
Investigaciones Europeas de Dirección y Economía de la Empresa
Vol. 1, W 3,1995, pp. 63-69.

MANAGEMENT OPTIMIZATION PROBLEMS ON FUZZY GRAPHS

Krasnoproshin, V.
Obraztsov, V.

Belarus State University

ABSTRACT

In applied economics on different levels of management (of a technologieal proeess,
an enterprise, region, ete.) very often there arise optimization problems that are naturaIly inter-
preted in graph terminology. Due to various reasons mainly assoeiated with the neeessity to take
into account insufficient definiteness sueh graphs may be treated as fuzzy ones. For example,
aIong with different metric eharaeteristics (distanee, eapaeity, ete.) it is possible to set up a
eorrespondenee between edges anclJor vertices and such ill-measurable characteristics as relia-
bility, stability and other values subjective by their nature. Metric characteristics can also be
interpreted in terms of fuzzy mathematics (e.g. a correspondenee can be set up between
lower/upper capaeity and the interval thus leading to the so-eaUed interval arithmeties).
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INTRODUCTION

Voluminous literature is dedicated to different optimization problems on graphs in par-
tially or even really indistinct definition. For example, a number of problems dealing with the
arrangement of service centres with weights on vertices, construction of cycles in graphs with
double weights of edges are considered in [1]. In [2] for the first time the notion of a fuzzy graph
is introduced, some optimization problems close to similar problems for usual graphs are for-
mulated and solved. Certain problems regarding dynamic programming with step-wise optimi-
zation of management for graphs where a correspondence is set up between edges and confi-
dence intervals, threes are considered and transitive closures of fuzzy graphs are studied in [3].

Nevertheless, the current state of the art in the range of problems under consideration
may be thought of as not quite satisfactory. The point is that in optimization problem statements
the practical interpretation is of paramount importance. The formal aspect of a problem is also
important but it is very bad if a problem loses meaning when passing from fuzzy to usual
(Kantor's) sets. As an example we refer to the notion of the strongest [2] or the most stable [3]
path in a graph. The notion is merely absurd for usual graphs because no algorithms for calcu-
lating the corresponding characteristics are needed. Generally speaking, the problem deals with
the methodological aspect of relation between non-fuzzy and fuzzy mathematics, but so far
there is not a unified point of view regarding this methodology. The way out is usually found
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either in well made subject interpretation or in the formalization that is based on classical pro-
blem statements for usual graphs and that contains solutions of the graphs as special cases. The
faet that such formalization is possible and eonstruetive is shown below. In this case we delibe-
rately narrow the generality of construction because it is beyond the scope of our paper.

First, we introduce some definitions and notation borrowed from [1,2]. By G = (X, V),
as it usually is, we denote a graph (X - vertices, V - edges). For simplicity of further presenta-
tion we assume that G is an undirected, connected, finite and weighted graph. And to avoid
consideration of cycles of a negative surnmarized value we restrict ourselves to graphs with non-
negative matrices of weights D = [di) i.e. di) > O for all vertices x¡,x j EX. Graph G can
be transformed into a fuzzy one by various means. In principie it can be achieved by one of the
following three ways or by any perrnissible combination of them:

1. A set of vertices X may
belonging Ilx:X ~ [0,1]. We

X = {(x/,Ilx(x /)), •.. ,(xn,llx(xn))};

be assoeiated
obtain a

with
fuzzy

the
set

funetion of
of vertices

2. A set of edges V (as relation of adjacency on X x X ) may be also associated with the
function of belonging Ilv:X x X ~ [0,1]. Let us denote a fuzzy set of edges by

V = {(Vij,¡LV(Vij»I i,j E {l, ...,lxIH;

3. Each number of weight matrix D can be made a fuzzy one by the use of the function of
belonging Il D:D ~ [0,1]. Let us denote the corresponding weight matrix by ñ

There are various interesting interpretations of fuzzy graphs G, obtained by each of
the above-listed ways and their combinations [2,3]. But we restrict ourselves to the study of a
fuzzy graph G = ex,V) with a usual weight matrix D. The point is that graphs G with
matrices D are considered in some detail in [3]. There the authors point out a pathological heu-
ristic features of the corresponding algorithms due to partíal definiteness of comparison opera-
tions on a set of fuzzy arithmetic numbers. That is why such graphs are not of much interes from
the point of view of problem statement. Besides, too much effort should be made for calcula-
ting the function of belonging that corresponds to the result and it is difficult to justify that fact
taking into aecount the above-mentioned heuristie features of comparison operation. We do not
also consider graphs G with fuzzy sets of vertices X but due to other reasons. First, they have
been studied in [1] in quite a different context. Second, as it will become clear from the pre-
sentation that follows, function Ilx can be easily taken into account in statements that we pro-
pose. In an algorithrnic sense its use does not most likely change anything. Notice that precisely
for graphs G = (X, V) (but for unweighted ones) concepts are introduced in [2,3] that we will
use for further considerations.

So, assume that there is a fuzzy graph G = (X, V), ¡XI= n , To define function ¡Lx we

will use a matrix le = [Ilv(vij)] of size nxn similar to adjacency matrix. Due to undirected
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nature of graph G it would appear reasonable that matrix le is a syrnmetric one, i.e.

flv(vij)=flv(Vj¡) for all i,jE{l, •.. n}. Along with G we will consider subgraphs

G' = (X', V') where X' k:; X while V' k:; V and V' do not contain edges adjacent to vertices

from X \ X'. Each subgraph G' can be associated with several numerical characteristics:

- weight of the subgraph co(G')= LA (where di) - weight of edge vij );

VijEV'

- value of the subgraph 1 (G') = 1"'1;

- stability r3] ofthe subgraph ¡.t(G') = min {flv(vij)}
VijE~'

k kLet us now fix the vertex X¡E X and consider a random path Pk (x ¡,x j) = (x ;1 , ••• ,x is)

where X~ =Xi, xt =Xj' k passesthroughaset N(X;,Xj)EN characterizingthenumber

of paths from X¡ to >S. It is evident that a definite connected subgraph G' corresponds to

each path and that is why the numeric characteristics introduced above can also be calculated

for the path Pk(x;,Xj). Let us denote them by co(Pk(x;,Xj», I(Pk(xi,x) and

¡.t(Pk (x¡,x j» respectively. There can be more than one path (if G is nota treej in accordan-

ce with the assumptions with respect to for vertices x .,x¡ EX . And it is natural to single out

peculiar paths from the whole set -r k (x i v x j )I k E N(x ¡,x j )} . For example, in [3] the authors

introduce the notion of the most stable path Pko (x¡,x j) :

A procedure for finding such paths is also proposed there. The procedure is based on

construction of transitive closure of the graph, i.e. exponentiation of matrix I¡;. Evidently, the

complexity of the corresponding algorithm O(nn-l) is overstated. Besides, as mentioned

above the notion of the most stable path is a non-algorithmic for usual graphs G . Below we

will show how to overcome these drawbacks.

Let us consider subgraph G'(x¡) that can be obtained by collecting vertices and edges

that are in the most stable paths from x ¡ to all other vertices x j • It is evident that
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Assertion 1. G'(x;) is a spanning tree.

The proof of this assertion can be based on the rule of contraríes.

It is also easy to prove

Assertion 2. ¡.t(G'(x)) =¡.t(G'(x)) for all i,jE{l, ... ,n}.

To prove this let us assume that the assertion is not satisfied. Then there can be two possible
cases.

1. There is such x i E X that ¡.t (G'(x i)) > ¡.t (G'(x ¡)) for a fixed vertex x ¡E X. But this

means that in G'(x) the path from xi to other vertices (including x¡ - Pk¡ (x J,x¡) ) has

the following feature: ¡.t(Pk¡ (x J,x¡) > ¡.t(Pk (x ¡,x) where Pk (x¡,x J) is the most stable path

from x ¡ to x J . But it is not possible for an undirected graph.

2. The case ¡.t (G'(x i)) < ¡.t (G'(x ¡)) is considered in a similar manner.

And, finally, the following assertion holds true.

Assertion 3. Let (;' = (X', V') and X' e X. If v¡¡ - is an edge connecting vertices

XsEX' and XtEX\X' forwhich

Ilv(vst) = max {Il(vj7¡) I(x ¡,XI!) EX' x X \X'}

thenforall X¡EX' the edge VS1 is certain lo belong lo G'(x;).

Let us apply the rule of contraríes and assume that for vertex X¡EX' the spanning tree

G'(x) contains an edge vj7¡ ( x¡E X' and xI! E X\ X' ) but not Vst . Let us add the edge

VS1 to G'(x) and exclude Vj71· This operation is reasonable because edges Vst and vjh

are certain to enter one cycle. As a result we obtain a new spanning tree G"(x¡) for which by

the construction we have:

It should be noted that all the above-mentioned assertions are close by ideology to simi-
lar assertions for problems dealing with the construction of a minirnal spanning tree (MST).
Moreover, assertion 3 shows that for the construction of the most stable paths from Xi to
all other vertices x J it is possible to use an algorithm for constructing MST. Such a unified
algorithmic basis is a foundation for ideological combination of these problems with the help
of the following functional

66 Investigaciones Europeas, Vol. 1, N" 3, 1995, pp. 63-69.



Management optimization problems on fuzry graphs

(1)
¡.t(G'(x¡))

W(G'(X .» ----¿ max

It is apparent that problem (1) includes problems of constructing the most stable paths
and MST. Really, to solve the first one it is sufficient to put weights of a11edges equal to one
positive number taken at random. For the solution of the second problem the similar operation
should be made with values ¡.Lv(vij)' In so doing the structure of the subgraph G'(x;) does
not depend on the choice of numbers. In the general case we obtain a tree with maximal stabi-
litY of paths.

Let us describe now an algorithm for the solution of problems dealing with the cons-
truction of a tree of the most stable paths and MST on the basis of the functional (1).

Algorithm.

Step O. in a11

Step 1. Choose such a vertex X¡ EX\ y that x,EY and

a(vst) = max{vf7,IX f EY ,XhEX\ Y}.

Step 2. Y = YU X t , Z = Z U vs¡ •

Step 3. If IYJ = n then the algorithm ends its work and G'(x¡) = (Y,Z) is the graph
to be found. Otherwise we go back to step 1.

Unfortunately, the algorithm does not construct trees with maximal stability of paths on
the basis of functional (1). The development of such an algorithm is beyond the scope of the
present paper.

Example. Let us assume that the fuzzy graph G = (X ,V) is defined by the fo11owing matrices:

O .8 O .6 .5 O 5 O 2 3
.8 O .5 O O 5 O 3 O O

le O .5 O .8 .6 D= O 3 O 2 3
.6 O .8 O .4 2 O 2 O 4

.5 O .6 .4 O 3 O 3 4 O

Using the above-mentioned algorithm we construct in the graph a tree of the most sta-
ble paths G'(x¡) and a mini mal spanning tree.

Investigaciones Europeas, Vol. 1, N° 3, 1995, pp. 63-69. 67



Krasnoproshin, v.; Obrazstov, V.

The results are graphically shown as:
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Fig.l A tree of the most stable paths. Fig.2 A mini mal spanning tree.

J..l(G'(Xl)= 0.6 CO(G'(Xl)) = 10

It is not difficult to see that the algorithm has the complexity O(n2) Tt is hardly pos-

sible to lower the assessment even in case of constructing a tree of the most stable paths becau-
se in any step-wise procedure at each n steps it will be necessary to compare no less than
n- 1 numeric characteristics for the whole graph.

It is interesting to note that the solution of the problem dealing with the construction of
a tree of the most stable paths can be obtained in terms of paths using the following functional

(2)

Unlike the case with functional (1) weights of all edges in V should be put equal to 1.
But, it remains unclear whether it is possible in problem (2) to use the same algorithm or to
apply methods similar to those for constructing the shortest paths in a usual graph.

And, finally, a particular case of functional (2) is also of interest

(3)
L Il(Pk (x iX j ))

XjEX ro(Pk (xi,X))
x j'~Xi

---7 max
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Evidently, if we put all values ¡.,tV(V¡) equal to any positive number taken at random

then problem (3) amounts to construction of the shortest paths from vertex x ¡ to all other

x j EX. On the other hand, at no values dij problem (3) is connected with a problem of con s-

tructing a tree of the most stable paths. That is why methods that forro the foundation of algo-

rithms for constructing the shortest paths should be used precisely in (3).

The present paper is not aimed at considering all possible functionals (1) - (3). We have
only made an attempt to combine standard problems for usual and fuzzy graphs. And one of the
functional has been considered in greater detail. Of course, there is still a problem of interpre-
ting all functionals in terms of practical tasks because the last-named are, for all that, primary
ones in optimization.
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