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RESUMEN 
En este artículo analizamos las propiedades de convergencia del algoritmo de bandas 
móviles propuesto por Maliar y Maliar (2003) para inicializar el método de 
Parametrización de Expectativas. Realizamos un experimento de Monte Carlo para 
estudiar el comportamiento del citado algoritmo frente a otras alternativas existentes 
basadas en los principios de la homotopía. El marco del experimento son dos modelos 
estándar de crecimiento económico. Nuestros resultados muestran que: (i) la velocidad 
de convergencia del algoritmo es modesta cuando se compara con otras alternativas 
disponibles; (ii) si el algoritmo no se inicializa apropiadamente puede diverger incluso 
en condiciones relativamente simples. Estos resultados sugieren la necesidad de 
refinar el método de Maliar y Maliar (2003) para mejorar sus propiedades de 
convergencia hacia una solución. 
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ABSTRACT 
In this paper we analyze the convergence properties of the moving bounds algorithm to 
initialize the Parameterized Expectations Algorithm suggested by Maliar and Maliar 
(2003) [Journal of Business and Economic Statistics 1, pp. 88-92]. We carry out a 
Monte Carlo  experiment to check its performance against some initialization 
alternatives based on homotopy principles. We do so within the framework of two 
standard neoclassical growth models. We show that: (i) speed of convergence is poor 
as compared to alternatives; (ii) starting from a not very accurate initial guess might 
prevent convergence in relatively simple models. The results suggest the need to fine 
tune Maliar and Maliar’s method to improve its convergence properties. 
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1 Motivation

The Parameterized Expectations Algorithm (PEA) is a widely applied method for solving

nonlinear stochastic dynamic models with rational expectations (see for example den Haan

and Marcet (1990), Marcet and Marshall (1994), Marcet and Lorenzoni (1999) or Chris-

tiano and Fisher (2000), and the references quoted therein). The PEA scheme involves the

approximation of the conditional expectation functions in the Euler equations with certain

parametric functions, and the use of a numerical optimization method to determine the pa-

rameterization of these functions. The PEA tends to be a convenient algorithm, especially

when there are a large number of state variables and stochastic shocks in key conditional

expectations terms.

The main drawback of the PEA in practical applications is related to the obtention of

appropriate initial conditions that would guarantee convergence to a fixed point solution.

Indeed, the PEA is not a contraction mapping technique and thus does not guarantee a

solution will be found. If the initial decision rule happens to be far from the final solution,

the algorithm is likely to diverge.

The usual approach to systematically find a good initial condition for PEA is based on

the principles of homotopy (see, for example, den Haan and Marcet, 1990). The basic idea

behind homotopy is to slowly move from a simple case, where the solution in known or

easy to compute, to the desired case where the solution is difficult to solve for and typically

unknown. As long as the intermediate versions of the model are continuous with respect to

the parameter/s that drives the model from the known to the desired solution, one would

always be solving models with appropriate initial conditions. In this way, only local stability

of the algorithm that solves for the fixed point is needed. For an introduction to homotopy

theory see Garcia and Zangwill (1981); Eaves and Schmedders (1999) provide an introduction

to using homotopies in economics. Nevertheless, depending on the complexity of the model at

hand, this type of initialization methods may be of difficult and/or cumbersome application.

Fast and accurate homotopy alternatives to initialize the PEA on the basis of log-linear

approximations are given by Christiano and Fisher (2000), and Pérez (2004).

As an alternative to homotopy methods, Maliar and Maliar (2003) proposed an appeal-
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ing modification of PEA based on restricting the simulated series within certain bounds.

Their intuitive idea was to rule out the possibility of (ex)implosive behavior by artificially

restricting the simulated series within certain bounds. As the solution is refined along the

iterations, the bounds are gradually removed. The authors claim that: “Introducing the

moving bounds resolves the problem of finding a good initial guess in the sense that the

modified PEA is able to converge even if the initial guess is not very accurate” (p. 88).

In particular, Maliar and Maliar solve the basic neoclassical growth model and provide two

simulations to illustrate that the modified PEA can find the stochastic solution starting from

the nonstochastic steady state. Nevertheless, the authors do not provide any systematic or

theoretical assessment of the convergence properties of their algorithm.

The aim of this note is to study the convergence properties of the modification of PEA

proposed by Maliar and Maliar (2003). Upon the basis of a Monte Carlo experiment, we

analyze the robustness of the statement that starting from a poor initial guess would lead to

the fixed point solution under the moving bounds approach. We also check in a systematic

way its speed of convergence. We have chosen two models to frame the discussion: the

simple neoclassical growth model, and the Cooley and Hansen (1989) model, that adds to

the previous model a non convexity, indivisible labor, and introduces money via a cash-in-

advance constraint in consumption. In our experiment we solve both models by PEA under

Maliar and Maliar’s initialization scheme, and also under two alternative schemes based on

the principles of homotopy.

In the remainder of the paper we describe the PEA method in Marcet and Marshall (1994)

and the modification by Maliar and Maliar (2003), provide the framework for evaluating the

latter proposal, and provide illustrative results on its convergence properties.

2 PEA and the moving bounds

Consider an economy which is described by a vector of n variables, zt, and a vector of s

exogenously given shocks, ut. Let the process {zt, ut} be represented by a system

g(Et[φ(zt+1, zt)], zt, zt−1, ut) = 0, for all t (1)

where g : Rm × Rn × Rn × Rs → Rq and φ : R2n → Rm; the vector zt includes all
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endogenous and exogenous variables that are inside the expectation, and ut follows a first-

order Markov process. It is assumed that zt is uniquely determined by (1) if the rest of

arguments are given. The functions g(·) and φ(·) are known functions once the structural

parameters of the economy are fixed. Alternatively, let the solution be expressed as a law of

motion h such that the vector zt generated by

zt = h(zt−1, ut) (2)

fulfills (1), given that all past information relevant to forecast φ(zt+1, zt) can be summa-

rized in a finite-dimension function of {zt−1, ut}.
Obtaining a solution to (1) using PEA consists of finding a parametric function ψ(β; zt−1, ut),

such that for a positive integer ν, β ∈ Dν , where Dν ⊂ {β ∈ R∞ : ith element of q is zero if i >

ν}, the process {zt(β)} satisfies for all t the set of equations

g(ψ(β; zt−1, ut), zt(β), zt−1(β), ut) = 0 (3)

and the order of ν is such that when solving G(β) = arg minβ∈DνEt[φ(zt+1(β), zt(β)) −
ψ(β; zt−1(β), ut)]

2, then β = G(β). Given these conditions, the stochastic process {zt(β)}
is the PEA approximated solution. Under certain regularity conditions over the functions

defining the equilibrium (1), the function g(·) is invertible in its second argument, and

equation (3) can be written as (see Marcet and Marshall, 1994)

zt(β) = hβ(zt−1(β), ut) (4)

for stationary and ergodic processes. Marcet and Marshall (1994) show that under those

regularity conditions, fulfilled by standard business cycle models, it is always possible to

find an approximated function hβ(·) arbitrarily close to the true law of motion of the system

h(·). Under the true law of motion h(zt−1, ut), the true process {zt, ut}∞t=−∞ verifying (1)

is stationary. For the approximation to be acceptable, it is necessary that, given initial

conditions {z0, u0} and an initial vector β, the resulting process {zt(β)}T
t=1 verifying (3) has

to be stationary.

In order to achieve stationarity in {zt(β)}T
t=1 starting for an arbitrary initial value for β,

Maliar and Maliar (2003) bounds artificially the solution to (3) to induce the stationarity
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of possibly (ex)implosive simulated series by not allowing such series to go beyond a fixed

range z < zt(β) < z. The range becomes irrelevant as the number of iterations increases.

The PEA algorithm as modified by Maliar and Maliar (2003) can be written as follows:

• Step 1. Fix upper and lower bounds, z and z for the process {zt(β)}. For an initial

iteration i = 0 fix β = β(0). Fix initial conditions u0 and z0; draw and fix a random

series {ut}T
t=1 from a given definition. Replace the conditional expectation in (1) with

a function ψ(β; zt−1, ut) and compute zt(β) from (4).

• Step 2. For a given β ∈ Dν recursively calculate {zt(β)}T
t=1 according to

zt(β) = z, if zt(β) < z

zt(β) = z, if zt(β) ≥ z

zt(β) = hβ(zt−1(β), ut), if z < zt(β) < z

• Step 3. Find a G(β) that satisfies G(β) = arg minξ∈DνEt[φ(zt+1(β), zt(β))− ψ(ξ; zt−1(β), ut)]
2.

In order to perform this step, one can run a nonlinear least squares regression with

the sample {zt(β), ut}, taking φ(zt+1(β), zt(β)) as a dependent variable, ψ(·) as an

explanatory function, and ξ as a parameter vector to be estimated.

• Compute the vector β(i + 1) for the next iteration,

β(i + 1) = (1− λ)β(i) + λG(β(i)), λ ∈ (0, 1)

• Step 5. Compute z(i + 1) and z(i + 1) for the next iteration,

z(i + 1) = z(i)−∆(i)

z(i + 1) = z(i) + ∆(i)

where ∆(i) and ∆(i) are the corresponding steps.

Iterate on Steps 2 − 5 until ‖β(i + 1) − β(i)‖ is below a certain tolerance value, and

z < zt(β(i + 1)) < z, ∀t.
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3 The models

As stated before, we have selected two models to frame the discussion: the one-sector stochas-

tic growth model and the Cooley and Hansen (1989) model. Consider firstly the one-sector

stochastic growth model,

max
{ct, kt}∞t=0

E0

∞∑
t=0

δt c1−γ
t − 1

1− γ
, s.t. ct + kt = (1− d)kt−1 + θtk

α
t−1,

where log θt = ρ log θt−1 + εt with εt v N(0, σ2), the initial condition (k−1, θ0) is given.

ct is consumption at time t, kt−1 the beginning of period t capital stock, 0 < δ < 1 is

the subjective discount factor, 0 < α < 1 the capital share in production, 0 < d < 1 the

depreciation rate, and 0 < ρ < 1. But for the case with logarithmic utility, γ = 1, and full

depreciation of capital, d = 1, a closed-form solution to this model is not known. Following

den Haan and Marcet(1990), we approximate the conditional expectation by

Et[c
−γ
t+1(1− d + αθt+1k

α
t−1)] u exp(β0 + β1 log θt + β2 log kt−1)

where β = (β0, β1, β2) is a vector of coefficients to be found. To simulate the model,

parameter values are fixed as: α = 0.33, δ = 0.95, γ = 1, d = 0.02, ρ = 0.95, σ = 0.01,

k−1 = kss and θ0 = 1. The moving-bound parameters are defined by Maliar and Maliar

(2003) as:

k(i) = kss exp(−ai),

k(i) = kss(2− exp(−ai))
(5)

where a > 0 determines the path at which bounds are moved, i is the number of iterations

performed, and the variables with the subscript ss are the steady-state values. Under this

choice, in the first iteration (i = 0), both bounds coincide with the steady-state solution.

On the subsequent iterations, the lower and upper bounds gradually move, approaching 0

and 2kss, respectively.

The model given by Cooley and Hansen (1989) is a bit more complex in that it includes

a non-convexity, indivisible labor. Money is introduced via a cash-in-advance constraint in

consumption. The competitive equilibrium is non-Pareto-optimal, and the second welfare

theorem does not apply. The representative firm solves a standard profit maximization

problem, while households seek to maximize their time preferences subject to their holdings
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of money balances and a set of standard budget constraints. There are two sources of

uncertainty in this economy: the autoregressive shock to technology, θt, and an autoregressive

logged money growth rate, log(gt) = (1−ρg) log(gss)+ρg log(gt−1)+εgt . In equilibrium, there

is one first order condition involving expectations that cannot be solved for analytically. den

Haan and Marcet(1994)’s preferred specification for the approximating function ψ(·) to the

expectation term is a third-order polynomial such that,

Et[µt+1(αθt+1k
α−1
t N1−α

t+1 + 1− d)] u exp ( β0 + β1 log kt−1 + β2 log θt + β3 log gt

+β4(log kt−1)
2 + β5 log kt−1 log θt + β6(log θt)

2

+β7(log θt)
3 )

(6)

where µt is the Lagrange multiplier attached to household’s budget constraint, and Nt

denote hours worked. Following den Haan and Marcet, we will adopt as baseline parame-

terization: δ = 0.99, α = 0.36, AN = 2.86, ρ = 0.95, ρg = 0.48, σ = 0.00721, σεg = 0.009,

gss = 1.15, and d = 0.025. The moving-bound parameters are defined as in (5).

4 Alternative initialization methods

The first alternative we pose in order to evaluate the convergence properties of the Moving

Bounds method is based on a log-linearization of the necessary equations characterizing the

equilibrium of the system. Let us denote a log-linear approximation to (1) as,

ĝ(Et[φ(ẑt+1, ẑt)], ẑt, ẑt−1, ut) = 0, for all t (7)

where ẑ, denotes the log-linearized counterpart of z, and ĝ(·) is a log-linear function approx-

imating g(·). The stable solution to (7) can be obtained in a standard way by solving for

the desired recursive equilibrium law of motion

ẑt(β) = ĥ(ẑt−1(β), ut) (8)

Solving for the stable manifold of the system forces the transversality conditions to hold.

This, in turn, is a necessary and sufficient condition for the stationarity of the solution.

Basing the obtention of the initial conditions for the non-linear model in a log-linear version

about the deterministic steady state of the very model, implicitly makes use of the ideas
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of homotopy. The log-linear approximation is a local counterpart of the model about the

steady state, and at least locally should be close to the nonlinear model. As described in

Pérez (2004), one could exploit the parallelism between the set of PEA-approximated first

order conditions in (3) and the log-linear first order conditions in (7), or between the PEA-

law of motion in (4) and the log-linear law of motion in (8). The latter alternative is close

to that suggested by Christiano and Fisher (2000).

We follow the first approach, for it is more generally applicable and presents better con-

vergence properties (see Pérez, 2004). The method consists of evaluating (3) for ẑt, and

then estimating the approximated gβ(·) and implied hβ(·) by means of nonlinear regres-

sions. Given regressions are run between stationary variables, the resulting estimated β

parameters have a stationary distribution. On other grounds, if T is long enough, the po-

tential multicollinearity problems that might arise are kept to a minimum. Consider the

Cooley and Hansen model. From a log-linear approximation one can define the variable

ψ̂t ≡ µ̂t+1(αθt+1k̂
α−1
t N̂1−α

t+1 + 1 − d), and then, upon the basis of the specification of the

functional form of the PEA approximating function in (6) run the nonlinear regression

ψ̂t = exp( $0 + ρ1 log k̂t−1 + $2 log θt + $3 log gt

+$4(log k̂t−1)
2 + $5 log k̂t−1 log θt + $6(log θt)

2 + $7(log θt)
3 + εt )

The estimation of the $ parameters from the preceding regression would give a good

starting point for the β coefficients needed to initialize PEA, as standard results in regression

analysis guarantee a stationary distribution for the estimated vector of coefficients $.

The second alternative we select starts the homotopy from initial conditions for β taken

from solutions available from published papers for slightly different calibrations of the two

selected models. In this sense, we get the PEA solution for the neoclassical model given by

Marcet and Lorenzoni (1999) for the case with d = 0.00 as the initial point for the baseline

case discussed above. For the Cooley and Hansen model we take the fixed point solution

given by den Haan and Marcet (1994) for the case with gss = 1.015, to compute the solution

for the baseline case with gss = 1.15.
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5 Results

We solve the two models described above with PEA, using as alternative initialization meth-

ods Maliar and Maliar (2003) and the two homotopy methods described in the previous

Section. We solve for 250 independent draws of the exogenous processes of size T = 5000 in

each case (keeping the same shock for all alternatives in each simulation). The convergence

criterion used is that the L2 distance between vectors β obtained in two subsequent iterations

is less than 10−5.

For the simple neoclassical model we set λ = 1.0 and a = 0.007, following Maliar and

Maliar’s advice. For the Cooley and Hansen model, and in order to achieve convergence we

set λ = 0.3 (with higher values of λ the solution algorithm diverged for the selected baseline

parameterization and Maliar and Maliar’s basic implementation) and a = 0.0035, which

corresponds approximately to having k = 0.5zss and k = 1.5zss after 200 iterations. It is

worth noticing that the two homotopy alternatives always found a fixed point solution with

λ = 1, so that setting λ = 0.3 for the sake of comparison with Maliar and Maliar implies

reducing substantially their speed of convergence.

The computational results of the experiment are shown in Table 1, where we present some

summary statistics for the 250 simulations: average computational time to the fixed point

solution; time to convergence of the simulation showing the maximum and minimum time;

standard deviation of the times to convergence across simulations; percentage of simulations

in which PEA failed to achieve a fixed point solution. MATLAB codes for solving the two

selected models with the selected initialization alternatives are available from the authors

upon request.

The main results are as follows. In terms of total computational time, the PEA solution

based on the initialization under scrutiny took between two and two and a half times more

in the simple neoclassical model than the alternatives, and almost three and a half times

in the Cooley and Hansen case. Regarding the stability of the solutions, with both models

the maximum and minimum time per simulation was around two to four times that of the

typical simulation with the homotopy alternatives. The same picture emerges when the

standard deviation of the time to convergence of the 250 simulations is considered. It is
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Table 1: Computational results. Summary statistics for 250 simulations, each of size T=5000.

Figures are expressed in relative terms (ratio to the method scoring minimum time) unless

otherwise stated.

Maliar and Homotopy alternatives

Maliar Estimated Based on

Log-linear d / gss

One-sector stochastic growth model

Average computational time 2.649 1.000 1.378

Maximum time simulation 2.835 1.000 1.407

Minimum time simulation 2.526 1.000 1.372

Standard deviation 4.412 1.000 1.415

Convergence failure (%) 1.2% 0.0% 0.0%

Cooley and Hansen (1989) model

Average computational time 3.449 1.000 1.409

Maximum time simulation 3.918 1.000 1.306

Minimum time simulation 3.907 1.000 1.448

Standard deviation 3.907 1.000 1.245

Convergence failure (%) 83.6% 0.0% 0.0%
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worth mentioning that for all summary statistics the estimated log-linear method presented

the best numerical performance.

For almost all shocks (but 1.2% of them) Maliar and Maliar’s algorithm was able to

make PEA converge to the rational expectations equilibrium in the case of the one-sector

neoclassical model. Nevertheless, in the case of the Cooley and Hansen model only 15% of the

simulations converged. Indeed, this is in the case when we use a slight modification of Maliar

and Maliar’s baseline scheme where the moving bounds update was corrected to be contingent

on the number of censored points in the previous iteration; with the baseline implementation

the number of converged simulations remained around 5% of the total (remember: with

λ = 0.3 and a = 0.0035).

6 Conclusions

In this paper we analyze the convergence properties of the moving bounds algorithm to

initialize the Parameterized Expectations Algorithm suggested by Maliar and Maliar (2003).

We carry out a Monte Carlo experiment to check its performance against some initialization

alternatives based on homotopy principles. We do so by solving two standard neoclassical

growth models. We show that: (i) speed of convergence is poor as compared to alternatives;

(ii) starting from a not very accurate initial guess might prevent convergence in relatively

simple models.

These results signal the need to fine tune Maliar and Maliar’s basic alternative. For

example, by updating the moving bounds according to the number of censored points in

each iteration, there is an improvement in the number of converged simulations. At the same

time, this modification allowed the detection of a divergent solution significantly earlier than

with the standard procedure (2.5 to 1). Another fine tuning alternative that our results

suggest would be the combination of a log-linear initialization scheme (that has good local

properties and is quite automatic to implement) and Maliar and Maliar’s approach, by

starting the latter from the log-linear alternative, instead of the deterministic steady state;

this alternative could be suitable for initializing PEA for solving highly nonlinear models.
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