids
with microstructure.

If we assume now that the medium 5 has a microstructure, then the above
mentioned differential geometric description is no longer valid. Indeed, a
medium B with microstructure as considered here is described by a principal
bundle P =% B with a Lie group G as a structure group. Accordingly,
the ambient space C is a principal bundle Q T2 ¢ with a Lie group K as
structure group. The configuration space is then given by £(P, Q), i.e. a
space of smooth embeddings P — O respecting the structure groups. In the
following we shall characterize the geometric structure of £(P, Q) and then
we shall construct an appropriate Lagrangian.

2. THE GEOMETRIC STRUCTURE OF THE SPACE OF CONFIGURATIONS

For the sake of completeness let us remind at first that a homomorphism
of a principal bundle (P, B, G, 7p) into another one (Q,C, K, mg) consists of:

i) a differentiable, fibre preserving mapping d:P— Q together with
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ii) a Lie group homomorphism A : G — K such that P satisfies the G—
equivariance property

d(p-g)=®(p)-Mg) VpeP,ged.

Hence ® maps fibres into fibres and thus induces a differentiable map @ :

B — C via ®(b) := wo(®(py)), where p, € P is an arbitrary point over b € B.
A homomorphism ® : P —» Q is called an embedding, if ® : B —» C is
an embedding and A : G — K is an injection. In the following let G C K
and A be the inclusion, for simplicity.
A map k: P — K is called a G—gauge transformation of P, if it satisfies

the relation . .
k(p-g)=g ' k(p)-g VpeEP,geQG.

We denote by Qg the set of all G—gauge transformations of P. As shown in
[5] the geometric structure of the space of configurations £(P, Q) is given by

THEOREM 2.1. &(P, Q) is a Fréchet manifold and £(P, Q) is a G§ - princi-
pal bundle over an open connected subspace O of the Fréchet manifold £(B,C).

3. THE DYNAMICS OF THE MEDIUM B WITH MICROSTRUCTURE

Let O = &£(P, Q) for simplicity again. The next step is the construction of
a Lagrangian £, which is supposed to be ggfequivariant. Weset L=T -V,
where the kinetic energy 7 is determined by a metric on £(P, Q), on which
gg acts by isometries, and where the potential V is equivariant, which hence
can be considered as a function on £(B,C). In order to construct the kinetic
energy 7 at @ € £(P, Q), we need at first a description of T3E(P, Q) and a
metric on it. Since the lift Lj is equivariant we get (cf. [5])

PropPoOSITION 3.1.
T;6(P,Q) ={Ls: P — TQ|LgR, = TR,L; and oLz = ®}
with 79 : TQ — Q the canonical projection.

Here we denote by R, the right action of G on P. Next, we construct
a metric on Q. To this end we take a principal connection on the principal
bundle O NV E-N Q/K with connection form a : TQ — K, where K is the
Lie algebra of K. This means that « is a K-valued one—form such that
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(i) a(Ze(q)) =¢ VEeEK,qeQ and
(i) a(TyRk(vg)) = Adj-1a(vg) Vv, € T,Q,k € K,

where Ry denotes the right action of K on Q, Ad denotes the adjoint action
of K on K and Z; is the fundamental vector field defined by { € K. At
each point ¢ € Q we have the decomposition 7;,Q = Hor, @ Ver,, where
Hory, = {vy € T4Q|a(vy) = 0} and Ver, = kerT,mg are respectively the
horizontal space of the connection and the vertical space, i.e. the tangent
space to the fibre ¢ belongs to. Hence

vg = Zp(q) + Horgu, ,

where v, € T,Q and Z}, is the fundamental vector field determined by h € K.
We define a metric on Q via

mo(vg,v;) = mi(h1, ha) +me(Tymo(vy), Tymo(vy)) ,
where mp is a biinvariant metric on K and m¢ is the Riemannian metric on
C. This yields the metric on £(P, Q) given by

7ng(é)(L1,L2):::/;g(é)-7nQ(L1,L2)¢*M.

Here mg(L1, Ly) factors to B, due to the G§-invariance, o(®) is a GS-
invariant density, assumed to obey a continuity equation and g is a volume
form on C.

To construct a dynamics for the medium B with microstructure we choose
a smooth potential V : £(B,C) — R. The Lagrangian £ has then the form
L=T -V, where T(L) = 3 - mg(L, L) for every L € TE(P, Q).

4. EXAMPLES

A) COSSERAT MEDIA. By a Cosserat medium we mean a three-dimen-
sional continuum of which to each point three linearly independent tangent
vectors (the directors) are attached (cf. [8], [9], and [22]). The stored energy
function W depends not only on the gradient deformation of the underlying
body but also on how the directors are deformed. Therefore, a geometrical
model for a Cosserat medium B is just the linear frame bundle FR3.

For simplicity, we take the Euclidean metric on R?, and the induced met-
ric on FR? defined by using the flat connection defined by the trivialization
FR? = R? x GI(3,R).
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If we take fibred coordinates (fa,Eg) in FB and (7 Xi) in FR3 1 <

a,B,i,7 < 3, we have T =21 032 +1 5 Q(HQ)X2 and W = W(d',, d", &%),
where Lg = i (,W XJz 8)80 and dq,ds,ds are the directors obtained from the

canonical basis of R3 by the isomorphism @ : FB —s FR3. Here we assume
that (1) are the Euclidean coordinates in R®. The potential V is assumed to
be obtained from the stored energy W as follows:

V(®) = /fB(W 0 jl1®)D* .

The corresponding field equations are (cf. [22]):

o oW o , oW ow

Q(S) F +a§a(a i ) and Q(E) Ga—i_@(adaa)—i_a—daa

where F; and G are some external forces.

B) A GEOMETRICAL TYPE OF MICROSTRUCTURE. Here we will exhibit
the presence of a geometric type of a microstructure associated with a stress
form, naturally appearing in a global treatment of continuum mechanics (cf.
[2] and references therein).

A stress form of a body B is a smooth map

a:E(B,R}) — AY(B,R?)

with values in the space of all smooth R?-valued one—forms of the body B.
Given an embedding ® € £(B,R?), any v € A'(B,R?) can be splitted into

Yy=c¢,-d®+do- (C,+ B,), (2)

(cf. [2]), where d® : B — R3 is the principal part of the tangent map
T® : B— TR3 and the coefficients ¢y, C, and B, are as follows:

a) ¢y : B— End R3 assigns to each b € B a skew map, mapping each T,
into its normal space N, and vice versa, i.e. an infinitesimal Gauss map

b) C, € EndTB is skew-adjoint with respect to ®* <, >
and

c) By € End TB is selfadjoint with respect to ®* <, >,
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®* <, > being the pull back of <, >. Thus (2) formulated pointwise reads
for each tangent vector vy € TpB at any b € B

Y(vp) = cy(D)(d @(vp)) + d D(C,(b) () + By(vp)) -

Indeed, ¢, (b)(d ®(vp)) is the normal part of v(vp), and C(b)(vy) and B, (vp)
are its skew and symmetric parts, respectively.

Notice that ¢, = 0 provided dim B = 3. Moreover C, applied to T, is an
infinitesimal rotation of it.

The virtual work A(®)(dh) associated with a stress form a(®) is defined
by

A(®)(dh) = / a(®)-dh &'y Yhe C®(B,RY),
B

where the density a(®) - d h is given by

1
a(®)-dh:= —5 trco @) - can — tr Coa) - Can + tr By(a) - Ban (3)
the trace being evaluated pointwise.

The term tr By(g) - By in the virtual work density (3) can be interpreted
as follows: By, € EndTB is the deformation tensor in operator form, i.e.

< d®(vy),d ®(Bgp(wp)) >=< dP(vp), dh(wy) >  Vop,wy € TyBand Vb € B.

Notice that WA (B ) = tr B - Ban
is the work density the deformation tensor causes against the symmetric part
of the constitutive entity a(®). Clearly, B, () is the symmetric stress tensor
in operator form, here assumed to depend on the embedding ®. Hence
WY (® h) is usually called the stored energy density (cf. [21]) caused by
the distortion d h.

The terms on the right hand side of (3) associated with the skew operators
will be interpreted in terms of a special type of microstructure to be set up as
follows.

First of all let ®y € E(B,R?) be fixed. The principal bundle Q — R3 shall
be the <, >—orthonormal frame bundle and P — B the bundle of & <, >~
orthogonal frames of B, an SO(2) or an SO(3) principal bundle according as
to whether dimB = 2 of dimB = 3. Given ® € £(B,R?) we will construct
d : P —» Q, next. At first, we observe that

d®=T-dd;- f, (4)
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where U € C*°(B,S0(3)) and f € EndTM being an isomorphism, positive
definite with respect to ®} <, >. Equation (4) reads for each v, € T;B as

d®(vy) = U (b) (d <I>0(f(fub))> Vb e B.

Then ® is defined by

D (pp) = (‘P(b) (d <I>o(f*1(pb))),\If(b)(/\‘/(p(,,))) Vp, € Py and Vb e B.  (5)

Here Ny is the outward directed unit normal to Ty®o(T},B8) in case dim B =
2; it is the axis of rotations in T®(TyB). Since Q@ = R3x SO(3) we may
identify the right hand side of (5) with ¥ : B — SO(3).

Thus a tangent vector to P is given by a tangent vector A to ¥ and hence
is of the form

h:B — so(3)
with .
h(b) = —= - cu(b) + Ch(b) Vb€ B.
() 7 n(b) + Cr(b)
(cp, describes the infinitesimal change of the rotation axis of tangent planes if
dim B = 2).
Hence
A (B)(R) /(t ! L ean + trCory - Can)
s - — I‘ —_— c - —_— C I‘ . s
k N (@) NG dh a(®) “Ldh)® H

extended ggoa)—equivariantly coincides with Ay (®)(h). Moreover, Ay, (®(h))
added to [, WV™(®, h)®*p is A(P)(d h).

In case dimB = 3, only C,g) is present in the decomposition of a(®).
This means that the symmetric stress tensor B, g) (written in operator form)
has to be complemented by C, ) to take care of the microstructure P — B.

The energy density W*(®,d h) produced by the distortion d h is thus
1
WH(®,dh) = —(5 “trco@@) * can + tr Co(a) - Can)

Notice that in case of dim B = 3 the stress tensor B,(¢)+Cq(a) (in operator
form) of the medium describing both elasticity and the geometric microstruc-
ture is not symmetric.

The Lagrangian is hence

L=T— (WY + W™,
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APPENDIX A: INFINITE DIMENSIONAL LAGRANGIAN SYSTEMS
WITH NONHOLONOMIC CONSTRAINTS

In this appendix we first recall the Lagrangian formalism for mechanical
systems in the context of infinite dimensional manifolds. A symplectic frame-
work for nonholonomic dynamics is also given. As we will show the presence
of nonholomic constraints is very frequent in continuum mechanics.

A.1l. INFINITE DIMENSIONAL LAGRANGIAN SYSTEMS. Let ) be a C*
Banach manifold modelled on a Banach space E. We denote by T'Q) and
T*@ the tangent and cotangent bundles of (), respectively, with canonical
projections 7g : TQ) — () and 7 : T%Q — Q.

If U is an open set of Q and ¢ : U — ¢(U) is a chart for @, then

T¢:75'(U) — ¢(U) xE, T*¢: 75 (U) — $(U) x E*

are local trivializations for T'Q) and T*(). Thus, a point z € () admits a local
representation as ¢ with ¢ € E, and a tangent vector X (resp. covector a) at
x admits a representation (q,v) (resp. (q,p)) where g,v € E and p € E*.

We also can induce local trivializations for TT'Q) and T*T(Q as follows:

TT$ : 774(TU) — $(U) x E X E X E,
T*T¢: wpln(TU) — $(U) X E X E* x EF,

such that we obtain the following local representations:

X = (q,v,a,b) € Tx(TQ), &= (q,v.a,b) € T5x(TQ).

There are two geometrical ingredients which characterize the tangent bundle
TQ (cf. [16] and [18]):

e the Liouville vector field A : TQ) — TT'Q; and

e the canonical vertical endomorphism S : TTQ — TTQ (also called
canonical almost tangent structure).

The Liouville vector field A is the infinitesimal generator of the global
1-parameter group of dilations in TQ, say, ®;(X) = e'X, VX € TQ, Vt € R.

The canonical vertical endomorphism S is defined by S(X) = (T7g(X))?,
where X € Tx (TQ), and (T1o(X))? is the vertical lift of T7g(X) to Tx (TQ).
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In local trivializations, we have
A(q7v) = (q7/U’07/U)’ S(qﬂll]’a’ b) = (q7vﬂo7a)'

We will denote by S* the adjoint operator of S, that is, S*(&)(Xl, . ,X’,«) =
a(S(X1),...,S(X,)), for any r-form & on TQ. In local trivializations we have
S’*(q,'u,&,l;) = (q,v,i),()).

The vector fields appearing in Lagrangian mechanics are second order dif-
ferential equations.

DEFINITION 4.1. A vector field I" on T'() is said to be a second order
differential equation (SODE for brevity) if S(I') = A.

Therefore, a SODE T' admits a local representation as follows: I'(q,v) =
(q,v,v,7(q,v)). A curve 0 : R — @ is called a solution of IT" if its tangent
curve ¢ : R — T'Q is an integral curve of I'. If o(t) = (¢(t)), we have that o
is a solution of I' if and only if

q(t) =v }
q(t) = (¢, 4)
In addition, all the integral curves of I" are of this form.
Let £:T(@ — R be a Lagrangian function. We construct:

e the energy Er = A(L) — L;
e the Poincaré-Cartan 1-form oy = S*(d £), and

e the Poincaré-Cartan 2-form wy; = —day.

A direct computation shows that w, is locally given by (cf. [1] and [12])

we(g,v)((a,b), (a,b)) = D1D2L(q,v) -a-a— D1 DyL(q,v) - a-a

_ 6
+ DsDsL(q,v) -b-a— DyDsL(q,v) - b-a, (6)

where D (resp. Ds) denotes the derivative on the base (resp. along the fibre).

In general, w, is only a weak symplectic form. Therefore, we introduce
the following definition, which coincides with the usual one in the finite di-
mensional setting.

DEFINITION 4.2. A Lagrangian function £ : T'QQ — R is said to be regu-
lar if wy, is a strong symplectic form on T'Q).
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If £ is regular we have the symplectic isomorphisms by : TTQ — T*TQ
and f, : T*TQ — TT(Q defined by

be(YV) = iy wr, respectively, iz = I)Zl.

Remark 4.3. In most of cases, L =T —V, where T is the kinetic energy
of a Riemannian metric g on ), and V : () — R is the potential energy. If
g is a strong Riemannian metric, then w, is a strong symplectic form on T'Q).
In such a case L = T — V is regular, and (6) can be notably simplified (cf.
[12] and [13]):

we(a,0)((a:1). (@) = Dg(v,a)(a) -~ Diglv.a)(a)
+9(b,a)(q) — g(b,a)(q).

Therefore, if £ is a regular Lagrangian, the equation

’iX L«)g:dEﬁ (8)

(7)

has a unique solution I' which will called the Euler-Lagrange vector field for
L. Indeed, T'; is the Hamiltonian vector field for d E,. A direct computation
shows that

e ['r is a SODE, and

e the solutions of I'; are the ones of the Euler-Lagrange equations for L.

If L=T -V, we have

Iy =T7— (grad V)",
where I'7 is the geodesic spray of the Riemannian metric g with kinetic energy
T, and (grad V)" is the vertical lift to T'Q of the gradient of the potential
energy V, say igraqy ¢ = dV. Therefore, the equations of motion become
Vi 4(t) = —grad V(q(2)).

Let f and g be two functions defined on T'Q), and assume that £ is regular.
In such a case, we define the Poisson bracket of f and g as (cf. [1] and [6])

{f, 9 e = we(Xy, Xy)

where X and X, are the Hamiltonian vector fields for f and g, respectively.
A direct computation shows that

f = {faEC}L

which means that the evolution of any observable f is given by the Poisson
bracket of f with the energy E.
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Remark 4.4. If £ is not regular, then the Poisson bracket {f, g}, is defined
on the overlapping of the domains of X; and X, (cf. [19]).

A.2. NONHOLONOMIC LAGRANGIAN SYSTEMS. In this section, we will
treat with a mechanical system determined by a regular Lagrangian function
L : TQ — R subjected to nonholonomic constraints given by a submanifold
M of TQ. We will assume that (7g)y : M — Q is a vector subbundle of
T7q : TQ — @, that is, the constraints are linear in the velocities.

As we have proved in [14] and [15], the dynamics of this mechanical system
are just the solutions of the following equations:

X wg—dEgES*(TMO), (9)
X eTM, (10)

where T M stands for the annihilator of T'M.

Of course, since L is regular, Eq. (9) has always a solution, say X, but, in
addition, X has to be tangent to the constraint submanifold M. In order to
go further, we will assume some compatibility condition.

DEFINITION 4.5. The nonholonomic system (£, M) is said to be regular
if £ is a regular Lagrangian on T'Q) and in addition we have

T(TQ) = TM & R,

where R is the vector subbundle over M which corresponds to S*(TM?) via
the isomorphism bz, that is, R = f(S*(T'M?)).

In such a case, the nonholonomic system is compatible. Indeed, let T'; be
the solution of the unconstrained system, and denote by 71 : T(TQ)ns —
TM, ms : T(TQ)‘M — R the complementary projectors associated to the
above decomposition. Therefore, the vector field I'z ps = m1(I'z) is the solu-
tion for the constrained dynamics. I'z 5r is a SODE which can be written as
Iz ar =T+ A, where A € R. We shall show how to obtain A in an explicit
way.

Remark 4.6. The above conditions are very strong, however we will show
that they are fullfilled in many interesting cases, as the next result proves.

THEOREM 4.7. Let () be a Hilbert manifold with a (positive or negative)
definite Riemannian metric g, and define L = T —V where T is the kinetic
energy given by g. Then the nonholonomic system (L, M) is regular.
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Proof. Clearly L is regular. Since M — @) is vector subbundle of TQ) —
Q, then it is modelled on a vector subspace E; of E such that E splits into:
E = E; @ E,. In addition, we can assume that the above decomposition is
orthogonal with respect to the metric g. More precisely, each tangent space
T,Q admits an orthogonal decomposition T,Q = M, & M-, where M, (resp.
M) denotes the fibre over = of M (resp. of its orthogonal complement M~
with respect to g). So, the local expression of a point X in M is: (g1, g2, v1,0),
where ¢1,v; € Eq, and ¢o € Es. Thus, the local expressions of T'x (T'Q) and
T%(TQ) at a point X € TQ are the following: (q1,q2,v1,v2,a1,a2,b1,bs)
and (ql, q2,V1,V2, Al, AQ, Bl, BQ), where qi1,v1,01, b1 € El, q2,v92,09, b2 € EQ,
A, By € (El)*, and Ag, By € (EQ)*

Consequently, we have

TM = {(qla q2, 01, Oa ai, az, bla 0)}a TM® = {(qh q2, V1, 07 Oa 07 Oa B?)}a
S* (TMO) = {(QD q2, V1, 01 03 B?a 01 0)}
Therefore, since Dy D2 L(q,v) is definite (indeed, it coincides with g along the

fibre) and using (7) we deduce that R = {(q1,¢2,v1,0,0,0,0,b2)}, and the
result follows. |

(It should be noticed that the same result was recently obtained by A.D. Lewis

[17]).

Under the above hypotheses, we have complementary projectors
1 :TTQ=TMOR —TM, 7:T(TQ)y=TMOSR —TR

such that the constrained dynamics is given by the SODE I'y py = m1(I).
In this case the ”Lagrange multiplier” can be explicitly computed. Indeed,
we have I'z s = (v1,0,71 + A1,72 + A2), where I'z = (v1,v2,71,72) and A =
(0,0,A1,A2) € R. But applying m; we obtain

FC,M = (Ula Oa 1, 0)7

which implies that A\ = 0 and Ay = —7s.

There is an alternative way to obtain the constrained dynamics by pro-
jecting the unconstrained one. Indeed, define a new vector subbundle: H =
R NTM, where R+ is the symplectic complement of R with respect to wp.

THEOREM 4.8. Under the same hypotheses as in Theorem 4.7 we have
T(TQ)m=HoH",

that is, H is a symplectic vector subbundle of (T(T'Q)|ns,wc)-
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Proof. Using (7) and the orthogonality of E; and Ey we first deduce that
the elements in R+ have the following local representation: (aq,0,by,bs).
Therefore, an element in H is locally represented as (ai,0,b1,0). Next, by
similar arguments as before using again (7) we deduce that the local repres-
entation of an arbitrary element in H' is as follows: (0,axz,0,b9) from which
we deduce the result. 1

We then obtain two complementary projectors
w1 T(TQ)y — H, 72 : T(TQ) )y — H.

A direct computation shows that I'z yr = 71 (I'z).
Furthermore, this second decomposition leads us to define a nonholonomic
bracket as follows:

{fag}nh = wﬁ('ﬁ-l(Xf)’ ﬁl(Xﬁ))a

for any two functions f and g on M, where f and § are two arbitrary extensions
to T'Q of f and g, respectively, and the Hamiltonian vector fields are obtained
with respect to wy. The nonholonomic bracket is well-defined and satisfies
the following properties:

e If € C°(T'Q) vanishes on M, then {f, ¢},n = 0.
e Any observable f € C°°(TQ) evolves according to f = {f, Ez }nh.

A.3. AN APPLICATION. As it was shown in [7] there is a large class
of continua with perfect internal constraints. These materials are described
as continua with microstructure, the complete placements of the velocities
of which are restricted. One of the most typical examples occurs when we
constraint the micromotion to depend on the choice of an arbitrary vector
field on the macromedium through a rigid rotation. In geometrical terms,
we are assuming that a connection is given in the ambient principal bundle,
and the horizontal distribution is deforming according the deformations of
the medium with microstructure, in such a way that the micromotion remains
horizontal with respect to the actual connection.

Let us assume that a medium with microstructure is geometrically rep-
resented as a principal bundle 7p : P — B with structure group G; P
can be deformed into another principal bundle (the ambient physical space)
mg : @ — C with structure group K, G being a Lie subgroup of K. We
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assume that Q is endowed with a principal connection given by a horizontal
distribution HE.

The configuration manifold is the space of equivariant embeddings £ (P, Q)
which becomes a principal bundle over the space of embeddings £(B,C) with
structure group the gauge group GS. Next, we define a connection in (P, Q)
as follows. A tangent vector L € T;E(P, Q) is a mapping L : P — T'Q cover-
ing the embedding @ : P —» Q. Therefore, we define the horizontal subspace
HE(P’Q) consisting of the tangent vectors of the form Hg (L), where Hg (L)
denotes the horizontal projection of L with respect to the given connection in
Q. A straighforward computation shows that HE(P-9) is in fact gg—invariant
and complementary to the vertical bundle.

So, the constrained equations of motion are:

ix we —dEp € S*(T(Hg(P’Q))O)
X ¢ T(EEPQ)

A direct application of Theorems (4.7) and (4.8) permits to obtain the
constrained dynamics I'z y by projecting the unconstrained one.

If, in addition, the potential V : £(P,Q) — R is invariant, then £
is also invariant, and we can define a projected Lagrangian function L£* :
TE(B,C) — R as follows: L*(Lg) = ,C((Lq))%), where (Lq))% denotes the
horizontal lift of Lg with respect to HE(P-9) | and & is an arbitrary embedding
covering ®. Moreover, we can define a 1-form along HE(P+9) by

& =iry, (h*d(j ar) —dh*(j%ac)),

where j : HE(PQ) — TE(P, Q) is the inclusion map, and h* is the transpose
operator defined by the horizontal projector. & is also invariant and hori-
zontal, so that it projects onto a 1-form o on TE(B,C). A direct computation
shows that the constrained equations of motion are equivalent to the following
unconstrained equation

iy we =d Eps + a,

which has a non-exact term « satisfying iy a = 0.
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APPENDIX B: DISCRETE SYSTEMS WITH MICROSTRUCTURE (E. BINZ)

In this appendix we show how the notion of a microstructure dealed with
above can be introduced over a finite collection of interacting particles.

We do this without going too much into the physical details, it will be
done elsewhere. Examples can be deduced from the continuum approach
given above.

The main motivation for considering the discrete case are the relations
between the continuum approach and the discrete one. These relations can be
used to implement the physics from the small scale to the discrete setting and
then to apply the link to the continuum to show how the small scale structure
influences the large scale structure of the continuum. Clearly, this approach
is hindered by the approximative character the discrete mechanism inherits
from continuum approach (cf. [3] and [4]).

B.1. DISCRETE SYSTEMS OF INTERACTING PARTICLES. Let L be a finite
connected graph, i.e. a finite collection S°L of vertices, some of them connec-
ted by one edge (only). The collection of all edges shall be denoted by S'L.
The graph is supposed to be oriented, i.e. every edge e € S'L is directed,
with e~ as initial vertex and e™ as final vertex.

A configuration of the graph is an embedding j : L — R™. The map j is
defined as follows: j is injective on SOL; if ¢ and ¢’ € SL are joined by an
edge e, then j(e) shall be the edge joining j(q) with j(¢'). (Neither e nor j(e)
need to be parameterized). Let F(L,R") := {h : S°L — R"}, an R-linear
space under pointwise defined operations. The collection of all configurations
is denoted by E(L,R"). Clearly, E(L,R") C F(L,R") is an open subset.

Physical reasons may require to consider a submanifold con f of E(L,R"),
the configuration space.

The interpretation of j(L) for a configuration j is as follows: The vertices
j(q) € R® with g € S°L are the mean locations of material particles. If any
two of them interact with each other the respective vertices are connected
by an edge j(e) with e € S'L visualizing the interaction. Hence L describes
geometrically the interaction scheme.

We therefore call L a discrete system of interacting material particles.

B.2. GEOMETRY OF DISCRETE SYSTEMS OF INTERACTING PARTICLES.
An R"-valued one-form on L is a map v : S'L — R": the collection of
all these one—forms on L is denoted by A'(L,R"), an R-linear space under
edgewise defined operations.
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A one—form o € A'(L,R") is exact if a = dh, where h : S°L — R is a
map and d A is defined by
dh(e) = h(eT)—h(e”) VeeS'L

Let d F(L,R") C A'(L,R") denote the linear subspace of all R"-—valued
exact one—forms on L.

Next, we present natural bases of F(L,R") and A'(L,R"). Given any
z € R® and a fixed g € S°L, then a; € F(L,R") is given by

=g e ()

0 otherwise.

On the other hand, given e € S'L, let 72 € A'(L,R") be defined by
z ife=e/
Yele') = { .

0 otherwise.

¢ is in general not exact. Given a base z1,..., 2, € R", then
{aiilq € S°Li=1,...,m} C F(L,R")
and
{y¢ile€e S'L,i=1,...,m} c AYL,R")

are the natural bases mentioned above.
Given a scalar product <,> on R", we define the scalar products g% and
Gl on F(L,R") respectively on A'(L,R") by

GO(h1,ho) = Y <hi(q),ha(q) >  Vhi,hy € F(L,R")
qeSoL

and

Y71, 72) Z <mle (e) > V1,72 € ANL,RY).
ecSL

The differential d yields the divergence operator defined by
G'(dh,v) = G'(h,0y) Vhe F(L,R") and Vy € AY(L,R").
The Laplacian on F(L,R") is defined by
Ar:=60od.

This geometry is the basis for the description of the interacting force and the
virtual work caused by it, as we shall see in the next section.
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B.3. THE INTERACTION FORM AND ITS VIRTUAL WORK. The quality of
the discrete medium is given by the interaction form

a(j) € AYL,R™)

for every j in the configuration space conf C E(L,R"). This interaction form
assigns to each edge e € S'L the vector a(j)(e) € R”, which has the direction
of j(e) C R" if the particles at e™ and e~ attract each other and the opposite
one in case of repulsion. Thus «(j)(e) is the force by which the particles at
et and e” attract or repulse each other. We hence write

a(j)(e) = b(j)(e) -d(j)(e) ~ Vee S'L

with b(j)(e) € R. Clearly, b(j)(e) characterizes the strength of the interaction
force.

The interaction form is the analogon of the stress form in the discrete
case and hence replaces the first Piola Kirchhoff stress tensor from continuum
mechanics (cf. [3]).

As shown in [3] the following holds true:

PROPOSITION 4.9. The interaction form «(j) splits uniquely and G'-
orthogonally into

a(j) = dh(j) + B(j)  Vj € conf
with §3(j) = 0 and da(j) = Ah(j), Vj € conf.

The interpretation of the divergence of interaction form is as follows (cf.
[3]): Given a vertex ¢ € S'L, the mean location of a particle,

n(q)
dar(j)(q) = Z ®(j)g. = ©()(0)

is the total force by which the collection of particles act up on the one at q.
Here ®(j),; is the force by which the i’ neighbour at ¢; acts up on the one
at ¢. The total number of neighbours of ¢ is n(q).

As shown in [3], the interaction form «(j) for any j € conf is in general
not exact.
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B.4. THE VIRTUAL WORK FOR INTERACTING PARTICLES. Given an in-

teraction form «(j) for some j € conf, the virtual work A(j) caused by any
distortion v € A'(L,R") is defined by

AG) () =G a)y) = Y <ali)(e),v(e) > (12)

ecSIL

This definition is motivated by the fact that a(j) is not exact, in general.
In case v = dk, then A(j)(dk) = G'(a(j),d k) or by using the divergence
operator § and Proposition (4.9)

A(j)(dk) = G*(da(j), k) = G°(Ah(j), k).

Hence A|Tconf is a one—form on conf, while A as defined in (12) is not.
However, general distortions in A'(L,R") are of particular interest.

Let aj be as in (11) then A(j)(d aj) is the work caused by only distorting
the particle at j(g) in the direction of z; the force at ¢ is da(j)(q) as mentioned
in Proposition 4.9.

Remark 4.10. A is in general not exact on conf, even for exact distortions.
However, if A is determined by a potential, then it is exact on conf.

B.5. MICROSTRUCTURES OVER THE GRAPH L. Let G be a Lie group
with Lie algebra ¢). For simplicity we assume G to be compact.

A principal bundle with structure group G over a topological space X is
a topological space P with a projection 7wp : P — X and a right action

PxG-Lp
such that the following holds:

i) ¥ commutes with mp and the action of G on the fibre of 7r7§1(q) for any
q € X is transitive and without fixed points.

ii) For any g € X the fibre 7r7§1(q) is a smooth manifold such that the map
Wy G — i (np(0)

defined by ¥, (g) = p’ - ¢ for any g € G and any p’ € 7r7§1(7r7;(p)) is a
diffeomorphism.
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A principal bundle over X = S°L is called a microstructure over S°L.

Since #S°L, the number of vertices in L is finite, the bundle P is trivial.
This means that there is a G-equivariant bijection from P to S°L x G.

The graph L, i.e. the collection of edges, is not yet reflected in the mi-
crostructure, as just introduced. To link S'L with P we may proceed as
follows:

A connection ¢ on P is a family of G—equivariant smooth maps

(ermpt(e”) — mpt(eh) Vee S'L.

We call P together with a connection ( a microstructure with interaction
scheme over the graph L. Clearly, T¢, : Trp' (e”) — T'np' (eT) is equivari-
ant as well. Using the group action ¥ we can link T7r7§1(e+) with the Lie
algebra g of G. For edges e € S'L we use ¥+ := U|rp (e) x G and form
T\I/;r1 0T : T7r7§1(e+) — ¢) which is a (fibrewise) g—valued one—form, the
connection form of (.

Let Q "% R bea principal bundle with structure group K O G and Lie
algebra IC. This principal bundle is trivial, i.e. it is of the form R" x K. The
configuration space Conf is a subset of the collection of fibre preserving maps

jp:P— Q

such that j7>|7r7§1(p) : 7r7§1(p) — Wél(WQ(jp(p)) is a G-equivariant smooth
embedding for any p € P . Since Q is trivial, we can identify jp with a
tuple (j,jg) where 7 € conf and jg : G — K is an injective Lie group
homomorphism. Clearly j(q) = mgsjp(p) for any p € mp(q) and any ¢q € S°L.

Let us assume that mconr(Conf) =: conf, where 7., s assigns to each con-
figuration jp (which maps fibres of P into fibres of Q) the induced embedding
j: L — R", defined as above.

Each configuration jp € Conf yields a connection jp(¢) on jp(P), by
iP(Q)je)(i(e7)) := jp(le(e™)) for any edge e; the G-equivariance of ((jp) is
obviously satisfied.

We will show next that Conf "t com f is a principal bundle. To do
so we need again the notion of a gauge transformation kE:P — Q, a fibre
preserving map satisfying
Ep-g) =g " k(p)-g VpePand Vg € G.

Given two configurations j}, j% € Conf with mcen () = Tconf(j%) then
there is a unique gauge transformation k such that

ip -k =5p.
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One easily verifies that
GS .= {k: P — Q| k gauge transformation }

is a group. We will show that gg is in fact a (finite dimensional) Lie group,
next.

To this end let G operate on a smooth manifold F' from the left. We thus
have the joint action

Gx(PxF) — PxF
(9., /) — (-9 9-1)

The orbit space, i.e the quotient is denoted by P xg F or just by IF', if
no confusion arises. IF is a bundle over S°L; it is a vector or a group bundle
according as to whether F' is a vector space or a group. P X F' is called the
associated bundle to P with typical fibre F'.

Let T'JF be the space of all sections of S°L to IF, a finite dimensional
manifold. Any section s € I'[F' defines a map ks : P — F determined by

s()=(p-g',9 ks(p) VgeS°L.

The bar denotes the equivalence class. Hence

g9-ks(p) =ks(p-g”') VpePandVged. (13)

ks is called an F—valued gauge transformation. On the other hand any such
gauge transformation defines a section. The assignment s +— ks yields a (well-
known) bijection

r'F -2 gaugegIF' .

Hence gaugeqIF' is a vector space or a group according as to whether F'
is a linear space or a group. It is a Lie group if F' is a Lie group.

For the purpose under consideration we consider the action of G on K by
inner automorphisms

GxK — K
(9.f) = g'-f-g, VgeGandVfeK,

i.e. G acts by inner automorphisms on K. The associated bundle P xg K is
the quotient of G x K with respect to the action of G on K just introduced.
Thus, by the above remark

K — G$
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is a bijection. Since I'/K is a finite dimensional Lie group, gg is one too.
Now it is a matter of routine to show

THEOREM 4.11. Conf is a principal bundle over conf with gg as struc-
ture group. The Lie algebra @g of Gg is

@’}Cj = F(P Xa K)a
where G acts on K via the adjoint representation.

Next, we generalize the concept of a principal bundle over S°L to a prin-
cipal bundle over the graph L itself. The reason is that the graph may encode
a non-trivial topology (as in case of a Cgp—molecule) which is not reflected on
SYL, of course. The principal bundle P over SL (being trivial) as introduced
above is hence not sensitive to this global structure. We will overcome this
deficit partly in the next section.

B.6. MICROSTRUCTURES WITH INTERACTION SCHEME. To implement
the interaction between elements in the microstructure P we will extend the
concept of a microstructure as follows:

At first we introduce a metric structure on our oriented graph L. This
is to say that each edge e is linearily parameterized; the parameter grows in
the direction of the orientation. For simplicity the length of unity shall be
the same on all edges in SYL. The graph is hence equipped with a topology,
inherited by this parameterization of the edges.

A microstructure with an interaction scheme is a principal bundle Py, over
the topological space L. Its projection is called mp,. The reason the edges of
L are parameterized is that the principal bundle P;, over L needs not to be
trivial and hence reflects topological features of the interaction scheme L.

Let the structure group be G again. In addition we assume that 7r7§L1 (e) C
Pr, is diffeomorphic to the cartesian product e x G for each edge e € S'L.
This does not imply that Py, is trivial over L.

Clearly, Py|S°L, (the restriction of Py, to the discrete subspace S°L C L),
is a microstructure in the sense of Section B.5. We call it P again.

This microstructure Py |S°L is supposed to carry a connection (. This
connection turns Pz, into a graph. Given any edge e, then any p € 7r7§1(e_)
shall be connected with (.(p) € 7r7§L1(e+) by an edge ep, in Pr. This edge
is assumed to be a parameterized straight line segment contained in Pr, such
that the projection of this segment to e is an isometry. ep, has the same
direction as e has. Hence Py, is oriented.
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Next, let us introduce the notion of a configuration of the metric graph L.
An embedding

j:L—R",

called a configuration of L, is supposed to be injective on S9L and isometric
on each edge of L. This implies, of course, that j is determined by the values
on its vertices since it is linear on each edge. This is the reason for introducing
a linear parametrization on each edge. Thus any configuration of the metric
graph is a configuration of L without its metric and vice versa. conf refers
therefore to both, the collection of all configuration of L with or without its
metric.

A configuration jp, of Pr, is an equivariant embedding of Pr, into Q which
is linear on each edge of Pr; the induced embedding j : L — R" is a
configuration of the metric graph.

Let Confr, be a collection of all the configurations of Pr. The map associ-
ating with each jp, € Confr, the induced configuration j of L is called IIp, .
Let confr, C conf be such that Ilp, : Confr, — confr is surjective.

Both Confr, and confr, are assumed to be smooth manifolds. They are
finite dimensional due to the linearity of the parametrization of the edges, one
essential feature of having finitely many particles.

The key idea implemented in this construction is that not only the particles
at j(e”) and j(e™) for a given edge e interact with each other, but also that the
objects at j};L (p') and j%L (p?) do so, provided p? = ((p') for p* € ;' (e7).
The following is shown accordingly as in Theorem 4.11:

THEOREM 4.12. Confr is a principal bundle over conf; with ggL as
structure group; the structure group ggL =I'(Pr x¢ K) is a finite dimensional
Lie group.

Let S°P;, and S'P;, denote the collection of all vertices, respectively, edges
of Pr. Clearly, S°Pr = Pr|S°L, which is a principal bundle over S°L with
structure group G as mentioned above.

In fact, S'P;, can be given the structure of a principal bundle as well.
Given e € S'L, the manifold W;Ll(e) is diffeomorphic to e x G and is, due
to connection given, foliated into a collection of one-dimensional leaves, the
edges over e € S'L. Clearly, the group G operates transitively and without
fixed points on this collection of leaves. We can consider the quotient space
S of P, with respect to this foliation. This quotient space is clearly identical
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with S'L as a set. On each fibre over e € S'L in S'P;, the group operates
transitively.

Let mgip, : S1P; — S'L denote the projection, it is obviously related to
np, . Clearly, SPy, is a principal bundle over S'L with structure group G.

By a function on Pr, we mean a smooth fibre preserving G-equivariant
map on SYPr and by a oneform, (with respect to the graph structure) a
fibrewise smooth G—equivariant map over S'Pr. Here we assume that G op-
erates on the range as well. Let us denote the collection of R"— and K—valued
functions and forms by F(Pr,R") and A' (P, R") respectively F(Pr,K) and
AY(Pr,K). Here G operates on K bt inner automorphisms.

Associated with the graph structure on P, reflected by Pr, we have the
concept of G-equivariant forms and hence the respective generalizations of
d,0 and A introduced in Section B.2.

B.7. THE GEOMETRY OF THE PRINCIPAL BUNDLE Confr. Let Pr be as
above. Confr is a finite dimensional manifold. The tangent space Tj’PL Confr,
at jp, € Confr, consists of all G—equivariant maps ¢ : P, — T(R" x K) =
(R x K) x (R* x K) with 77g o0& = jp,. Here 77g : T(R" x K) — R" x K
is the natural projection. Due to the triviality of Q, any £ € Tjp, Confr, can
naturally be identified with

g = (lR"alK:)

where Ign : L — R™ and Ix : P, — K since the fibre preservation is encoded
in jp. Here lpn is invariant since G acts on R” trivially and [ is G-equivariant
(G C K as a subgroup acting on K by the adjoint representation). Hence

T Confr, =T confr, x T'(Pr, xg K).

Any left invariant metric (, )x on K yields the following metric Gy (|7)
on the linear space Tj,Conf defined by

Gp, (&1,&) = GY (lgn, 1) + G2 (k. 17) (14)
where
&1 = (lgn,lx) and & = (I3n, %)

are splitted in the above sense. The terms on the right hand side of (14) are
respectively defined by

G (I, 1fn) = > < Ikn(q), B (q) >
qeSOL
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and

Gekl)= Y (k) Ew), -
7T-’PL(p)ESOL

Here we have to observe that (l,lc (p), 12 (p)) is G—invariant and hence depends

only on mp(p) € S°L. Let us point out moreover that the compactness of
neither G nor K is needed to define Q%L.

Let AL(Pr,R" x K) denote the collection of all G—equivariant one—forms
of the graph Pr into R” x K (G acts on K by the adjoint representation).
Hence the one—form © € AL (P, R" x K) can be written as

O = (v, 1)
where v € AL (L, R") and
or: SY(PL) — K

is a G—equivariant fibrewise smooth map (here S'(Pr) denotes the collection
of all edges of Pr).
The metric G! on L extends to Py, as follows:

G'(©',0%) =G'(v1,72) + Gic(eL, ¢1)

where
G (oL, ¥1) = > (prlep),vilen,)) .

ﬂpL(CpL)ESIL

B.8. THE VIRTUAL WORK ON Confr,. In this section we will generalize
the virtual work A on conf, introduced in Section B.3 to Confr. The virtual
work A on conf is based on the graph structure of L. This is the reason why
we endowed P with such a type of structure.

As mentioned, S°L and S'Py, are defined accordingly as S°L and S'L.
The respective projections from S°P;, and S'Pr, onto S°L and S'L are called
mp,, too. S°Pp and S'Pj are principal bundles over S°L and S'L with
structure group G.

Let us remind that F (P, R") and A' (P, R") are the R-linear spaces of all
R"—valued smooth maps defined on the principal bundles S°P;,, respectively
S1P;. In order to generalize the virtual work from conf to Conf;, we have
to deal with R” x K—valued one—forms.
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We begin the construction of the generalization mentioned with j; €
Confr, and an element s; in Tj, Confr. This map is naturally identified
with a pair

SL = (’77 'WC)

where v € A'(L,R") and ¢ € ['(PL xg K) = Q77G;L, a smooth section defined
on L. Clearly, s; € A'(Pr,R" x K) is a G-equivariant section.
An interaction form of a microstructure is a smooth map

ap, : Confr — AYL,R") x q]gL

where

ap; = (a, CY}C) (15)

maps each jp € Confy into ap, (jp) = (a(j), ax(jp,)) where j = Tcong, (j7)
and ax(jp,)(p) € K for all p € Pr..

Notice that a in (15) has no relation to the interaction form on the graph,
a priori. However, we assume that « coincides with the interaction form on L
(provided L is equipped with one).

To define «;, we needed the graph structure of Py, since interaction forms
are defined in collection of edges. The virtual work is then defined by

APL (jp)("}/,"}/}c) = gl(a(j)a’}/) + glCl(alC(ij)a'YIC)

for each sy, = (7,7¢c) € AY(L,R?) x Q77G;L. Here we let «(j) be the interaction
form on j(L), as introduced in Section B.3. The new quality comes into the
setting of microstructures by the qygLfvalued form ax.

The dynamics of discrete microstructure with interaction scheme is set up
as in Section 3 with the only change that the differential of V appearing in
the formula for the differential of the energy is replaced by Ap, .

ACKNOWLEDGEMENTS

This work has been partially supported through grants DGICYT
(Spain), Project PB97-1257 and NATO Collaborative Research Grant
(no. CRG 950833). ML acknowledges the warn hospitality of the Uni-
versity of Mannheim where part of this work was conceived.



124

E. BINZ, M. DE LEON AND D. SOCOLESCU

REFERENCES

ABRAHAM, R., MARSDEN, J.E., “Foundations of Mechanics”, Benjamin-
Cummings, Reading (Ma), 1978.

Binz, E., Global differential geometric methods in elasticity and by hydro-
dynamics, in “Differential Geometry, Group Representations and Quantiz-
ation”, L.N. in Physics Vol. 379, Springer—Verlag, Heidelberg, New York,
1991, 3-29.

Binz, E., On discrete media, their interaction form and the origin of non—
exactness of the virtual work, in “Symmetries on Science”, Bruno Gruber
and Michael Ramek, Plenum Press, New York, London, 1997, 47—-61.

BiNZ, E., From the interaction scheme to the stress tensor, in “Proceedings of
the first International Seminar on Geometry, Continua and Microstructure”,
G.A. Maugin, ed., Hermann, Paris, 1997, in press.

Binz, E., DE LEON, M., SOCOLESCU, D., On a smooth geometric approach
to the dynamics of media with microstructures, C.R. Acad. Sci. Paris, 326
Série IT b (1998), 227—232.

Binz, E., SNIATYCKI, J., FISHER, H., “Geometry of Classical Fields”,
Mathematics Studies Series 154, North-Holland, Amsterdam, 1988.

CAPRIZ, G., “Continua with Microstructure”, Springer Tracts in Natural
Philosophy, 35, New York, Berlin, Heidelberg, 1989.

COSSERAT, E., COSSERAT, F., “Théorie des Corps Déformables”, Hermann,
Paris, 1909.

EPSTEIN, M., DE LEON, M., Geometrical theory of uniform Cosserat media,
J. Geom. Phys., 26 (1998), 127—-170.

EpPSTEIN, M., SEGEV, R., Differentiable manifolds and the principal of vir-
tual work in continuum mechanics, J. Math. Phys., 21 (5) (1980), 1243—
1245.

ERICKSEN, J., Anisotropic fluids, Arch. Ration. Mech. Anal., 4 (1960), 231—
237.

GOTAY, M.J., “Presymplectic manifolds, geometric constraint theory and the
Dirac-Bergmann theory of constraints”, Doctoral dissertation, University of
Maryland, College Park, Maryland, 1979.

LANG, S., “Differential Manifolds”, Addison-Wesley, Reading, Massachusetts,
1972,

DE LEON, M., DE DIEGO, D.M., On the geometry of non-holonomic Lag-
rangian systems, J. Math. Phys., 37 (7) (1996), 3389—3414.

DE LEON, M., MARRERO, J.C., DE DIEGO, D.M., Mechanical systems
with non-linear constraints, Internat. J. Theoret. Phys., 36 (4) (1997), 973
989.

DE LEON, M., RODRIGUES, P.R., “Methods of Differential Geometry in
Analytical Dynamics”, North-Holland, Amsterdam, 1989.

LEwis, A.D., Towards F = ma in a general setting for Lagrangian mechanics,
Preprint University of Warwick, May, 1998.

MARLE, CH.M., “Sprays et équations différentielles du second ordre sur une
variété banachique, Technical report”, Séminaire de Géometrie Différentielle
de Melle Libermann, 16 Décembre 1968, Paris, 66+iii pages.

MARSDEN, J.E., “Lectures on Geometric Methods in Mathematical Phys-
ics”, CBMS-NSF Regional Conference Series in Applied Mathematics, STAM,



GLOBAL DYNAMICS OF MEDIA WITH MICROSTRUCTURE 125

Philadelphia, 1981.

[20] MARSDEN, J.E., HugHEs, T.J.R., “Mathematical Foundations of Elasti-
city”, Prentice Hall, New Jersey, 1983.

[21] STOKES, V.K., “Theories of Fluids with Microstructure, An Introduction”,
Springer—Verlag, Berlin, New York, 1984.

[22] TouPIN, R.A., Theories of elasticity with couple-stress, Arch. Ration. Mech.
Anal., 17 (1964), 85 112.



