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1. INTRODUCTION

These notes deal with the extension of multilinear operators on Banach
spaces. The organization of the paper is as follows.

In the first Section we study the extension of the product on a Banach
algebra to the bidual and some related structures including modules and deri-
vations. The approach is elementary and uses the classical Arens’ technique.
Actually most of the results of Section 1 can be easily derived from Section 2.

In Section 2 we consider the problem of extending multilinear forms on a
given Banach space X to a larger space Y containing it as a closed subspace.
First, we consider the case in which Y = X" and we present the Aron-Berner
extension as a (linear continuous) extension operator L™"(X) — L"(X"). Here,
L"(Z) denotes the Banach space of all n-linear forms Z x - -- x Z — K. Next,
we show that each operator X’ — Y’ induces an operator L™ (X) — L"(Y') by
using an idea of Nicodemi. Moreover, if X is a subspace of Y and X’ — Y’
extends linear forms, then the induced Nicodemi operators extend multilinear
forms. Thus, for instance, the Aron-Berner extension is just the Nicodemi
operator associated to the natural embedding X’ — X". The main result of
the Section is that an extension operator X' — Y’ exists if and only if, for
some n > 1, an extension operator £L"(X) — L"(Y') exists if and only if there
is an extension operator L"(X) — L"(Y) for all n > 1. And all this happens
if and only if X is locally complemented in Y.
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In general, the procedures described in Section 2 do not send symmetric
forms into symmetric forms. Since polynomials are in correspondence with
symmetric forms via polarization the methods of Section 2 cannot be applied
straightforwardly to polynomials. In third Section we shall show that the
extension operators of Section 2 preserve the symmetry if (and only) if X is
regular (that is, every linear operator X — X' is weakly compact). Also, we
give some applications to the (co) homology of Banach algebras.

Given a multilinear operator T : X x --- x X — Z, the (vector valued ver-
sion of the) Aron-Berner extension provides to us with a multilinear extension
aB(T) : X" x -+ x X" — Z" which, in general takes values in Z”. In Section
4 we study some consequences of the fact that the range of af(T) stays in
the original space Z. We shall show that those operators whose Aron-Berner
extensions are Z-valued play a similar role in the “multilinear theory” that
weakly compact operators in the “linear theory”, thus obtaining multilinear
characterizations of some classical Banach space properties related to weak
compactness in terms of operators having Z-valued Aron-Berner extensions.

Finally, in Section 5 we give an application of the Aron-Berner extension to
the representation of multilinear operators on spaces of continuous functions
by polymeasures.

2. THE ARENS PRODUCT IN THE SECOND DUAL OF A BANACH ALGEBRA

In this Section we consider some particular, but important examples of
“extensions” of multilinear (mainly bilinear) operators. To fix ideas, suppose
A is a (not necessarily commutative nor associative or unital) Banach algebra.
Of course this means that one has a bilinear operator A x.A — A possibly with
some additional properties. For obvious reasons it would be interesting to have
areasonable “extension” of the product of A to the second conjugate space A”.
In some cases the extension is obvious: for instance, if A = ¢g (multiplication
is given coordinatewise), then A” = I, and the required extension is given
by the usual, coordinatewise product in /,,. The same can be said about the
noncommutative version of ¢o: when IC(H) is the algebra of compact operators
on the Hilbert space H, then K(H)"” = L(H) and the composition of operators
in £(H) obviously extends that of K(H).

Next, consider A = Cy(2), where Q is a locally compact space. It is well-
known by those acquainted with the theory of Banach lattices that A” can be
isometrically represented as a C(K) space for a suitable compact space K
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but unless 2 is dispersed it is unclear whether the natural inclusion map
Cy(2) — C(K) is a homomorphism. (If Q was dispersed, then Co(R2) = 11(),
so Co(N)" = 1(R2) = C(BNy) and everything is clear. We have written Qg
for the underlying set €2 viewed as a discrete space.)

Consider now group algebras. Let (G,:) be a (not necessarily abelian)
locally compact group with (right) Haar measure dt. The group algebra of G
is the Banach space L1(G) = L1 (G, dt) endowed with the convolution product

frgls) = /G F()g(t - ).

(At first sight the convolution product might look artificial, but note that,
when G is a discrete group, it is the only product in L;(G) = 1;(G) for which
one has eg * e = €44, so that *x is simply a sort of coding of the law on the
underlying group G.) In this case it is not even clear that L,(G)"
reasonable structure of Banach algebra. Notice that (L1 (G), *) is commutative
if and only if G is.

Let us read the master. Even in we are now thinking about Banach alge-
bras it will be convenient (for the sake of clarity) to consider arbitrary bilinear
operators, so we follow Arens’ paper [2] to understand the previous one [1].
Suppose m : X XY — Z is a bilinear operator acting between Banach spaces.
First, define

carries a

m:Z'x X —Y', (m(Z z)y) = m(zy).
Now, iterate the procedure and define another bilinear operator as
m":Y'"x 7' — X', (m"(y", ), x) =", m (¢, )).
Iterating once again, we arrive to
m" X" xY" — 7" (m" (2", "), ) = (", m" (", ).
Clearly, m" (z,y) = m(z,y) for all x € X,y € Y. This bilinear map m"" will

be called the (first) Arens extension of m. An interesting property of m’’ is
given in the following.

LeEMMA 1. With the preceding notations one has ||m"|| = ||m]|.

Proof. Obviously ||m'|| = ||m||. Iterate. &



294 F. CABELLO SANCHEZ, R. GARCIA, I. VILLANUEVA

Let us consider the case in which X =Y = Z is an associative Banach
algebra A and p is the product of A.

THEOREM 1. (Arens [2]) The Banach space A" equipped with p" is an
associative Banach algebra which extends (A, p).

Proof. That p" is bilinear is obvious. The point is to show that the ope-
ration p”’ is associative:

pIII (plll (,’E”, yll)’ Z”) — plll (xll’ pIII (yll’ Z”)) (,’E”, yll’ Z” c A”).

"

That is, by the very definition of p",

<p’”(.fv”,y”),p”(Z”,Z’)) — <./,E”,p”(p’”(y”,Z”),Zl))> (.T”,y”,zl’ c AII’ Z’ c Al)

Since (p"' (2", y"),p" (2", 2")) = (", p" (y",p" (2", 7"))) it suffices to show that
pl/(y/l’p/l(zll’zl)) — pl/(p/l/(yl/’ zl/)’zl)) (y/l’zl/ c A”,ZI c A/)
So, one has to verify that (y”.p'(p"(2",2'),z)) = " (y",2"),p' (2, x)) holds
for all z, 2',y", 2". Again, since one has
P (", 2,0 (7 2)) = (" P (2 ' (2 7))
this amounts to verify the relation

/!

Pz, 2),2) =p"(",p' (<, 2)),

that is, (p'(p" (2", 7")),y) = (" (2", p'(#,x)),y) for all z,y,2', 2". Which can
be written as (p”’ (2", 2'), p(z,y)) = (", p'(p' (', z),y)). Applying the definition
of p” and “eliminating” z” this becomes

P& p(z,y) =0 (' (7, 2),y).

Applying (twice) the definition of p’ and eliminating 2’ the preceding identity
can be rewritten as
p(z,p(y. 2)) = p(p(z,y), 2)

that is just the associativity of 4. This completes the proof. |

The (covariant) functorial nature of Arens product is given by the following
simple result.
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PROPOSITION 1. (Arens [2], Civin and Yood [16]) If T : A — B is a
homomorphism (of Banach algebras) so is T" : A" — B" when A" and B" are
equipped with their Arens products.

Proof. Straightforward computations. i

COROLLARY 1. Every homomorphism A — K extends to a homomorp-
hism A" — K.

A property which is not preserved by the Arens extension is commutativity.
This is because there are two Arens extensions of the product of an algebra
rather than one. Given a Banach algebra A, consider the reversed algebra
Aprey which is just A endowed with the reversed product pyey(a,d) = p(b,a).
(Clearly, A is commutative if and only if A = A;ey.) Thus, ((Arev)”)rev 18
clearly an extension of A (its second Arens extension) which is as natural as A"
is. But, in general, these extensions are different, even if A was commutative.
In this setting, A is said to be Arens regular if its two Arens extensions
coincide, that is, if (Apey)” = (A”)pey. Clearly, if A is commutative, then A”
is commutative if and only if A is Arens regular. Let us remark here that any
C*-algebra is Arens regular and its second dual space is again a C*-algebra
under a natural involution [53, 55, 26]. In particular, every commutative C*-
algebra (= Cy(Q2) space) is Arens regular and its bidual is again a commutative
C*-algebra. On the negative side, (L1(G), *) is Arens regular if and only if G
is finite. These phenomena will be treated later, in a more general framework;
see Section 4. The situation is illustrated by the following.

EXAMPLE 1. (Arens [1]) The Banach algebra (I1(Z), )" fails to be com-
mutative.

Proof. Recall that

o

z*xy(n) = Z z(m)y(n —m).

m=—0oo

It is well-known that [1(Z)" = lo(Z) and that the conjugate space of lo(Z)
equals the space of all finitely additive measures on (the power set of) Z
with bounded variation. Thus, for p € l(Z)', we shall write [ fdu (or
J7 f(n)du(n)) instead of (u, f) for the value of p at f € lo(Z). It is easily
seen that

fram) =) flm)z(n—m) (f€lw(Z),z€h(Z),nEL)
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From where it follows that
v fn) = f s en) = [ flm = ndv(m),
Z

for v e 1(Z)", f € loo(Z),n € Z. So the first Arens product in 11(Z)" is given
by the “convolution of measures”

)= [ ([ fom=mvtm) ) dut) (e € 12V £ € @),

To exhibit the noncommutativity of the convolution of finitely additive mea-
sures, take free ultrafilters (i.e., zero-one-valued measures vanishing on finite
sets) u and v such that pu(N) = 1,7(N) = 0 (hence u(Z\N) = 0,v(Z\N) = 1)
and let f = 1y. Then, clearly, (u*v, f) =0, while (v* pu, f) = 1, so that p*v
is different from v * p. This example is essentially in Zalduendo [59]. 1

Remark 1. Observe that the lack of commutativity of Arens product in
11(Z)" is essentially the failure of Fubini theorem for finitely additive measures.
It would be interesting to known for which pairs of free ultrafilters one has
WXV =V %[

Unfortunately, we lack the opportunity of treating the bidual algebras
in some detail. We refer the reader to the survey paper by Duncan and
Hosseiniun [26] for further information on the topic.

2.1. EXTENSION OF MODULES. Despite our affect and admiration for
Prof. Angel Rodriguez Palacios, from now on, all algebras are assumed to be
associative. As Helemskii observed in [39], contemporary analysis is “swar-
ming with modules”. And, fortunately, things are so that. (Proof. Any book
by Palamodov.) Of course, given an (associative) algebra A, a (left .A) module
X is a representation A — L(X), or else, a bilinear operator

m:AxX — X

satisfying m(a - b, x) = m(a,m(b,x)). If we apply Arens’ procedure to m, we
obtain a bilinear extension

mlll . AII % XII XII

and since A" is itself an algebra under the Arens product one may wonder
whether m"”’ defines in X" a (left) module structure over A”.
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THEOREM 2. Let (A,p) be an associative Banach algebra and let m :
Ax X — X be a left-module. Then m" : A" x X" — X" makes X" into a
left-A"-module.

Proof. Since m" is a bilinear operator, one only has to show that the left
action A” in X" is compatible with the product of A” in the sense that

(1) mlll (plll(all’ b”), ,’E”) — mlll (all’ m”l(bl’, mII)) (all’ bll c ./4”, mII c X”).

This is a straightforward verification that we sketch. Applying the definition
of m"" in both sides of (1) and then that of p" in the left-hand side, and
eliminating a”, we obtain

(2) p”(b”,m”({t”,{];")) — m”(m”l(bl”ivl’)’ivl) (b” E A’/’ .’L‘” 6 X’/’x/ 6 X’).
Now, using the definitions of p”,m"” and m" to eliminate b”, (2) becomes
(3)  p(m"(2",2"),a) =m" (2", m (z',a)) (" € X" 2’ € X', a€A.

Applying first the definition of p’ in the left-hand side of (3) and then that of
m' in both sides, and eliminating z”, this becomes

4) P (m" (2", 2"),a) =m" (2", m'(z',a)) (2" € X" 7' € X",a € A).
That is,

(5) m/(z',p(a,b)) =m'(m'(z',a),b) (z' € X',a,b € A).
Which is obvious, since

(6) m(p(a,b),x) = m(a,m(b,x)) (a,b € A,z € X).

This completes the proof. 1

In what follows, given a left A-module X, when speaking of the left A”-
module X” we understand that A" is the first Arens extension of A and the
module structure of X” is that given by Theorem 2.

We now stablish that passing from the left A-module X to the left A”-
module X” is a covariant functor from the category of left A-modules into
the category of left A”-modules. Recall that an operator T': X — Y acting
between A-modules is a homomorphism (of left A-modules) if, in addition of
being linear, one has

T(a-z)=a-T(x)

for all @ € A and z € X. If you are thinking about representations, then
homomorphisms are intertwining operators. The proof of the following result
is an elementary verification and will be omitted.
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LEMMA 2. If T : X — Y is a morphism of left A-modules, then the
bitranspose map T" : X" — Y" is a morphism of left A”-modules.

Counsider now right-modules. A right-module over an algebra B is a Banach
space X endowed with a right outer multiplication over B, that is, a bilinear
operator

n: X xB—X

satisfying n(z,a - b) = n(n(z,a),b) for all z € X and a,b € B.

Clearly, every right B-module can be regarded as a left-module over the
reversed algebra B,.,. Thus, our previous construction implies that X" admits
a structure of left (Byey)”-module, that is, X" is a right ((Byey)”)rev-module.
But, since ((Brey)”)rev need not coincide with B” (unless B is Arens regular)
this construction is useless to obtain a suitable right outer action of B” on
X",

This problem can be surrounded as follows. Suppose the outer right action
of Bgiven by n: X x B — X and define n" : X" x B” — X" exactly as before,
that is, define bilinear operators

n : X'xX— B, (n'(z',2),b) = (2',n(z,b));
nl/ . BII X X/ X” (n/’(b/” :E’), :E) — (b/” n/(xl’ x)>;
n/’/ . X/’ X B’/ s X/’ <n/’/(m’/ b/’) x/) — <.’L‘” n’/(b’/ x/)>‘

One then has.

THEOREM 3. Let (B,q) be an (associative) algebra and letn : X x B — X
be a right-module action. Then n" : X" x B" — X" makes X" into a right
B"-module.

Proof. This is more or less as the proof of Theorem 2, so we give only the
main steps. Fach of the following identities implies the following one. The
last one means that n'’ defines a right outer action of B” on X":

n(n(z,b),a)
n' (', n(z, b))
n'(n" (", 1), z)
)

)

n(z, q(b, a)),

q'(n' (', z),b),

¢'0" 0, z)),
n"(q ///( "N, Y,
n" (2", " (a",b")).

nll( (bll bl

nlll (nlll( ) II
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A homomorphism of right B-modules is an operator T : X — Y satisfying
T(z-b)=T(z)-bfor all z € X and b € B. As before, one has

LEMMA 3. If T : X — Y is a morphism of right B-modules, then the
bitranspose map T" : X" — Y" is a morphism of right B"”-modules.

Remark 2. Let m : Ax X — X (resp. n: X x A — X) be a left (resp.
right) module over A. Then the dual space X' is a right (resp. left) A-module
under the dual product

m*: X' x A— X', (m*(2),a),7) = (2',m(a, z))

(resp. n* : Ax X' = X' (n*(a,2"),z) = (2',n(z,a)). Thus X" is always a
left (resp. right) module over A under the product

<m**(a’xﬂ)’x/> — <x/l’m*(ml’a)>

(resp. (n*™*(z",a),z") = (z",n*(a,z’))). Hence, given a € A and z" € X",
the product a - 2" (resp. z” - a) can be understood in two (a priori different)
ways, namely m**(a, z") and m" (a,z") (resp. n**(z",a) and n"’ (2", a)). For-
tunately, we have the following result, whose easy verification is left to the
reader.

LEMMA 4. With the above notations one has m**(a,z") = m'"(a,z") and
n**(z",a) = n"(2",a) for alla € A,z" € X".

2.2. BIMODULES AND DERIVATIONS. Bimodules play a major role in ho-
mological algebra. Let A and B be two (associative) Banach algebras. A
bimodule (or, more accurately, an A — B-module) is a Banach space X which
is simultaneously a left A-module, a right B-module and satisfies that

(a-z)-b=a-(z-b)

foralla € A, z € X and b € B. When B = A, we speak of an A-bimodule or
a bimodule over A instead of an A — A-module.

THEOREM 4. If X is an A — B-module, then X" is an A" — B"-module.
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Proof. The following identities are all equivalent. The first one is our
hypothesis. The last one is the conclusion of the Theorem we are in proving.

n(m(a, z),b)
n'(a',m(a, 7))
m!(n" V", 2"), a)
)
)

m(a,n(z,b)),
n'(n'(a', a), z),

n”(b” ($ a))

m" ( m( " bll) )

III( III( " b”);.

mll ( II (b” /

nlll (mlll ( ) II

COROLLARY 2. (Gourdeau [34]) If X is a bimodule over A, then X" is a
bimodule over A”.

Remark 3. Corollary 2 was first proved by F. Gourdeau in [34], with a
somewhat eccentric proof. It is not clear to us whether Gourdeau’s approach
can be used to prove Theorem 4.

As probably everybody knows, the most important operators in homology
are bimodule homomorphisms and derivations. Let X and Y be two A — B-
modules. An operator T': X — Y is a homomorphism of A — B-modules if it
is simultaneously a homomorphism of left A-modules and a homomorphism
of right B-modules. If X is a bimodule over 4, then a derivation D : A — X
is a linear operator satisfying Leibniz’s rule

D(a-b)=D(a)-b+a-D(b).
The simplest derivations have the form
de(a)=a-z—x-a

for some z € X and all @ € A. These are called inner derivations. The
interest of derivations in Banach algebras is due in part to their connections
with automorphisms (= “intrinsic” symmetries of the algebra). For instance,
if D : A — Ais a derivation, then exp(D) = >">° ; D" /n! is an automorphism.
And, conversely, if U is an automorphism of A which is close to the identity
(say ||[U—1]| < v/2—1), then U = exp(D) for some derivation. Moreover, inner
automorphisms (i. e., having the form a — u 'au for a certain invertible u)
correspond to inner derivations and vice-versa.

LEMMA 5. (a) If T : X — Y is a homomorphism of A — B-modules,
then T" : X" — Y" is a homomorphism of A" — B"-modules.
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(b) If D : A — X is a derivation, then so is D" : A" — X"

Proof. The first part trivially follows from Theorem 4 and Corollaries 2
and 3. As for the second one, let D : A — X be a derivation. Let p,m and

n denote respectively the product of A and the left and right actions of A on
X. One has.

D(p(a,b)

p' (D', a

p’/ b/” D/x/
D’/ (p/’/ (a’/’ b’/)

= n(Da,b) + m(a, Db),

=n'(2', Da) + D'm’ (2, a),

— D/(nl/(bl/’x/)) + m”(D”b”,fL"),
— n’”(D”a” b”) + m/l/(al/ D”b”))

~— ~— ~—— ~—

And D" is a derivation. [

These results open the possibility of linking (co) homological properties
of A” to those of A, as we shall see. Recall from [41, 39] that a Banach
algebra A is amenable (or cohomologically trivial) if every derivation into a
dual bimodule X' is inner. (A dual bimodule is a dual Banach space X’ whose
structure of bimodule is inherited by a bimodule structure on X by the process
described in Remark 2.)

Perhaps a few words about amenable algebras are in order. First, group
algebras L1 (G) are amenable if and only if the underlying group is amenable in
the traditional sense of harmonic analysis (that is, there is an invariant mean
for the space Lo (G)), which is the case if G is either abelian or compact.

Next, if 4 — B is a homomorphism with dense range and A is amenable,
then so is B. From this it is easily obtained that all algebras C(K) are
amenable. Tt also follows that the algebra L(H)@® C- 1y is amenable and that
amenability is not hereditary: C(T) is amenable (here T = {z € C: |z] = 1})
while the disc algebra A is not. To see that A is not amenable, let us make
C into an A-bimodule taking f-A = A - f = Af(0). Obviously C is a dual
bimodule. The map D : A — C given by Df = f'(0) is clearly an outer
derivation and A is not amenable. (Much more is true: if A is an amenable
subalgebra of C'(K) which separates K, then A = C(K).)

Amenability of C*-algebras has been completely elucidated by Connes and
Haagerup: it turns out that they are exactly the nuclear C*-algebras. Thus,
for instance, K(H) @ 1y or the Fermion algebra are amenable while £(H)
itself or the Calkin algebra are not. All this can be seen in Helemskii [39]

We close the first part of the paper with a very simple proof of the following
result.
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THEOREM 5. (Gourdeau [34]) If A” is amenable, then A is amenable.

Proof. Let D : A — X' be a derivation. Then D" : A" — (X')" is a
derivation on A”. Even if (X')” is not a dual bimodule over A", the second
conjugate ((X’)")” is and, therefore, the derivation j o D" : A" — ((X')")"
must be inner (here j is the natural embedding (X')” — ((X")")". So there
is € in the fifth dual of X such that

j(D”(a”)) — all . 6 _ é— . all (all c AH).

In particular, we have D(a) = a - & — £ - a. Now, observe that the canonical
embeddings X — X" and X" — X" are homomorphisms of A-bimodules (see
Remark 2) and so the composition i : X — X"”. Hence, the adjoint projection
7 from the fifth dual of X onto X’ is a homomorphism of A-bimodules as well.
Therefore,

D(a) =7(D(a)) =m(a-{ =& a) =a-7(§) —n(¢) - a,
so that D = (¢ is inner. This completes the proof. 1§

Remark 4. Let X be a bimodule on A. Let H!(A, X) denote the quotient
of the space of all derivations A — X by the subspace of inner derivations
(H'(A, X) is often called the first cohomology group of A with coefficients in
X). Amenability then means that #'(A, X') = 0 for all dual bimodules X'.

The proof of Theorem 5 together with Lemma 5 and the obvious fact that
D" is inner when D is shows that for every dual bimodule X', the group
H' (A, X') may be regarded as a subgroup of #!'(A”, (X’)") under bitranspo-
sition. One might expect that the same occurs with arbitrary (not necessarily
dual) bimodules. Let us smash that hope:

EXAMPLE 2. An outer derivation whose bitranspose is inner.
Proof. Let K be a compact Hausdorff space and consider the Banach space
X={feCKxK): f(t,t)=0forall t € K}.
Then X is a bimodule over C(K) under the products
a- F(s,8) = a(8)f(s,8), [ a(s,t) = a(t) (5.1,
Define D : C(K) — X as

Da(s,t) = a(s) — a(t).
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It is easily seen that D is a derivation. Suppose D inner. Then,
a(s) — a(t) = (a(s) —a(t))g(s,t) (a € C(K),s,t € K),

where g is such that §, = D. Varying a we see that g(s,t) = 1 for all s # t,
so that g = 1 — 1o (here A denotes the diagonal of K x K). Thus 14 is a
continuous map on K x K. This implies that every point is isolated in K. So,
D is inner if and only if K is finite.

The proof that D” is inner for any compact K will be postponed until
Section 4. We prove that in the case in which K = w is the one-point compac-
tification of N. Since both w and w X w are scattered, we have C(w)" = [ (w)
and C(w X w)"” = l(w X w). Thus, X” may be identified with the space of
all bounded functions on w X w vanishing on the diagonal. Now it is easily
verified that the bimodule structure of X” is given by

a'¢(8at) :OZ(S)qé(S,t), ¢'a (Sat) :a(t)¢(5at)a (aEloo(wa),¢€Xl,).
Also, the bitranspose map D" : [o(w) — X" is nothing but
Da(sa t) = a(s) - Oé(t),

and since 1a belongs t0 I (w X w) we see that g =1 — 14 is an element of X"
such that D" = §, is inner. (Another possibility is to show that X" is a dual
bimodule over /5 (w) and then recall that /. (w) = C(Bwg) is an amenable
algebra). 1

3. EXTENSION OF MULTILINEAR FORMS

We deal in this Section with the extension of (vector-valued) multilinear
operators and forms. Let us first consider the extension to bidual spaces. Let
X1,..., X, and Z be Banach spaces and T : X1 X---x X,, = Z a (continuous)
multilinear operator. Our immediate objective is to extend T' to a multilinear
operator €(T) : X| x -+ x X! — Z". In general one cannot expect to get
an extension taking values in Z, even in the linear case: for instance, the
identity on ¢y cannot be extended to a linear operator I, — ¢ since cg is
uncomplemented in [,. See the unbearable paper [13].

On the other hand, we are looking for linear methods of extension (i.e.,
with €(T") depending linearly on T') which are bounded (i.e., with ||e(T)| <
const.||T'||). In this case, we may restrict our attention to multilinear forms.
Indeed, suppose we have a linear bounded method of extension € : £L"(X1,...,
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Xp) = LM(XY,...,X]))). Then, given a multilinear operator T : X; X -+« X
X,, — Z, we obtain a multilinear extension €(7) : X{ x -+ x X!/ — Z" taking

(e(T) (..., 20), 2"y = ez o T)(al,... 2l).

Moreover, the extension operator L™ (X1,...,Xp;Z) — L™(XY, ..., X! Z")
is linear and bounded, with the same norm than € : £"(Xqy,...,X,) —
LrXxy,... X0,

3.1. ARON-BERNER EXTENSION. In [3], Aron and Berner found a linear
method for the extension of multilinear forms from X to X”. (They use it
to extending holomorphic functions of bounded type from X to X" via their
Taylor expansion.) We now describe the Aron-Berner method for an arbitrary
collection X1,..., X, of Banach spaces.

Given z; € X', define

Zi L Xy, .., X)) — LN X, XL X, X))

by ZZ'(T)(.’L‘l, ooy L1y Lj415 - - - ,an) = <ZZ',T(ZE1, FPIPIIRY 7 S PRI 7 S PUP ,.’L‘n)> He-
re, T(Z1,...,Ti—1,"5 Tit1,--.,Ty) denotes the linear form obtained from T by
fixing the n — 1 variables x1,...,%i—1,%i+1,...,2Zn. The map Z; is linear,
continuous and of norm | z;||. Now, given T' € L"(X},...,X,) we can define

the extended n-linear form af(T) € L"(XY,..., X)) by
a/B(T)(Zla s 7zn) =2Zy0-::0 EH(T)

This extension af(T) is called the Aron-Berner extension of 7. We have in
fact n! extensions, one for each choice of the order in the applications z;. We
shall discuss to what extend these procedures depend on the ordering in next
Section 4.

3.2. THE DAVIE-GAMELIN DESCRIPTION OF THE ARON-BERNER EXTEN-
SION. There is a somewhat simpler description of the Aron-Berner map,
due to Davie and Gamelin [17]. Given T € L"(X1,...,X,), define év(T) €
LM(Xy,..., X)) by

0v(T)(z1y...2p) = lim -+ lim A(zy,...,z,),

xr1—21 Tn—2n

where the iterated limit is taken for z; in X; converging to z; with respect
to the weak* topology of X7. Clearly, 6y(T) is an extension of 7', with
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l64(T)|| = ||T||- It is also clear that dy(T') is separately weakly* continuous
in its first variable. In fact, it is the unique extension T' €" (X7,..., X) of
T such that, for each 1 <i <n and all z; € X; and 2z, € X}/, the linear form

n 2
2i € X; V= T(T1y .oy Tio1, Ziy Zitly -y 2n)
is weakly* continuous.

Analogously to the Aron-Berner extension, we have in fact n! possible
extensions, one for each ordering in the iterated limit.

LEMMA 6. The Aron-Berner and Davie-Gamelin extensions are identical.

Proof. Let X1,...,X, be Banach spaces and T € L"(X1,...,X,). Given
z; fixed in X!, one has

Zi(T) (@1, o @i 1, Tig1, - - @) = (2, T (21, .o, Ti1, Tig 1y .., Tn))
= lm T(x1,.. ., Ti—1, %4 Tig1, .-, Tn),
Ti—>24

where z; € X; converges to z; € X' in the weak* topology of X/'. It is now
clear that, for every T € L"(X1,...,X,), we have

af(T)(z1,...,2n) =210+ 02,(T)

= lim --- lim T(zy1,...,2,)
T1—21 Tn—2n

=0Y(T) (21,5 -4 2n).

This completes the proof.

LEMMA 7. Let m : X XY — Z be a bilinear operator. Then the first
Arens extension m"' and the (vector-valued version of the) Davie-Gamelin
extension ¢y(m) are identical.

Proof. Of course, we define §y(m) : X" x Y" — Z" by

(0y(m)(z",y"), 2') = 07(z' o m)(a",9")
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for all z”" € X" ,y" € Y" and 2’ € Z'. One has

<mlll(mll’yll)’zl> _ <xll’mll(yll’zl)>
= lim (m"(y”,z'),:v)
x—z!!

= lim (y",m'(¢', z))
T

= lim ylir;g,<m’(z’, ), y)

= lim lim (m(z,y),2")
=z y—y'!

= (dy(m)(z",y"), ).
1

EXERCISE 1. Use the preceding Lemma to obtain simpler proofs of Theo-
rems 1, 2, 3 and 4.

3.3. NICODEMI OPERATORS. Nicodemi operators where introduced in
[50] in a rather algebraical form and then applied to (continuous) multilinear
operators by Galindo, Garcia, Maestre and Mujica in [28] (Other applications
can be found in [11].) We need some notation. Let X;,..., X, be Banach
spaces. For each 1 < ¢ < n, there is a natural isomorphism

()i s LK1,y X)) — L7 X X1, Xig1y oy Xy XD)
given by
(Ai(T1y ey Ty Tt 1y e ey T Ti) = AT, o Ty).
The inverse isomorphism shall be denoted (-)*. Thus, for every operator B €
LY X, 00, X1, Xig1, - -+, Xp; X)), one has
Bi(fvla---afvi—lafviami—i—la---amn) =(B(T1, -, T 1, Tig1,- -, Tn), T5).-

Now, let Y1,..., Y, another collection of Banach spaces. Suppose there are
given linear operators ¢; : X; — Y;. It is then possible to construct a linear
operator ® : L"(Xq,...,X,) = L"(Y1,...,Y,) as follows. For each 1 <1i <n,
define

bey  L"( X1, Xn—it 1, Ynoiy oo+ Yn) — LM X1, oo, Xy Yoig1, -+, Ya)

by .
by (A) = (¢io Ai)".
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Now, define an operator ® : L™"(Xy,...,X,) = L™(Y1,...,Y,) as the compo-
sition
©=¢uyo - odm).
As before, there are other possible choices of the ordering of the application
of the operators ¢(;).
As a particular case, let X and Y be Banach spaces and let ¢ : X’ — Y’
be a fixed operator. Nicodemi’s procedure generates a sequence of operators

o™ LX) — L),

where we have written ¢(™) instead of ® for the composition $(1)© 0 D)
and ¢, = ¢ for all k.

Remark 5. With the notations above, notice that if A € £"(Xy,...,X,)
has the form A =z ® --- ® z],, then ®(A) = 1 (2}) @ -+ @ Pp ().

Moreover, it is easily seen that if each operator ¢y, : X} — Y} is the adjoint
of some operator vy : Y, — X}, then

D(A)(y1,--5yn) = A(b1(y1)s - - Pn(yn))
for all y; € Y;.

An interesting property of Nicodemi operators is given in the following
Proposition.

PROPOSITION 2. (Galindo, Garcia, Maestre and Mujica [28]) Suppose each
X}, is a (closed, linear) subspace of Yj, and that each operator ¢, : X; — Y}
extends functionals (that is, for every ' € Xy, the restriction of ¢i(z') to
Xy is 2'). Then the associated Nicodemi operator ® : L™"(Xy,...,X,) —
L"(Yq,...,Y,) extends multilinear forms.

Proof. Suppose that ¢, : X — Y, extends functionals and let A €
LM(X1,...,Xp). We show that ¢,y(4) € L"(X1,...,Xp-1,Y,) is an ex-
tension of A. Indeed, take z; € X; for 1 < i <n. One has

¢(n) (A) (@1, 20) = (n o An)" (21, ..., Tp)
= <¢n(An(mla s ,ZEn_l)),fEn)

(Ap(z1, .- Tp—1),Tp)
= A(z1,...,zp).

Iterate. |
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We now show the basic connection between the Arens, Aron-Berner, Davie-
Gamelin and Nicodemi operators.

PRrROPOSITION 3. Let X; be Banach spaces. Then the Aron-Berner exten-
sion operator aff : L™"(X1,...,X,) = L"(XY,..., X)) (and therefore that of
Davie-Gamelin) are the Nicodemi operator associated to the natural inclusion
maps iy, : X; — X}

This is straightforward from next Lemma.
LEMMA 8. Let ¢y, : X; — Y, be arbitrary operators for 1 < k < n and

let & : L"(Xq,...,X,) = L"(Y1,...,Y),) denote the associated Nicodemi
mapping. Then, for each A € L™(X4,...,X,) and all y; € Y;, one has

(A costm) = i R A(z1,... ),
(A) (1,5 yn) :c1—>1¢1?(y1) mn_}g&yn) (21 Tn)

where the iterated limits are taken for x; € X; converging to ¢.(y;) in the
weak* topology of X!
Proof. Let A€ L™"(X1,...,X;,Yit1,...,Y,). One then has

Dy A(T1, - Bi 1 Yis Yitts -2 Yn) = (95 © A) (T1o o Ti 1, Ui Yik 1o - Yn)
= ((¢i 0 Ai) (@1, s Ti1, Yit 15+ -+ Yn) Yi)
= (Q(Ai(@1, . Ti 1, Yit1s -2 Yn) s i)
= (Ai(@15 T 13 Yit 1, -+ Yn) s D5 (i)

= hI,n (Ai(xlﬂ"'axi—layi+1a"'7yn)ﬂxi>
= lm A(@1,...,2i1,%i,Yit1,- - Yn)-

Tterate. 1

Proposition 3 and Lemma 8 can be rephrased saying that, given operators
¢k : X;, — Y}, one has

(A)(Y1,-- - yn) = af(A) (1 (11);- - $n(Yn))

for all y; € Y;. In other words, we have a commutative diagram

LXK, X)) —— L(Yh,....Y)

aﬁl T

LHXY, X" s LY.L YY)
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where r is the restriction map and the lower arrow is plain composition with
the operators ¢}, : V! — X

3.4. APPLICATION: MULTILINEAR FORMS ON DUAL-ISOMORPHIC SPACES.
Suppose Xj and Y are Banach spaces whose duals are isomorphic for 1 <
k < n and let ¢5 : X; — Y be the corresponding isomorphisms. It is plain
from the definition that each step ¢ in the construction of the associated
Nicodemi operator is an isomorphism as well and so is ® : L (X1,..., X,) —
L"(Y1,...,Y,). To sum up, we have:

THEOREM 6. ([12] also [45, 18]) Let X1,..., Xy and Yy,...,Y, be Banach
spaces such that X; and Y] are isomorphic for each 1 < k < n. Then the
spaces of multilinear forms L (X1, ..., Xy) and L™(Y1,...,Y,) are isomorphic.
In particular, if X' is isomorphic to Y’, then L"(X) and L"(Y') are isomorphic
for all n > 1.

This result has some interesting consequences. For instance, taking X =
C[0,1] and Y = ¢o(T', C[0,1]) (here I" has the power of continuum) we obtain
that £"(X) and £"(Y) are isomorphic for all n > 1 in spite of the fact that
X is separable and Y is not. Also, taking X = [1(I5) and Y = [1(I5) & I2
we see that £"(X) and £"(Y) are isomorphic, in spite of the fact that every
multilinear form on X is weakly sequentially continuous (since X has the
Schur property), while Y obviously admits bilinear forms which are not weakly
sequentially continuous.

3.5. EXTENSION TO ULTRAPRODUCTS. Ultrapowers of Banach spaces
are of capital importance in the local theory of Banach spaces. Let us briefly
sketch their basic properties. (See [54] or [40] for further information.) Let
X be a Banach space, S an arbitrary set and U an ultrafilter on S. The
ultrapower of X with respect to U is the Banach space obtained taking the
quotient of I (S, X) = {z: S — X : sup, ||z(s)||x < oo} by the subspace

Np = {f € Lu(S.X) : lim 1£(5)x = o}

and will be denoted by Xy. The norm of Xy enjoys the following nice pro-
perty:
Iy = lim [ f(s)[|x,

U(s)
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where [f] denotes the class of f € [o(S, X) in Xy7. Observe that Xy contains
a natural copy of the space X regarded as the space of (classes of) constant
maps S — X.

Lindstrom and Ryan [48] obtained a method of extension for multilinear
forms from X to its ultrapower Xy as follows. For A € £L"(X), define Ap(A) €
L"(Xy) by

Ap(A)([z1], ..., [zn]) = I}l(gll) . Ulng A(z1(81)s- -y n(8p)-

It is easily seen that Ap(A) is an extension of A, with ||Ap(A)|| = ||A|. Also,
it is clear that A\p(A) depends linearly on A.

Again, Ap can be regarded as a Nicodemi operator. To see this, consider
the obvious map ¢ : X' — (Xy)' given by (¢(2'), [z]) = limy (s (z', z(s)). It is
now clear that, for each n, the extension operator Ap : L"(X) — L"(Xy) is
the Nicodemi operator ¢ induced by ¢.

Remark 6. There is simpler way of extending multilinear forms to ultra-
powers. Let A be a multilinear form on X and Xy an ultrapower of X. We
can define an extension of A to Xy by

v(A)([z1],...,[za]) = lUim A(z1(8), ..., zp(8)).

(s

It can be proved that this extension v(A) cannot be obtained by a Nicodemi
operator.

3.6. EXTENSION AND LOCALLY COMPLEMENTED SUBSPACES. So far we
have seen that sometimes it is possible to extend multilinear forms from a
subspace X of Y to the whole of Y in a linear and continuous way. This is
so, for instance, if Y = X” or if Y is an ultrapower of X. On the other hand,
Proposition 2 shows that the only possible obstruction to the existence of
linear extension operators L™(X) — L™(Y) stems from the linear case n = 1.

It will be convenient to have a more intrinsic criterion on the embedding
X — Y for the existence of linear extension operators L"(X) — L"(Y).
(We remark here that even the notion of extension depends, not only on the
involved spaces, but also on the particular embedding X — Y, that is, on the
position of X inside Y.)

The key point turns out to be the by now classical notion of a locally
complemented subspace.
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DEFINITION 1. We shall say that a (closed) subspace X of a Banach space
Y is locally complemented in Y if there is a constant M such that whenever F'
is a finite-dimensional subspace of Y there is a linear map (depending on the
given finite dimensional subspace) T : F — X so that |T|| < M and Tz = z
for all z € F N X.

Thus, for instance, the Principle of Local Reflexivity of Lindenstrauss and
Rosenthal [47] says that every Banach space is locally complemented in its
bidual. Also, it is well-known that every Banach space is locally complemented
in its ultrapowers.

The following result clarifies the situation in the linear case. For a proof,
see [42].

LEMMA 9. Let X be a closed subspace of Y. The following are equivalent.

(a) X is locally complemented in'Y .

(b) X" is complemented in Y" under the natural embedding.

(c) There is a linear extension operator E : X' — Y' (that is such that
(B(z'"),z) = (2’ z) for allz € X, 2’ € X').

THEOREM 7. Let X be a closed subspace of Y. The following are equiva-
lent.

(a) X is locally complemented in'Y .

(b) For eachm > 1 and every collection Xo, ..., X, of Banach spaces, there
is a linear extension operator L™(X, Xo, ..., X,) = LMY, Xo,..., X,).

(c) For some n > 1 there exist a collection Xo, ..., X, of nontrivial Banach
spaces and an extension operator L"(X, Xo,..., X)) = LMY, Xo,..., X,).

Proof. That (a) and (b) are equivalent follows from the previous Lemma
and Proposition 2. That (b) implies (c) is obvious. It remains to prove that (c)
implies (a). Of course, if (¢) holds for n = 1, then X is locally complemented
in Y, by the Lemma. So, we may and do assume that (c) holds for a certain
family of Banach spaces Xs,..., X,, with n > 2. Since £L"(X, Xo,...,X,) =
L2(X, X®--®X,) and LY, Xo,...,X,) = L2V, Xo®---®X,), taking
E = X9®--- ®X,, we can suppose that a linear extension operator £?(X, E) —
L%(Y, E) exists. Taking into account the universal property of the projective
tensor product and the Lemma, this implies that X®F is a locally comple-
mented subspace of Y ® E under the obvious map. Now, fix a norm one ¢y € E
and define isometric embeddings X — X®FE by z — 2 ® ey and Y — XQF

b
b
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by y — y ® eg (see [7]). We have a commutative diagram of inclusion maps

X®FE —— YQE

[ |

X — Y

Since “being a locally complemented subspace of” is transitive, the proof will
be complete if we show that X is complemented in X®E. To this end, pick
a norm-one f € E' so that f(eg) = 1 and define an operator P : X®F — X
by P(x ® e) = f(e)z. Clearly, P is a projection. Moreover, ||P|| = 1 since
P=1Idx ® f : X®F — X®K = X. This completes the proof. I

COROLLARY 3. Suppose that X; is a subspace of Y;, for 1 < i < n. Then
there exists a linear extension operator L™ (Xy,...,X,) — L"(Y1,...,Y,) if
and only if each X; is locally complemented in Y;.

Remark 7. An obvious “symmetrization” argument leads to a very simple
proof of the following result (which was motivated by a question of Zalduendo;
see [8, Problem 9])

COROLLARY 4. (Peris [59]) Let X be a subspace of Y. Then there exists
a linear extension operator P"(X) — P™(Y) for all (or some) n > 1 if and
only if X is locally complemented inY .

EXERCISE 2. Let X be a subspace of Y. Then there exists a linear con-
tinuous extension operator € : Hy(X) — H,(Y) for holomorphic functions of
bounded type (see [21] for definitions) if and only if X is locally complemen-
ted in Y. (Hint. Show that the map 2/ € X' — d(e(2'))(0) € Y’ is a linear
extension operator.)

4. REGULARITY AND PERMUTATION OF THE VARIABLES

As we mentioned before, Nicodemi operators (hence Aron-Berner exten-
sions) require a choice in the ordering of the involved variables. In this Section
we study to what extent the extended map is independent of that choice.

Let us reconsider bidual algebras in this setting. Suppose A a Banach
algebra with product p. The first Arens product on A” is given by

a—a” b—b'!

p"(a",b") = 6y(p)(a”,b") = w* — lim <w* — lim p(a, b)) .
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The second Arens product is ((prey)” )rev. Since

((pre'u)m)re'u(a”7 b”) — (pre'u)m(b”, all)
= 57(])1“6’0)(6”’ a”)

=w" — lim (w* — lim ppey(a, b))

b—b" a—a'

=w* — lim <w* — lim p(a,b))
b—b" a—a’

we see that A is Arens regular (that is, the two Arens products coincide on

A") if and only if the (vector-valued version of the) Davie-Gamelin extension

of p does not depend on the order in the iterated limit.

Now, suppose A commutative. Then A” is commutative if and only if
A is Arens-regular. Observe that A is commutative if and only if for every
a' € A', the bilinear form a’ o p is symmetric. Since af(a’ o p) = a’ o p"”
the fact that (I1(Z), ) is commutative but (I1(Z),*)"” is not shows that the
Aron-Berner extension of a symmetric form need not be symmetric. This has
some unpleasant consequences when dealing with polynomials.

From now on, we restrict ourselves to multilinear forms defined on some
fixed Banach space X. The consideration of multilinear operators and (or)
different spaces does not involve new ideas and would make the notation
somewhat confusing.

Given A € L™(X) and o € S, (the group of permutations of {1,2,...,n}),
put

AU(.’L‘l,. .. ,ZBn) = A(.’L‘U(l),. .. axa(n))'

The symmetric group S, acts by conjugation on the space of operators e :
L"(X) — L"(Y) sending € to the operator

A€ LX) — (e(A7))7

which will be denoted by ¢,. Thus one may wonder if a given operator is
compatible with the action of the symmetric group in the sense that for some
(or for every) A € L™(X) one has e¢,(A) = ¢(A) for all o € S,.

Observe that is € is the Aron-Berner extension or a Nicodemi operator,
then e,-1(A) = €(A) means that one can change the “usual” ordering in the
involved variables (from the last to the first) by the new order induced by o.
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Let us check this for the Davie-Gamelin extension. Since

0.71
o1 (A) (@Y, .. 2) = 0v(A7 ) (@] (1) T ()

. . —1

= lim - lim A7 (z1,...,2p)
T12T Tn 2T 9

= linlll tee lirrlll A(.’L'o.fl(l), ces 7370*1(71))
T12T Tn 2T (9

= lim - lim  A(yr,...,yn)
Yooy Yo(n) ()

= lm - lim Az, ... xy),
To()TT51)  To(n) T Tq(n)

we see that the condition 07,-1(A) = 0y(A) means

lim --- lim A(zy,...,z,)= lim .-+ lm  A(zy,...,25).
G Ty T T

Or, which is the same, that one can obtain the same extension taking the
iterated limits in the ordering given by o.

Of course, if € : L"(X) — L™(Y) is any operator, one can obtain an
operator invariant by conjugation taking

1
65:—' E €o;
n

’ UESTL

but some good properties of € may be lost. (For instance, if € is a Nicodemi
operator induced by an isomorphism ¢ : X’ — Y, then ¢ is itself an isomorp-
hism, but we do not known whether ¢, is or not.) Note, however, that if € is
an extension operator, then so is €.

Since Nicodemi operators factorize through Aron-Berner extensions (see
Lemma 8), it is clear that if A € £"(X) is such that af,(A) = af(A) for
all ¢ € S, then one also has ¢§,")(A) = ¢ (A) for every Banach space Y
and every linear operator ¢ : X’ — Y’. The following “formal” result will be
useful in what follows.

LEMMA 10. Let A € L"(X). Then af,(A) = af(A) for all o € S, if and
only if af(A) : X" x --- x X" — K is separately weakly* continuous in each
argument. In this case, af$(A) is the unique extension of A to X" which is
separately weakly* continuous in each argument.
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Proof. Suppose af,-1(A) = aff(A). Then,

af(A)(zy,...,zl)=lim .-~ lim  A(z1,...,Tp)-

rYn
To) DTy To(n) L ()

Since the second member in the identity above is obviously weakly* continuous
in the o(1) variable, varying o in S,,, we see that a3(A) is separately weakly*
continuous in each variable.

Clearly, if aff(A) = §y(A) is separately weakly* continuous in each varia-
ble, then for every 1 < i < n one has

Sy(A) (... 2l o al) = lim/5'y(A)($'1',...,x1-,... ).

IR »n ) ' n
:L‘iﬁ)a?i

Thus, the iterated limit in the Davie-Gamelin extension of A is independent
of the order. I

For bilinear forms one has a more satisfactory result:

LEMMA 11. (Grothendieck [35]) Let A be a bilinear form on X. The
following are equivalent:

(a) af,(A) =aB(A) for o = (1,2).

(b) The associated operator T : X — X' given by (Tz,y) = A(z,y) is
weakly compact.

Proof. We give a proof based on the so-called “double limit criterion” of
Grothendieck [35]: a linear operator T' : X — X' is weakly compact if and
only if, given arbitrary bounded filters 7 and G on X, one has

lim lim(T'(z),y) = lim lim (T'(x),
2 doy T w) = g B (1))

provided both limits exist.

From this, the implication (b) = (a) is immediate.

As for the converse, let F and G be bounded filters on X and assume
that lim gz, limg,)(T'(7),y) and limg,y limz,) (T (z), y) exist. Take bounded
ultrafilters / and V in X” containing, respectively, F and G. By the Banach-
Alaoglu theorem U (resp. V) must converge to some point z” (resp. y”) in
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the weak* topology of X". So,

lim lim(7T(z),y) = lim lim (T (x),
F e =l S )

= lim lim A(x,
Uz) V(y) (=.9)

= lim lim A(z,y)

Tz y—y'
= ap(A)(=",y")
= afi,(A)(z",y")
= lim lim A(z,y)

y—y'" z—a’
= lim lim (T'(x),
v(y)u(m)< (), y)

= lim lim (T'(z), y).
g%fl@m)( (z),y)

Hence T' is weakly compact. |

This suggests the following definition.

DEFINITION 2. A Banach space X is said to be regular if all operators
X — X' are weakly compact.

The most important examples of regular spaces (apart from reflexive spa-
ces) are the Cy(Q) spaces, and more generally, L, spaces and C*-algebras.
In fact, Banach spaces having the property (V) of Pelczyniski are regular (see
[29]). This includes other important Banach spaces such as the disc and poly-
disc algebras, H* and the Wiener algebra.

We are ready to prove the main result of this section.

THEOREM 8. Let X be a regular Banach space. Then, for all n > 1, the
Aron-Berner extension «f3 : L"(X) — L"(X") is invariant by conjugation
under the symmetric group.

Proof. Since the symmetric group can be generated by traspositions of two
consecutive indices, it obviously suffices to show that af,(A) = af(A) for all
A€ L"(X)and o = (i,5+ 1), where 1 < i < n— 1. But this case immediately
reduces to that of bilinear forms and follows from Lemma 11. |
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COROLLARY 5. Let X be a regular Banach space. Then, for alln > 1, all
Banach spaces Y and every operator ¢ : X' — Y’ the induced Nicodemi ope-
rator ¢ : L"(X) — L"(Y) is invariant by conjugation under the symmetric
group.

COROLLARY 6. Let X be a regular Banach space. Then all Nicodemi ope-
rators transform symmetric forms on X into symmetric forms. In particular
the Aron-Berner extension of every symmetric multilinear form on X is again
a symmetric multilinear form on X" .

Surprisingly enough, the converse of the preceding Corollary does not hold.
Recall that an operator T : X — X’ is said to be symmetric if

(Tz,y) = (Ty, )

for all z,y € X. This just means that the induced bilinear mapping A(z,y) =
(T'z,y) is symmetric.

DEFINITION 3. A Banach space X is said to be symmetrically regular if
all symmetric operators X — X’ are weakly compact.

Let £7(X) denote the space of n-linear symmetric forms on X. Using the
same arguments that in the multilinear case, one can prove the following.

THEOREM 9. For a Banach space X the following are equivalent:

(a) X is symmetrically regular.

(b) For every symmetric bilinear form A on X, af(A) is a symmetric form
on X",

(b) For each n > 2, afB(A) belongs to L7 (X") whenever A € L7(X).

(d) All Nicodemi operators transform symmetric multilinear forms on X
into symmetric forms.

EXAMPLE 3. (Leung [46]) There are symmetrically regular spaces which
are not regular.

Actually, Leung shows that the dual of James quasi-reflexive space J is
symmetrically regular but not regular. This means that, while for every sym-
metric bilinear form on J’ the Aron-Berner extension is symmetric on J",
there is an antisymmetric bilinear form on J’ whose Aron-Berner extension is
not antisymmetric.
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EXERCISE 3. Prove that if X is a stable Banach space (that is, X is iso-
morphic to its square X x X), then X is symmetrically regular if and only if
it is regular. So, the presence of James’ creature in the above Example is not
accidental.

EXERCISE 4. Prove that the Banach algebra A is Arens regular (as a Ba-
nach algebra) if and only if, for every a’ € A, the operator T : A — A’ given
by (Ta,b) = (a’,ab) is weakly compact. Prove that, apart from the trivial
case in which G is a finite group, no group algebra L;(G) is Arens regular.

EXERCISE 5. Let A be a Banach algebra whose underlying Banach space
is regular. Show that for all Banach A-bimodules X the A”-bimodule X" is
a dual bimodule. (Hint. Assume, without loss of generality, that 4 is unital
and define a trilinear operator 4” x X’ x A” — X' by

(t(a",2',b"),z) = lim lim (z',b-z - a).
a—a” b—b’
Now, use that, for each fixed 2’ € X', the map ¢ is a Davie-Gamelin extension

and Lemmas 10 and 11 to show that ¢ makes X' into an A”-bimodule and

verify that the usual A”-bimodule structure on X” is just the dual of that of
X')

EXERCISE 6. Show that the bitranspose derivation D” appearing in the
proof of Example 2 is inner for all compact spaces K.

EXERCISE 7. ([12]) Let X and Y be dual-isomorphic Banach spaces. Sup-
pose X regular. Prove that Y is regular and that Hy(X) and #H,(Y) are
isomorphic Fréchet algebras.

QUESTION 1. Suppose ¢ : X' — Y’ is an isomorphism and let ¢ :
L"(X) — L™(Y) be the associated Nicodemi operator. Must the symmetrized
operator ¢§") : L7(X) — L2(Y) be an isomorphism? (An affirmative answer
would imply that P("X) and P("Y) are isomorphic for each n > 1.)

5. THE RANGE OF THE ARON-BERNER EXTENSIONS

Let X; be subspaces of Y;. As we already mentioned, if one has a li-
near extension operator € : L"(Xq,...,X,) — L£"(Y1,...,Y,) for multili-
near forms, one can obtain a linear extension operator L™ (Xy,..., X,;Z) —
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L(Y1,...,Y,; Z") by the formula

(e(T)(y1;- -, yn), 2') = €(Z o T)(y1, - yn)

for all Banach spaces Z. In particular, we can regard the Aron-Berner exten-
sion as an extension operator af : L"(X1,..., Xpn; Z) = L XY, ..., X} Z").
Simple examples show that, in general, one cannot expect that the range of
the Aron-Berner extensions stay in the original space Z. In fact, in the linear
case af(T) = T" and so, af(T) takes values in Z if and only if T is weakly
compact, by Gantmacher theorem.

The aim of this section is to show that multilinear operators whose Aron-
Berner extensions are Z-valued play the same role in the “multilinear theory”
of Banach spaces that weakly compact linear operators in the “linear theory”.
Let us recall that a multilinear operator is weakly compact if it maps bounded
sets into relatively weakly compact sets. We start with the following simple

PROPOSITION 4. Let T € L™(Xy,...,Xy;Z). If T is weakly compact
then a5(T) is Z-valued.

Proof. The hypothesis implies that the weak closure of T'(B(X7) X --- X
B(X,)) is a weakly compact set in Z we denote by K. Now, fix z; € B(X;)
(1 <i<n-—1)and pick z” € B(X}!). Since B(X,,) is weakly* dense in B(X}/)
one has,

af(T) (xl, e ,mn,l,x”) = weak™ — limT (z1,...,Zp_1,7T)
xT
=weak —limT (z1,...,2yp_1,2),
X
as x € B(X,) converges weakly* to z”’. Hence a8(T)(z1,...,Tn_1,2") belongs

to K for points in the corresponding balls. Iterate. [

The polynomial version of this result can be found in [15].
The reciprocal to the previous proposition is not true:

EXAMPLE 4. There is a non-weakly compact bilinear operator lo, X loo —
l1 whose Aron-Berner extension is [;-valued.

Proof. Let q : lsc — f2 be a continuous surjective operator and let us
define S : /o, X fon — #1 as the coordinatewise multiplication

S(z,y) = q(x) - q(y)
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It is easily seen that S maps the unit ball of /o, X ¢, onto a neighborhood
of the origin in [y. Hence S is not weakly compact. On the other hand, for
z",y" €l , one has

apf(8)(@",y") = ¢"(z") - ¢" (")
which clearly belongs to ¢1. |

Hence, we see that, for multilinear mappings, having an “Z-valued” Aron-
Berner extension is a less restrictive condition that being weakly compact.

In the remainder of this Section we shall show that most of the classical
Banach space properties related to weak compactness admit characterizations
in terms of multilinear operators having Z-valued Aron-Berner extensions.

Let us recall that a Banach space X has the Grothendieck property if
every linear operator from X to a separable Banach space, equivalently to cg,
is weakly compact.

THEOREM 10. ([14]) For a Banach space X the following are equivalent:

(a) X has the Grothendieck property.

(b) For any separable Banach space Z, every n-linear operatorT € L™ (X; Z)
has Z-valued Aron-Berner extensions.

(c¢) Every symmetric bilinear application S : X x X — ¢o which is separately
compact has cg-valued Aron-Berner extension.

Proof. 1t is trivial that (b) implies (c) . We show that (c) implies (a). If
T : X — ¢ is a linear operator, we can consider the symmetric bilinear form
S: X xX = ¢ given by S(z,y) = T(z) - T(y). It is easy to see that S is
separately compact and that

aﬁ(S)(:E”,y”) — T”(.’.E”) . T”(y”),

now the product being that of /.. If X lacks the Grothendieck property, there
is a linear operator T : X — c¢o that is not weakly compact, which implies
that 7" cannot fall into ¢g. Thus, there exists 2" € X" so that T"(z") ¢ ¢
and therefore a5(S)(z",z") ¢ co.

It remains to see that (a) implies (b). This immediately follows from the
following result, of independent interest. |
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LEMMA 12. Suppose that every operator from X into Z is weakly com-
pact. Then, every multilinear operator T € L"(X;Z) has Z-valued Aron-
Berner extensions.

Proof. Let T be a multilinear operator from X to Z For 1 << n—1,
let us fix z; € X and take z, € X”. Consider the first limit appearing in the
Aron-Berner extension of T'

aB(T)(z1, -, Tpn-1,2n) = weak® — lim T(z1,...,Zp 1,%n).
Tpn—2n
Then af(T)(x1, ..., Tn-1,2,) belongs to Z (instead of Z") since it is the value
at z, of the bitranspose of the weakly compact operator T'(z1,...,%n_1,") :
X — Z. Now, for 1 <4 <n — 2 let z; be fixed in X and take z,_1, 2, € X".
Then we have

a/B(T)(:Ela <oy Tp—2;2n—1, Zn)
=weak® — lim  af(T)(z1,...,Tp—9,Tn_1,2n),
Tp—1—*2n—1
which also belongs to Z since it is the value at z,_; of the bitranspose of
af(T)(x1,y...,Tn—9,2,) : X — Z which is weakly compact by hypothesis.
Continue. 1

The equivalence between (a) and (b) above was already known for poly-
nomials ([33]).

Next, we consider the Dunford-Pettis property (DPP for short), introduced
by Grothendieck in [37]. Let us recall that a Banach space X has the DPP if
every weakly compact defined on X is completely continuous (that is, it sends
weakly convergent sequences into norm convergent sequences. Completely
continuous multilinear operators are defined in the obvious way). As before,
the range space can be taken as ¢g. Typical examples of spaces enjoying the
DPP are Li(p) and Co(2)-spaces.

THEOREM 11. ([38]) Let X; be Banach spaces for 1 < i < n. The following
are equivalent:

(a) Each X; has the DPP.

(b) For any Banach space Z (or merely cg), every n-linear operator T €
L"(X1,...,Xp; Z) with Z-valued Aron-Berner extension is completely
continuous.
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Proof. We write the proof for two Banach spaces X and Y. Suppose X
lacks DPP. Then there is a Banach space Z and a weakly compact operator
L : X — Z which is not completely continuous. Take a nonzero functional
y' € Y’ and define a bilinear map 7' : X x Y — Z taking T'(z,y) = y'(y)L(z).
Clearly, T is not completely continuous and af(T') is Z-valued.

As for the converse, let X and Y Banach spaces with DPP and suppose
T : X XY — ¢y has ¢g-valued Aron-Berner extension. Take z,, and y,,, weakly
null sequences in X and Y respectively. One has to show that T'(z,,y,) is
norm convergent to zero in ¢g. Let us define an operator (T'(zp,-)) : ¥ —
co(co) by (T'(zp,))(y) = (T'(zn,y))n. The definition makes sense because
(T(zn,y)n = (T(-,y)(xn))n and the operator T'(-,y) : X — ¢g, being weakly
compact, is completely continuous, by the DPP of X.

The proof will be complete if we show that (T'(x,,-)) is completely conti-
nuous. By the DPP of Y one only has to see that (T'(zy,)) is weakly compact.
But this follows from the obvious fact that each operator T(z,,:) : Y — ¢
is weakly compact, that for every y” € Y" the sequence T'(z,,-)"(y") =
aB(T)(zy,y") converges to zero and the following observation of Ryan whose
easy proof is left to the reader. |

LEMMA 13. (Ryan [52]) Let S : Y — ¢o(Z) be a linear operator, with
S(y) = (Sn(y))n. Then S is weakly compact if and only if

(a) Sy is weakly compact for all n.

(b) for every y" € Y", the sequence (Sh(y")), converges to 0.

n

Other classical properties related to weak compactness are the recipro-
cal DPP and Pelczynski’s property (V). A Banach space has the RDPP if
every completely continuous operator on it is weakly compact and has pro-
perty (V) if every unconditionally converging operator is weakly compact.
Recall that a (linear or multilinear) operator 7' is unconditionally conver-
ging if for every weakly unconditionally Cauchy series ), x, the sequence
(T(E:];:1 Zp))k is norm convergent. In the multilinear case this notion, intro-
duced by M. Ferndndez Unzueta in [27], is slightly different from the “usual”
one (see [32, 32]). One has,

THEOREM 12. ([38]) The following assertions are equivalent:

(a) The spaces X; have property (V) (respectively, RDPP).
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(b) For all Z and each unconditionally converging (respectively, completely
continuous) T € L™(X1,...,Xn; Z), every Aron-Berner extension of T
is Z-valued.

(c) For all Z, every unconditionally converging (respectively, completely
continuous) T € L™(X1,...,Xpn;Z), has an Z-valued Aron-Berner ex-
tension.

We close this Section with some remarks about the “polynomial” versions
of the preceding results. There are polynomial versions of Theorem 12 ([38]).
Strangely enough, we do not know if there is a polynomial version of Theorem
11. There is a polynomial version of this last result for regular spaces:

PROPOSITION 5. For a regular Banach space X, the following assertions
are equivalent:

(a) X has the DPP.

(b) For all Banach spaces Z, every homogeneous polynomial P : X — Z
whose Aron-Berner extension is Z-valued is completely continuous.

Proof. Let us recall here that the Aron-Berner extension of a homogeneous
polynomial P : X — Z is given by

aB(P)(2") = aBs(T) (2", ..., 2"),

where T is the symmetric operator associated to P. That (b) implies (a) is
obvious. For the converse, suppose X has DPP and af(P) is Z-valued. If X
is regular, then af(T) = af(T) and one can recover af(T) from af(P) via
polarization, from where it follows that a/f(T) takes values in Z. Now apply
Theorem 11 to conclude that T' (and, a fortiori, P) is completely continuous.

The most natural way to eliminate the hypothesis of regularity in the
preceding Proposition would be to solve in the affirmative the following

QUESTION 2. Let P : X — Z be a homogeneous polynomial and T its
associated symmetric operator. Suppose af(P) takes values in Z. Does this
imply that af(T) is Z-valued?

Remark 8. With the notations above, if the Aron-Berner extension of P
is Z-valued, then T is separately weakly compact.



324 F. CABELLO SANCHEZ, R. GARCIA, I. VILLANUEVA

To see this, notice that if S : X" x---x X" — Z" is the symmetric operator
associated with a8(P) and af(P) takes values in Z, then so does S. Even if
S and af(T) are different extensions, they agree on points having the form

(Z1y- s i1, 2" 21, ..y 2p),x; € X, 2" € X”. Hence
(T(z1y. oy Ti1y s Tig1s - 10))" (2") = @B(T) (21, .o zim1, 2" Tig 1, ey )
:S(ml,...,xi_l,m”,xi+1,...,xn)

which belongs to Z, and so T is separately weakly compact.

Thus, a possible counterexample to Question 2 must start out being a se-
parately weakly compact, not weakly compact symmetric multilinear operator
defined on a not regular Banach space.

6. AN APPLICATION: MULTILINEAR OPERATORS ON C(K) SPACES

In this section we shall show an application of the Aron-Berner exten-
sions to the study of multilinear forms and operators in spaces of continuous
functions. First, let us recall some well-known facts from the linear theory.

Let K be a compact Hausdorff space and let X be the Borel o-algebra of K.
We denote by B(K) the Banach space of the functions which are uniform limit
of (Borel) simple functions, endowed with the supremum norm. C(K) is easily
seen to be isometrically isomorphic to a subspace of B(K). According to Riesz
representation theorem, the space of linear forms on C(K) is isometrically
isomorphic to the space M (K) of all (Borel) regular measures on K, endowed
with the variation norm, via the pairing

(o f) = /K fdu (f € C(K),u € M(K)).

It easily follows that B(K) is isometrically isomorphic to a subspace of
C(K)". Let now Z be a Banach space and consider an operator T': C'(K) —
Z, it can be proved (see [20]) that there exists one only (vector) measure
w: X — Z" such that

(a) p has bounded semivariation and ||T'|| = ||p]|-

(b) p is weakly* regular, that is, for every 2z’ € Z' the scalar measure 2’ o
is regular.

(c) The application 2’ € Z' + 2'op € (C(K))' is weak* to weak* continuous.
(d) For every f € C(K), one has T(f) = [ fdpu.
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The easiest way to obtain such measure is to consider the bitranspose T" :
C(K)" — Z" and to define u on the Borel sets of K by

p(A) =T"(xa)

where x 4 is the characteristic function of A.

The representation of linear operators via measures has been fruitfully
used to, among other things, characterize classes of operators with conditions
on their representing measure, and to prove the coincidence of different ideals
of operators on C(K) spaces. Thus, one has the following

THEOREM 13. Let T : C(K) — Z be a linear operator and p : 3 — Z"
be its representing measure. Then the following assertions are equivalent:
(a) T is weakly compact.
(b) T" is Z-valued.
(c) T is completely continuous.
(d) T is unconditionally converging.
(e) w is regular.
(f) p is countably additive.
(g) p is Z-valued.

Let us see now what can be done in the multilinear case. We first need
some definitions.

DEFINITION 4. (Dobrakov [23]) A function v : ¥ x --- x ¥, — Z is a
(countably additive) polymeasure if it is separately (countably) additive. We
say that -y is regular if it is separately regular.

DEFINITION 5. (Dobrakov [23]) Given a polymeasure 7y : £ X - -+ x X, —
Z, its semivariation ||y|| : X1 x -+ x 3, = [0, +0o0] is given by

k1 kn
VA A =sup [ S0 S ad - ar(aD A
j1:1 jnzl
where the supremum is taken over all finite ¥;-partitions (Ag’);il:l of 4; (1<
i < n), and all numbers a!' in the unit ball of the scalar field.
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If we denote by S(K;) the normed space of (Borel) simple functions on
K, with the supremum norm and s; = 255:1 @ijiXA;;, € S(K;), for every
Z-valued polymeasure «y the formula

k1 kn
T)(s1,..-,50) = Z e Z A1y, Y(Aijrs - Anjy)

Jji=1 Jn=1

defines a multilinear map T, : S(K;) x --- x S(K,) — Z such that ||T,| =
V(K. .., K,) < oco. From now, |||l will denote the total semivariation of
the polymeasure =, that is, ||v|| = ||V||(K1,- .., Kn).

So, if v has finite semivariation (that is, ||y|| < oco), the map T, can be
uniquely extended (with the same norm) to B(K7) x --- x B(K,). We will
still denote this extension by T’, and we shall write also

Ty(g1,---19n) = /(gl,...,gn)d'y.

It is easily seen that the correspondence v — T, is an isometric isomorp-
hism between the space of all Z-valued polymeasures of finite semivariation
on ¥y x---xX, and L"(B(K1)...B(Ky); Z) (see [24] and the references there
included for a quite exhaustive study of integrals respect to polymeasures).

Let now T : C(K;) x -+ x C(K,) — K be a continuous multilinear form,
and let

af(T): C(Ky)" x -+ x C(K,)" — K

be its extension defined as in Section 2 (note that it follows from Lemma 10
and Corollary 5 that a3(T') is uniquely defined).
Then we can define the set function y: ¥ x --- x ¥, - K by

V(AL An) = aB(T) (XArs -+ XA

It is easy to check that -y is a regular polymeasure with bounded semivariation.
It is also not difficult to see that, for every (f1,..., fn) € C(K1)x---xC(K,),

T(fl,...,fn)z/K AT

Looking at the linear model and with just a little of care it can be pro-
ved that (C(K1)®; - ®:C(Ky,))' is isometrically isomorphic to the space of
regular scalar polymeasures defined on ¥ X --- x ¥, endowed with the semi-
variation norm (see [25] and [10]).
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Let us now consider the case of a multilinear operator T': C(K;) x -+ X
C(K,) — Z. We can again consider its Aron-Berner extension

aB(T): C(Ky)" x - x C(K,)" — 2",

which again is unique.
We can use it to define a (vector) polymeasure v : 3 X --- X X, — Z"” by

V(AL Ag) = aB(T)(Xars -5 XAL)-

Then we obtain the following theorem and corollary, whose proof can be
seen in [10].

THEOREM 14. Let T : C(K;) x --- x C(K,) — Z be a multilinear ope-
rator and let v be defined as above. Then <y is a polymeasure of bounded
semivariation that satisfies

@) 7] = lIvI-
() T(f1s---sfn) = [(f1,--., fu)dy for all f; € C(K;)

(c) Forevery 2 € Z', 2’ o~y is a regular polymeasure and the map z' +— 2’ o~y
from Z' into (C(K1)®---®C(Ky))" is weak*-to-weak* continuous.

Conversely, if y: 31 X --- x X, — Z" is a polymeasure satisfying (c), then
it has finite semivariation and formula (b) defines a multilinear operator from
C(K;) x --- x C(Ky) into Z for which (a) holds.

Therefore the correspondence T <« vy is an isometric isomorphism.

COROLLARY 7. Let (g¥)). be sequences in B(K;) converging to g; € B(K;)
with respect to the o(B(K;), M(K;)) topology for 1 < i <n. If ap(T) is Z-
valued, then

lim af(T)(g1, ... gn) = aB(T)(91,- -, 9n)

k—00

in the norm topology.

We present further below a multilinear version of Theorem 13. We still
need some technicalities before the main result of this section. The following
Lemma can be seen in [9].

LEMMA 14. For a multilinear operator T : X1 X --- x X,, = Z, the follo-
wing assertions are equivalent:

(a) T is unconditionally converging.
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(b) Given weakly unconditionally Cauchy series Y, xf in X; such that,
for some 1 < i <mn, Y22, 2¥ weakly null, then

m
! = = k
Jim [T, )| =0, where 7 ="
k=1

LEMMA 15. Let T : C(K;) x -+ x C(K,) — Z be an unconditionally
. e . k
converging multilinear operator. For every 1 < j <n, let ), fj be a weakly

unconditionally Cauchy series in C(K;) and let sT" = Y ;" | f]]-f. Pick1<i<n
and, for each m > 1, define a regular measure vy, : 3; — Z by

Ym(A;) = aB(T) (ST, i 1 X Ass Spp1s---150)-

Then, the measures {ym, }>>_, are uniformly countably additive.
Proof. For each m, let us define T, : C(K;) — Z by

T (fi) =T (57" s 1, fir St -+ v 80 )-

It is clear that T}, is unconditionally converging, hence weakly compact (C'(K)
spaces have property (V)). Therefore its representing measure, which clearly
coincides with 7y, is countably additive. If the measures {v,,}5°_; are not
uniformly countably additive, then there exist € > 0 and a sequence (A?)yen C
>; of open disjoint sets such that, for every p € N,

sup [|ym (A7)]| > €
m

Then there exists a increasing sequence of indexes (m(l));en with m(0) = 0,
and sets Ay such that ||fym(l)(Af(l))H > €. Since each 7, is regular we have
that for every | € N there exists a norm-one function f; 0 e C(K;) with
support in Af D 50 that

| #2000 = [ (10, 020 502 |
Let now
m(q)
y]q. = Z f]k for every ¢ > 1 and j # i and
k=m(g—1)+1

yl = fip(l), y! = fZ.”('I) — fip(qfl) for every q > 2.
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All of these series are easily seen to be weakly unconditionally Cauchy. Now,
for every [ € N,

l l
(k3
k=1 k=1
m(l) m(l) " m(l) m(l)
foa"-aZfik—laff 7Zfi]f|—1a"'az.fr]f > €

k=1 k=1 k=1 k=1

which is contradiction with Lemma 14, since ) q y! is weakly null. 11

The lemma states that an unconditionally converging multilinear operator
is “uniformly unconditionally converging” when we fix in n— 1 of the variables
the partial sums of weakly unconditionally Cauchy series. We mention that
the same idea holds true when T' : X7 x---xX,, — Z is an unconditionally con-
verging multilinear operator acting on general Banach spaces ([38]). Similarly,
it follows with the essentially the same proof that if T': X1 x--- X X,, — Z is
a completely continuous multilinear operator then 7" is “uniformly completely
continuous” when we fix in n — 1 of the variables the k-th terms of weakly
Cauchy sequences [38].

Finally we can prove the main result of the Section. We note that in the
proof we use “backwards” a good idea of Ryan ([52])

THEOREM 15. LetT : C(K;)x---xC(K,) — Z be a multilinear operator
andy: ¥ x ---x 3, — Z" its representmg polymeasure. Then the following
assertions are equivalent:

(a) T is completely continuous.

(b) T is unconditionally converging.
(c¢) aB(T) is Z-valued.
(d) v is Z-valued.
e) v

)

f

( is separately countably additive.
( is separately regular.

Proof. That (a) implies (b) is always true. Let us see that (b) implies
(c) by induction on n. If n = 1 the result is well known. Let us suppose
it true for n — 1. If we fix (f1,...,fn-1) € C(K1) x -+ x C(Kp—1) then
the operator T'(f1,..., fn-1,") : C(K,) — Z is unconditionally converging,
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hence weakly compact. Let us now fix ¢ € C(K,)”. The operator Tj :
C(Ky1) X -+ x C(Kp—1) = Z defined by

Ty(frs-- s fnm1) = aB(T)(f1y- - frm1,9)

is indeed Z-valued. Let us see that it is unconditionally converging. For
1<j<n-—1,let ), f]”c be weakly unconditionally Cauchy series in C(K})
and suppose one of them converges weakly to 0. We can assume without loss
of generality that Y 32, f¥ = 0 in the weak topology. If we fix f, € C(K,) it
is easy to see, using Lemma 14, that

lim HT (571”, ce S fn) H =0,

m— o0

where s™ = 3" f¥. So, we can define the operator S : C(K,) — ¢y(Z) by
S(fn) = (T(s7"s. -y 8n21s fn))m = (T (fn))m-

Let us now see that S is unconditionally converging. Using Lemma 14 it
suffices to check that S(s™) — 0 when s™ = Y"7" | f¥ and Y, f¥ is a weakly
unconditionally Cauchy series in C(K,,) that converges weakly to 0. We can
suppose without loss of generality that ||s]’|| < 1 for every m. Lemma 15
states that the measures {v,,} are uniformly countably additive. Let \ :
¥n — [0,400] be a countably additive measure such that the measures {7, }
are uniformly A-continuous. For every e > 0 there exists 0 > 0 such that

sup [[vn(A)] < €/2  when A(A) <§

neN
Since s converges weakly to 0 (as m — oo) we have that, for every t € K,
s (t) converges to 0. Hence, we can use the Egoroff theorem to produce
a compact set K' C K, such that s — 0 uniformly in K’ and so that
MK, \ K') < 4. Let mg be such that, for every m > my,

€
lsw'lxr < 5> where [[fllgr = sup [£(2)]

1] tek’

Then, for every m > mg and every p € N, one has

/ S;nd’)’p
Ky

HT(s{’,...,sg_l,snm)H =

< H / Sp dyp| + / S dp

K’ K \K'
< sy llger Il (K7) + [yl (K \ K)
< ‘ + Z= €.

2 2
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Hence,
n}gnm f;lelll\l) HT(S’{, ceeySh szl)H =0,
so, S is unconditionally converging.
Therefore, S is weakly compact. Lemma 13 proves that, for every g €
C(K,)",
lim [(Z:)" (9)]| = 0.

m— o0

Since (T)n)"(9) = aB(T)(sT", ... 50 1,9) = Ty(sT, ..., sy ), it follows
that T} is unconditionally converging. Now, the induction hypothesis tells us
that af(Ty) is Z-valued. Since this happens for every g € C(K,)", it follows
that af(T) is Z-valued.

That (c) implies (a) follows immediately from Corollary 7.

The equivalence between (c), (d), (e) and (f) follows from standard mea-
sure theory, and it can be seen in [57]. 1§
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