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1. INTRODUCTION

Along with residue studies on harvested crops, reliable data on the behaviour of pesticide
residues prior to harvest are an essential prerequisite for the registration of pesticides. Pertinent
results are obtained from field or greenhouse experiments, which are carried out under controlied
conditions, observing the principles of Good Agricultural Practice and the fundamental criteria
for accurate sampling and analysis («supervised trials»). Samples are taken after the (last)
application of the pesticide (at «day O») and in certain intervals thereafter, mostly up to and
including the day of regular harvest.

Evaluating the decline of residues as a function of time is an interesting subject and provides
an important key to understanding residue behaviour. This paper is aimed at a particular aspect
of this problem area, specifically, how to describe the decline of residues on treated crops.

It may be feasible to agree on nomenclature first. Pesticide residues diminish measurably with
time, although the speed of diminution may differ from compound to compound, as it may vary
according to environmental conditions. Physical loss, chemical degradation, and dilution due 1o
growth of the treated plant are the main factors contributing to the diminution. Various terms are
used to describe this process, including breakdown, decay, decline, degradation, or dissipation. In
sotne instances, these terms are used inierchangeably or as synonyms, but in other instances, they
should preferably be used to describe a particular process, ¢.g. degradation (in a chemical sense).
Although the latter term is often used in a general sense, we prefer the term decline for describing
the overall phenomenon of residues decreasing with time after application of a pesticide.

A problem arises when the results from decline studies are to be evaluated. Simple
tabulation of the data is not too instructive, Plotting the measured values on graph paper and
drawing a curve through the points «by hand» is also not very satisfactory. The best solution
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is to determine a functional relationship between residues and time, which will yield a
mathematically defined decline curve. Moreover, errors unavoidably inherent in the individual
analytical measurements will thus become «smoothed out» and valuable information can be
derived from the residue data, e.g.

» the mean («estimated») residue level at a particular point of time within the period of
observation,

» the time taken for the residue to drop below a given level or to reach a given percentage
reduction (e.g. 50 % or 90 %),

* the confidence interval of the decline curve,

» prediction intervals for the residue at individual points of time or for the entire curve,
indicating the levels of residues which may be expected, with a given degree of
probability, from future experiments under comparable conditions.

Such information can be essential for establishing prc-harvest intervals and/or maximum
residue limits (MRLs). Also, through use of this information, comparisons of residue levels
observed under different conditions (e.g. with a different formulation, a different application
technique, or on another crop or under ditferent climatic conditions} may become more reliable
than those made by just «comparing figures». The question, here, is how to find expressions for
the functional relationship. The purpose of this paper is to present several approaches to this
problem, which we developed in the past (8 - I1]).

2. FORMAL APPROACHES

2.1. Scale transformations for linear regression of residues on time

Mathematical characterization of the decline of residues and determination of the statistical
parameters which describe this process are easiest to achieve when the relationship between
decline and time can be expressed as a finear regression. This involves fitting a straight line
to the measured values in such a way that the sum of the squared deviations of the measured
values from the line is minimized (method of least squares). One is more or less competlled to
revett to an approach of this kind if residue measurements from onty a few points of time are
available, and «simple» solutions are desirable. In many practical situations, particularly with
rapidly developing crops, it will often not be feasible to take samples at many more than four
or five sampling dates. This imposes certain restrictions on the statistical evaluation of the
analytical results.

A direct linear decline of residues with time hardly ever occurs. Consequently, time and/
or residue values must be transformed to yield a linear relationship. The most common and best
known transformation is to interpret residue decline as a «pseudo-first order» reaction. In this
case, linearization is achieved by plotting the logarithms of the residues (log R or In R) versus
time t. The father of this concept is the late F.A. GuntrER of Riverside, California; he first
described the decline of residues by this type of reaction kinetics some 40 years ago (3).
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In our experience, this interpretation is clearly applicable in about a third to a half of all
cases. However, in practice, when plotted in a semilogarithmic coordinate system, it is not
unusual for early data points to «sag» and thereby deviate from the pattern of a 1st-order
reaction. In other words: compared to a «true» decrease according to the 1st-order model, the
residues decline at a faster rate shortly after application of the pesticide than during the
subsequent course of the study. In spite of this, some data of this type can still be modelled and
verified statistically by a Lst-order regression.

Figure I gives an example of such a relationship. The straight line in a still represents a
statistically «correct» 1st-order regression line (on a 95 % confidence level). In b, the straight
line was back-transformed into the original system (linear time and residue axes). Obviously,
the curve does not very accurately represent the measurements. A much better fit can be
achieved with another type of function (in this case a RF 1st order as described below),
represented by the second curve in b. Even the modecl of a «kinked» decline curve in a, formed
by a sequence of two 1st-order straight lines having different slopes, can be replaced in this way
by a curve exhibiting a continuous transition from an initially fast to a progressively slower rate
of decline. It should always be kept in mind that «forcing» a regression straight line of Lst order
through a series of data pairs, though still legitimate statistically, may lead to falsified
statements!

In other cases, the 1st-order model fails altogether. To resolve this problem, we started, in
the late 70’s, making a search for simple lirear relationships which would permit decline curves
of this kind to be described mathematically. Our attempts were governed by some preconditions
which should be fulfilled:

« correspondence between model and «real life» conditions, i.e. no use of a time axis
without a zero point {e.g. by using log t or 1/t)

» monotonously decreasing function
« avoidance of functions with more than two constants
» avoidance of functions only solvable by iterative methods.

Under these provisos, we investigated scale transformations employing Vt for the time axis
(abscissa) and/or 1/R or 1R for the residue concentration axis (ordinate) (Table I).

The designation of these model functions as 1st, 1.5th, ete. order reactions simply follows
the conventional classification of rate equations for chemical reactions. It does not imply any
reaction kinetic interpretation. The functions having a 't scale are termed «root functions» (RF).
For any given set of data, the coefficients a and b of the straight line will take different values
in each model. In models B, C, E, and F the regression straight line has a positive slope. Solving
each of these regression equations for R, one obtains the equations given in Table 2 for the
decline curves in the original system. An example for a decline curve according to a RF 1st order
is shown in Figure 1 b, as mentioned above.

Linear regression can easily be calculated even with pocket computers, so we will not
discuss how to derive the regression line from the measured values. However, three different
confidence intervals Cl (Table 3) are of particular interest in this context. For their computation,
see APPENDIX 1,
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Figure 1
Example of an improved curve fit.
The 1st-order straight line in a is back-transformed in the original system in b,
The “kinked” decline (@) can be substituted by a RF Ist-order curve (b).
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TABLE 1
Coordinate transformation in formal models A - F

Wt
RF 1.5 th order Jt iR

RF2nd order Jr IR

RF = "Root function”

The function equation in the transformed system is always ¥ = a + bX,
where  a = intercept on the ordinate at X = 0
b = slope.

TABLE 2
Formulae for the decline curves in the original system

TABLE 3
Confidence intervals of interest in the evaluation of decline studies

CI(SL) for the entire straight line

Clgy for the estimated value of Y [E(Y)] at the point X = x

Clpy fora future ("predicted”) observation Y at the point X = x
{Prediction Interval)
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The boundaries of these intervals are represented by hyperbolic curves, which envelope the
straight line. They are valid for the range of the measured value pairs Xy, - X_¥,. From the upper
bounds of the intervals, it is possible to estimate the residues which may possibly be expected

under «unfavourable» conditions.

For illustration, Figure 2 shows a decline curve depicting the decrease of residues of
parathion on red currants. In a, the 1st-order regression straight line is shown, with its confidence
interval CLg  and the prediction interval CI,, at day 10. In b, the curve and the intervals were

back-transformed into the original system.,
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For routine assessment of residue data from decline studies, we use a computer program
which evaluates the data using all six formal models (Table 1), and then transforms the results
back 1o the original system. The model selected for final evaluation of the study is usually the
one that gives the smallest residual sum of squares (S5R) in the back-transformed system after
calculation in the transformed system. As required and alternatively, the model to be used for
the evaluation can be freely chosen. Initiafly, only those regression models are accepted which
can be confirmed on a 95 % confidence level (calculated in the transformed system). If the
calculation of the regression can not be confirmed on this level, it can be repeated on a 90 %
level. If it also can not be confirmed on the 90 % level, the individual measurement points are
graphically connected to each other in the print-out, without establishing a functional
relationship. Preferably, a minimum of 4 to 5 residueftime data pairs should be available for
the evaluation. Findings such as «n.d.» (not detectable or not determinable), if occurring within
the decline series, are inserted, for calculation, as a concrete figure, e.g. as half the value of
the respective limit. If such findings occur in succession at the end of the series, the first of these
results is included in the calculation in the same manner, and all subsequent ones are ignored
(but will remain in the print-out of the data).

To obtain a measure of the quality of the fir, a modified coefficient of determination, r,
is computed, and the value of r is tested with the aid of a test quantity D; see APPENDIX 2. If the
test quantity differs significantly from zero, the correlation is considered confirmed. Except for
the Ist-order and the RF Ist-order model, the functions have a singularity if there are different
signs {(+ or ) for the constants a and b, which will result in a residue value of infinity for a
particular decline time. In such cases, the respective fimction can not be used for the evaluation.

The computer print-out contains the main statistical model parameters, the SSR for all six
models (if applicable), and the percentage SSR ratio of the best to the second-best model
determined. It also provides the graphical representation of the residue decline curve and its
confidence interval, back-transformed into the original system, along with the calculated residue
values R, for the individual values of t (i.e. the values on the back-transformed curve) yielded
by the best (or selected) model. If wanted, the mean residue (cf. Section 2.3) and the prediction
interval Cl for selected points of time can also be shown. An example of such a print-out,

(P}
relating to the curve in Figure 2, is given in Figure 3,

We investigated the applicability of the six models first with more than 400 studies of the
decline of residues on plants. About one third of these could best be described by the 1st-order
model and one third by the RF Ist-order model. This was a surprising observation, since to our
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FIGURE 2
Decline of an insecticide on red currants.
a: 1st-order straight line with confidence interval.

b: Decline curve as in a, back-transformed in the original system.
The prediction interval for day 10 is shown for both curves.
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Exp. No.: 000000

Crop/Soil: Red currants Sample material: Berries
Product: E 605

Active ingredient:  Parathion

Function: 1st order

t (days) R (mg/kg) Rinod
(mg/kg)
0 1.09 1.192
4 0.90 0.725
7 0.45 0.500
14 0.20 0.209
21 0.09 0.088
SSR: 0.0435
Slopeb: -0.0539 Clfrom -0.0664 to -0.0415
Intercept a: 0.0763 Cifrom -0.0717 to 0.2242

Coefficient of
determination*: 0.9426 Significance: 0.0926 at 95 %

* = modified r squared

T/2: 558d CI: 4.29-6.87 T/10:; 18.54d CI: 14.25-22.83
R0 (10d): 0.344 mg/kg  CI: 0.203 — 0.583

SSR Ratio 1st order / RF 1storder: 828.35%

SSR 1st order: 0.04349 1.5th order: 0.57468 2nd order:  ~——----
SSR RF 1storder: 0.40372 1.5th order: 6.97883  2nd order.  -------

FiGure 3
Typical print-out from a computer evaluation of a decline study (slightly modified).
The pertinent curves are shown in Figure 2.
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knowledge a function of the latter type has not hitherto been described in the literature. The RF
1.5th order accounted for about 10 % of all cases. The other three functions were only seldom
applicable. As a rule, the function providing the best fit can not be adequately substituted by
one of the other functions. Only in about 25 % of the studies was the model giving the second-
best fit virtually identical (SSR < 20 % higher) with that giving the best fit. In such cases, model
A was mostly followed by model B, models D and E were mutually close to each other, and
model F was followed by model E (cf. Table 1 for designations). In a later evaluation, covering
139 studies, the lst-order model (A) yielded the best fit in 55 % of the cases, while the RF 1st
order (D) gave the best fit in 20 % of the cases, followed by the 1.5th order model (B) with 9
% (cf. Section 4.2.3). The models can also be used for describing residue dissipation in soil.
They are not applicable to time spans in which no decrease in residues takes place, e.g. during
a «lag phase».

2.2. Improving the power of existing models with realistic assumptions about analytical
errors

After having discussed simple possibilities for describing decline behaviour and deriving
corresponding confidence intervals, let us now take a look at the errors inherent in analytical
results in order to obtain improved linear models.

2.2.1, «How do you know your results are right?»

With a given analytical method, residues can usually be measured over a wide range of
concentrations. It is a well-established fact, however, that in any given case, the variability of
measuregments, expressed as repeatability or reproducibility, can be quite substantial
(repeatability being the term for the «within (intra) laboratory» variability of results associated
with a single operator, while reproducibility is the term for the «between (inter) laboratory»
variability of results associated with different operators in different laboratories). Experience has
also shown that in many instances, variability will increase with decreasing concentration. The
smaller the concentration becomes, the greater may be the scatter of the results obtained.

Against this background, the provocative question quoted above was raised in 1981 by William
Horwrrz, formerly with the FDA in Washington (4). In his paper, as in a preceding one (6), he
published the famous «trumpet» shown in Figiure 4. It was based on the results of interlaboratory
collaborative studies conducted under the auspices of the AOAC over the - then - past 100 years,
covering a broad variety of analytical techniques and substrates. This curve is obtained («in an
oversimplified fashion, to be sure») when the mean coefficient of variation, CV (i.e. the relative
standard deviation, expressed as per cent of the measured value), expressed as powers of 2, is plotted
against the concentration, expressed as powers of 10.

What does this mean? It means that the CV increases by one power of 2 for every two
powers of 10 by which the concentration (G) falls, as is shown in Table 4. Horwitz expressed
the content (G} of the analyte in a matrix as fraction of the «pure material» (e.g. 107 = 10 %).
We may as well express the concentration, R, of the analyte in the matrix in mg/kg, as was done
in this Table.
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Ficure 4
Interlaboratory coefficient of variation as a function of concentration.

Such a relationship can also be plotted as a straight line in a double-logarithmic representation.
Figure 5 gives two examples of such a plot. The lower line represents the figures given by Horwrrz
(Table 4). In the case represented by the upper straight line it is assumed that the CV = £ 100 % if
R = 0.01 mg/kg, and that the CV decreases by a factor K = 0.5 per increasing order of magnitude
of R, yielding CV =50 % if R = 0.1 mg/kg, and so on. These latitudes (designated by the letter L
from here on) were suggested by the Federal Health Office in Germany in 1974 (1) for
application in the analysis of organochlorine insecticide residues in food of animal origin. Two
examples of the ranges of these latitudes are illustrated for R = 0.01 and R = 0.1 mg/kg,
respectively.

The mathematical expression for such a straight line in a double-log-system has the gene-
ral form set out in Table 5, formulae (I a) and (I b). The absolute amounts of the latitudes
(according to formulae (II a) and (I b) in Table 5) can similarly be represented by ascending
straight lines (for derivation, see APPENDIX 3).

For the relationships illustrated in Figure 5, the general equation (I a) in Table 5 takes the

forms as given in the Figure (for derivation of the constants for the «<Horwitz curve», see
APPENDIX 4},
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Coefficients of variation (CV) in relation to
the concentrations measured (according to Horwirz)

TapLE 4

102 104 +22= 4
10 -4 102 +23= 8
106 100 £24= 16
107 10-1 23¢
10 R 1072 +25= 32
109 103 46 ©
10-]0 10-4 +2 6= 64
8 expressed as fraction of the matrix

b expressed as paris per million, e.g. mg/kg

€ calculated from formula in Figure 5 and rounded
Note that here R = G - 10¢

TaBLE 5

Formulae for the calculation of latitudes in double-logarithmic representation

log (L) = log(Ly +1log(K) log (R) Ia)
with
L = "atitude" = coefficient of vaniation (%) of the content determination

= relative standard deviation, expressed as percentage of R
Ly = value of L at R =100 = 1 mgfkg (%)
R = content of residue in the sample (mg/kg)
K = factor by which L decreases as the order of magnitude of R increases (see also Table 8)
or, by taking antilogarithms,
L Y i Ib)
The absolute standard deviation can accordingly be expressed as
log (Zp4) = log (Lygps) +1l0g (10 K) - log (R) (13
or, by taking antilogarithms,
Labs = Lﬂ,abs .R1+IDE(K) (II b)
(¢f. APPENDIX 3)
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FiGure 5
Latitude straight lines in a double-logarithmic representation.
For explanation, see text.

For these two examples, the absolute amounts of the latitudes can be calculated from

log L, =1log 0.25 + log 5 . log R(for the figures stated by the Fed. Health Office,
Germany)

and

log L, =1log 0.16 +log (10/\/2) .log R (for the figures given by Horwirz)}
or, by taking antilogarithms,

L, =025 Ro&
and

L, =0.16.R 3,

respectively.

The end points of the latitude ranges (which we might call R, and R ) can be calculated from
cither R or L by the formulae given in Table 6 (2). They can be connected to yield upper and lower
«latitude curves», which envelope the straight line. These curves, as shown in Figure 5 for the upper
straight line, illustrate the continuous changes of the latitudes over the concentration range of interest.
They can be utilized to establish meaningful progressions in setting MRLs in conjunction with
analytical feasibility, and they should be taken into account when having to decide whether an
MRL has been exceeded. However, these curves must not be confused with confidence intervals.
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TABLE 6
Formulae for calculating R _,_and R__ of latitndes

I+iog(K )
R, - R % R Ly
100
i/l K
worz () ®*
Ri = . =
00 |1,

2.2.2. Weighted linear regression

With known (or estimated) values for the factor K, we can now extend the decline models
thus far discussed, by fitting the model constants in such a way that the variation of the scatter
of the analytical values with the residue content in the original system is accounted for. This
will be done by using a linear weighfed regression (APPENDIX 5).

By applying the error propagation law (APPENDIX 6), we obtain simple terms for the weights
w (Table 7) and can derive confidence intervals for a weighted regression. The terms for w are
interrelated with the amounts of the latitudes. For example, for the functions of 1st order, the
relation is given through R =2 ® = (L_/L)" according to (I b) in Table 5. Based on the terms
for w as given in Table 7, the weights can also be expressed as powers of R (Table 7A).

In linear (unweighted) regression, one of the premises is that the variance of the target
(measured) values is constant over the entire concentration range. According to a) in Table 8,
an unweighted regression (w = 1) is obtained if differens values for K are used with the indivi-
dual types of functions. This means that the case of an unweighted regression can not be satisfied
by a uniform error law, i.e. by a single factor K, which would be applicable to all six functions,
In order to circumvent this disadvantage, it is necessary to revert to a weighted regression. This
can be achieved with a predetermined value of K (K<1). This factor X then stands for a parti-
cular error law which is equally valid for all six types of functions. Table 7 A illustrates this
effect.

We can now consider different approaches to calculating weighted decline curves and
confidence intervals by using different values for K, e.g. those given in Table 8. The effect of these
weightings is illustrated in Figure 6. Here the decline curve is described by the 1st-order model.
The confidence intervals of the line and the prediction interval are shown along with the (back-
transformed) decline curve. It can be seen that with the weighted regression (curves b - ), both the
confidence and the prediction intervals at the start of the study (when the residues are higher and
the latitudes are accordingly smaller) are narrower than with the unweighted regression. This effect
eliminates previous disadvantages. If the value chosen for X is too small (e.g. = 0.1 as in ¢)), the
weighted mean can become displaced so far towards shorter times that the confidence intervals at
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the end of the study period again become distinctly wider. Because of these effects, an approach
according to either b) or c) represents an optimal choice. In evaluating his data, every analyst must,
of course, make his own decision in attaching weights to his results.

TABLE 7
Terms for the calculation of weights w

=
e | o
12{1’:1‘; y R 2-2log(K)

TapLe TA
Terms for weights w, expressed as powers of R
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FiGure 6
Decline of residues of an insecticide in apples.
Curves fitted with 1st-order model with various weights.
VB = Confidence interval, VH = Prediction interval.
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FiGurk 6 {cont.)
Decline of residues of an insecticide in apples.
Curves fitted with 1st-order model with various weights.
VB = Confidence interval, VH = Prediction interval.
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TaBiE 8

Characteristics of various factors K (see Tables 5 and 7A and Figure 6)

10

f—
3

Unweighted
{constant variance in the transformed system)

in the case of 2nd- and RF 2nd order models
in the case of 1.5th and RF 1.5th order models

in the case of 1st- and RF 1st-order models

In this case, also the coefficient of variation is constant in the original (non-
transformed) system, i.. the relative latitudes are the same over the entire
concentration range.

1/+2

0,7071

Weighting according to HORWITZ

The scatter decreases by a factor of 0.5 for every fwo powers of 10
by which the concentration increases (see also APPENDIX 4).

0.5

Weighting as proposed by the German Federal Health Office

The scatter decreascs by a factor of 0.5 per one power of 10
by which the concentration increascs.

1710

= 0,3162

The scatter decreases by a factor of 0.1 for every fwo powers of 10
by which the concentration increases.

0.1

Constant variance in the original (non-transformed) system

The scatter decreases by a factor of 0.1 per one power of 10
by which the concentration increases.

It follows from Table 5 (I b) that here Lype = Lo gps
i.e. the absolute amount of the latitudes is the same as at R = 1 mg/kg
over the entire concentration range
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2.3. Decline times

After we have discussed how to describe various decline courses mathematically, we can
take the next step and have a look at the time it takes for different degrees of decline to be
reached.

In a Ist-order reaction, the relative rate of decline remains constant throughout the entire
process and is independent of the initial concentration (R ). Accordingly, the «half-life», or the
time that must elapse until the initial concentration of the reacting substance has decreased by
one half (yielding R,/2), or until R ,/2 has decreased to R /4, etc., is a constant. For all other
functions used here, the rate of decline decreases progressively during the course of the reaction.
Consequently, the term «half-life» should only be used in conjunction with 1st-order reactions
when referring to periods of time required for a 50 % decline of the residue. For all other types
of reaction, we need other designations. We have proposed to use the term «T/X times» to
determine those periods of time after which the residue concentration has fallen to a fraction
1/X of the initial concentration. Thus, T/2 or T/5 would define the time needed for the residue
to drop to 1/2 or 1/5 of R, respectively. The times T/2 and T/10 are often referred to as DT
50 and DT 90. «DT 50» and «DT 90» stand for «decline (decay, degradation, dissipation) times»
for 50 % and 90 % loss of residues, respectively.

The decline behaviour of a residue can thus be characterized not only by stating the half-
life (in 1st-order reactions) or T/2 (in other types of reactions) but also by stating the longest
respective T/X-time which still falls within the period of the study (extrapolations to longer
periods should be handled with care!).

The formulae for computing the T/X-times, resulting from the models discussed so far, are
given in Table 9 (right hand column). The T/X times can be calculated simply from the respec-
tive coefficients a and b of the regression straight line.

Decline times normally apply to experiments in which the first samples are taken at day
0, i.e. immediately after the (last} application of the pesticide (t = (). In other experiments, the
first sampling may be performed at a later date t, (Figure 7). In these instances, the generally
valid formulae given in Table 9 will apply for computing the T/X-times. For computation, the
coefficients a and b, calculated for the curve beginning at t,, must be inserted in the formulae.
Except for the 1st-order model, the decline times are dependent on t,. Meaningful comparisons
of decline times from different experiments can, therefore, only be made if there are identical
initial points of t, or when t, = 0. When t, # 0, stating decline times without at the same time
stating t, has no informative value (except for 1st-order reactions).

When the different decline times are each placed in relation to the DT 50, it becomes
apparent that greatly different rates of decline can be described with these functions. Table 10
shows for each function the ratio of T/X (X > 2) to T/2 for the case t, = 0, If t, # 0, other ratios
are obtained for the three root functions, each of which depends on the individual figure for t,.
In this case, for the other three functions, the ratios do not change. The ratios can be calculated
from the formulae in Table 9 by inserting the value for X (e.g. 3, 4, 5, or 10) and dividing the
formula thus obtained by the same formula, but with X = 2 (Table 10 A).
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Ancther important question in decline studies is: How long does it take until a given residue
level Y’ will be reached? This particular period of time can be calculated, based on the prediction
interval, from formula (vii) in APPENDIX 5. (vii) is obtained from the generally valid formula (vi)
in APPENDIX 5 by solving this equation for X'. For computation in case of an unweighted
regression, the terms expressing the weights must be set = 1.

In addition to values for the times T/X, the accuracy of these values is also of interest. This

18 stated in the form of the appropriate standard deviation S (T/X £ S__). The formulae for
calculating S_, are given in Table 1.. For their derivation, see ApPENDIX 7.

TABLE 9
Formulae for caleulating decline times T/X
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T/2

Ficure 7
Schematic representation of decline times for the case ¢, = 0.
t = 0: point of time of the last application of the pesticide.
t, = initial point of time of the residue study.

TagLE 10
Ratios of decline times T/X to T/2 for t, =0

Decimals are rounded. — No decimals: integers.
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TaeLE 10A
General formulae for calculating the ratios T/X: T/2

log X
log2

JT-1
V2 -1

(x-1)

(log XY —2bft; -log X
(tog2)* -2bfty stog2

[(a+b rA)(ﬁ—1)+bJr:]2_1,2rA
' [(a+bJ§)(JE-1)+b :,,]z-b’-’-r,,

[(a+2422) (x-1)+b,/r:]2 —b%,
[(a+bJG)+b rA]z—bztA

Tasie 11
Standard deviations S, of the decline times TX

AR EEaAEa0
1st (T1Xx)-8,
(-b)
Flst 2T/ X)-S,
(-2)
1.5 th and 2 nd (T/X)u
RF 1.5 th and RF 2 nd 2(T/X)-u
S, = root of the variance Var (b)
Y = Varl(a) . Varz(b) s Cov(a,b)
a b ab

(see APPENDIX T)
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3. MODELS WITHOUT LINEARIZING TRANSFORMATIONS (NON-LINEAR
REGRESSION MODELS)

On closer examination, the use of linearizing transformations before fitting the model
constants is a complication that is not necessarily desirable. On one hand, there is the advantage
of being able to use known linear regression procedures. On the other hand, there are several
disadvantages. For example, the distribution of the analytical data, which forms the basis of the
confidence intervals, is subject in the original system to constraints which must be laboriously
incorporated into the transformed system, e.g. as in the calculation of weights. Also, the optimal
model can not be identified until all models have been transformed back to the original system.
Furthermore, the need for linearization restricts the choice of the possible models.

Let us therefore examine how errors associated with the model parameters can be
established and how confidence intervals can be defined in the case of non-linear depency on
the model parameters. To achieve this goal, the same principle and procedure can be employed
as in the analogous problems of multiple linear regression.

Some principles of multiple linear regression and the computation leading to
* regression coefficients
* an estimate of the accuracy of the model parameters
* confidence intervals
with the aid of a matrix notation are described in ApPENDIX 8.

Dispensing with linearization then gives a generally applicable procedure that can also be
used for other non-linearizable models, such as the two-zone model presented in Section 4.3.
However, once linearizing transformations have been abandoned, there are no longer any sim-
ple formulae available for calculating confidence intervals. Moreover, the model constants must
be derived by direct fitting procedures.

As an example, the residue data used for Figure 6 were subjected to these computations.
For the sake of simplicity, the model constants were taken from the calculations of the linear
regression {1st-order model). The resulting confidence and prediction intervals are shown in
Figure 8. They must be compared with the curves for the scatter parameter K = 0.1 (Figure 6
e), since in both cases, the calculation was based on the assumption that the variance in the
original system is constant (cf, Table 8). Excellent agreement is found between the directly fitted
curves of Figure 8 and the curves of Figure 6.

In principle, an extension of the non-linear regression presented here, which includes a
weighting to account for analytical error is possible, but has not been attempted.
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Residue data and labelling as in Figure 6,
Curve fitted by direct calculation without linearization.

4. PHYSICALLY BASED MODELS

4.1. Introduction

The models discussed so far have proved their worth in providing a purely formal
mathematical description of the decline of residues. Of course it would be desirable to be able
to formulate the decline behaviour in terms of physically based models. We undertook several
attempts in this direction, whereby three aspects were considered:

* the «dilution» of residues by the increase in plant mass during the growing stage

* the combination of the increase in plant mass and the simultaneous biological/chemical
degradation of the residues

+ the distribution and degradation of residues as a two-zone model.
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4.2. Models taking account of plant growth

4.2.1. Evaluation of growth data

We evaluated published data on the increase in plant mass during growth of fruits and leafy
vegetables (8). In order to establish growth curves (expressed as increase in weight, volume, or
diameter with time), the data were normalized. This was done by expressing the growth stages
relative to the final state, e.g. by D/D___ (wherc D= diameter when ripe). Similarly, the time
scale was normalized, expressing any point of time during growth as a fraction of the time T,
taken to reach maturity.

The growth data were evatuated with the aid of direct curve fitting procedures. The results
showed that the growth profile can be reproduced by functions of the type shown in Table 12
((Iy and (II)). For the crops included in our investigation, the coefficients of equations (I) and
(IT) were as given in Table 13.

Figure 9 shows a typical growth curve obtained for apples. The vertical kinc at T/T__ =0.55
indicates T,. The interval between T and T__is the pre-harvest interval, which is generally of
interest in decline studies, while T, corresponds to «Day 0» of the residue decline curve.

In many cases, the growth during the pre-harvest interval, or else during the time T/T
= 0.5 - 1, can be approximated by the linear function (II) in Table 12 even if the overall growth

L T
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FIGURE 9
Growth profile of apples (5 varieties).
Based on data in Kolbe (1979), Hifchen Research Station.
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TamE 12
Plant growth functions
Y/Y = b(T/Tye -0 +a (1))
Y/Y e = A+B(T/T,,} (I
Parameter Y = growth stage expressed as diameter
Parameter T = time scale (e.g. in days) expressing the "life time" of the fruit until maturity (T, ..}

If t = time after the application of the pesticide,
/T max = 'frmax + TP/Tmax (D)
Tp = point of lime up (o which plant protection measures were maintained

TabLE 13
Coefficients in the growth functions (Table 12)

* Relative time scale (see Table 12); values refer to the average of the decline studies used for the evaluation
** No data or not relevant
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is not already linear, as indicated by the broken line in Figure 9. The entire growth curve, if it
is not linear, can be described by equation (I). We will not enter here into more details about
these evaluations (8).

4.2.2. Fitting residue data to a Ist-order degradation law

The interesting facet of the growth curves is that apparently they can be used to describe
the overall decline of residues as well as both their dilurion by plant growth and their decrease
due to true degradation. In exploratory calculations, this could be shown by combining the
growth function with the assumption of Ist-order degradation kinetics (ArpENDIX 9). Taking
apples again as a representative crop, the decline curves for a fungicide shown in Figure 10 a
were obtained in this way. The unbroken line shows the overall residue decline, the two other
curves show how decline would proceed if it were due solely to the increase in plant mass or
solely to the degradation of the chemical.

These two curves were respectively obtained by setting k = 0, and by considering only the
exponential function in formula (iii) of ApPENDIX 9 (see also AppenDix 10, with T, = 93 days,
T .. = 135 days, k = 0.02594. The degradation half life was In 2/k = 26.7 days, as opposed to
a T/2 of 13.9 days for the overall decline. The time for the overall decline can in each case be
obtained by multiplying the two separate residue values, e.g. 0.41 (dilution) x 0.34 (degradation)
=0.14 mg/kg on day 42 in Figure 10 a.

Apart from z slight deviation in the early phases, the curve for the overall decline compares
quite well with that obtained with the formal model RF 1st order (Figure 10 b). Assuming that
reliable data on the increase in plant mass are available and that the course of the decline curve can
be adequately described by equation (iii) in APPENDIX 9, an interesting opportunity arises for
considering the two effects separately. It appears worthwhile to investigate this approach in more
detail.

4.2.3. Fitting residue data to a degradation law of arbitrary order

The approach described under 4.2.2 was based on the simplifying assumption that
biologically and/or chemically induced degradation of residues will obey 1st-order kinetics. The
next question is: What do we get if we assume kinetics of an arbitrary order n in the physical
model? The theoretical background for these considerations is described in Appenbix 10,

For comparison, we evaluated residue data from 139 decline studies by two approaches:

* using the formal model of individually optimal order according to Section 2.1
(unweighted)

* using the physical model with each of the reaction orders n = 1, 1.5 and 2; in each case

the best fit (method of least squares) was chosen for comparison.

In the calculations using the formal approach, the best fit was obtained with a 1st-order
model in 55 % of these studies, followed by the RF 1st order (20 %) and the function 1.5th order
(9 %). In the calculations using the physical approach, 53 % of the studies were optimally
described when n = 1, 36 % when n = 2, and 11 % when n = 1.5. In nearly half of the studies,
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Ficure 10

Decline of residues of a fungicide in apples.

a: Representation according to a 1st-order degradation law (unbroken curve).
The two other curves show how decline would proceed if it were due solely
to the increase in plant mass or solely to the degradation of the residue .

b: Curve fitted with RF 1st-order formal model, unweighted.

VB = Confidence interval, VH = Prediction interval.
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the physical model using » = 1 surpassed the formal 1st-order model, and in 13 % of the studies
the physical model using # = 2 yielded a better fit than the RF 1st order. Overall, only in 20 %
of the studies the physical model gave a poorer fit than the formal model. The improvements
were distinct, but not spectacular in most instances, as exemplified by Figure 11 a (we shall
revert to Figure 11 b later). As set out in ApPENDIX 10, and in analogy to 4.2.2, the separate
effects of dilution and degradation on the decline can be determined also with these models.

In view of the satisfactory fit achievable with this physical model, we might even dare to
claim that it gives support to the merely formal, «non-physical» approach. However, there also
appears to be a disadvantage associated with the physically based model. It can not give a better
fit 10 experimental data in which the concentration/time curve shows strong «sagging» shortly
after the application of the pesticide. All comparisons clearly showed that in most cases in which
the best fit was attained with the physical model, and not with the optimal formal model, the
reaction order in the formal approach was not a root function. In comparison to the formal
approach, the «sagging phenomenon» could be better described by the two-zone model
presented in the following Section.

4.3. The Two-zone Model

This model is based on the following assumption:

A plant part, e.g. a fruit, can be divided into two zones,
+ the volume near the surface,

* the internal volume enclosed by it.

When a pesticide is applied to the exterior of the crop, its active ingredient will gradually
penetrate to the interior. Degradation of the compound at the surface and in the outer zone obeys
different laws than does degradation in the inner zone. Obviously, degradation at the surface is
influenced by light and by biochemical reactions and may be accompanied by losses due to
evaporation and washoff, In the interior, degradation is entirely due to biochemical processes,
Shortly alter application of the pesticide, degradation in the outer zone will predominate and
moreover will proceed more rapidly than in the inner zone.

Schematically, this model can be visualized as shown in Figure I2. The mass transport of
the compound between the two zones occurs by diffusion and thus is linearly related to the
concentration of the compound in the zones, and to the interface between them. For simplicity,
it is assumed that this interface is proportional to the volumes of the zones and that back-
transport from the interior to the exterior is negligible. The volumes are known functions of
time, as was discussed in Section 4.2.1.

These considerations can be formulated mathematically (for derivation, see AppENDIX 11) as
set out in Table 14. Based on the general formulation (i), equation (it) describes the degradation of
compounds in crops according to the two-zone model. The function V (t) describes the growth
profile of the crop.
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Ficure 11
Decline of residues of a fungicide in apples.
a: Curves fitted with the Ist-order formal model and the 1st-order physical model.
b: Curve fitted with the Two-zone model.
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Ficure 12
Schematic representation of the Two-Zone Model.
For explanation of k,-k,, sce APPENDIX 11.
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The growth profile can be described by making use of the coefficients given in Table 13
and formula (II1) in Table 12. In addition, it must be taken into account that the volume of a
spherical fruit is proportional to the 3rd power of the diameter D (V = /6 x D). Therefore we
can express the total fruit volume as a function of time, with a suitable proportionality constant,
K, by the following terms for V_(1):

V_(t) for: Apples

tot

K {0.3 + 0.7 (/105 + 0.55)}

Peaches = K {0.5 + t/104}3
Pears = K {0.7 + ¥/126}3
Nectarines = K {0.2 + 0.8 (/68 + 0.5)}°.

If no function to describe the growth prafile of a given crop is available, the residue values
can be fitted by a function that ignores growth. This can be done on the assumption that an
adequate fit will be obtained with the aid of the four coefficients, P, - P, which are obtained
when the denominator in (ii) Table i4 is ignored.

The model was verified using about 280 decline studies. With the aid of direct fitting
procedures, the fitting parameters P, - P, and the residual sum of squares, as a measure of the
goodness of fit, were calculated. The growth profile was taken into account in 70 % of the
studies. In 46 % of the cases, one addend in the model equations contributed less than 5 % to
the result of the fit. No correlation with certain active ingredients or crops was detectable.

In about 90 % of the cases, the decline of the residues could be reproduced more accurately
with this model than with the formal models described in Section 2. Particularly the «sagging»
phenomenon often observed shortly after treatment could be described to a very close approxi-
mation by the two-zone model. 98 % of the cases that previously could be described only by
one of the root functions were described more successfully by the new approach.

In Figure 11 b an example was given of residue data fitted with the two-zone model in
comparison to curves fitted with both the formal and the physical model of 1st order. This
Figure shows that the curve obtained with the two-zone model compares well with that obtained
by the physical model.

In Figure 13, another comparison is presented. In a, the curves were fitted with the formal
model RF 1.5th order and the 2nd order physical model, respectively (showing that the formal
approach gave a better fit). In b, the two-zone model was used.

The curve in Figure 13 b reveals a peculiarity that we occasionally observed when applying
the two-zone model. In these cases, it must be assumed that the residue declines extraordinarily
rapidly for a short time immediately after application of the pesticide. For such extremely short
intervals, there are usually no experimental data to verify the interpretation made by the model.
Formally, however, the fit of the curves to the measured values is superior to those obtained with
the two other approaches, as may be seen from the sum of squared deviations (SSR) for Figu-
re 13 in Table 15. For comparison, the SSR is also given for the curves of Figure 11. For
exemplification, the Table lists the fitting parameters P which were obtained in the calculations
for Figures 11 b and 13 b. In these calculations, account was taken of the growth profile for
apples.
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TasLE 14
Formulae for computing residue decline according to the Two-Zone Model

c= (CV).mr,(] kle_k“t +(k3 _k4)e_(h+k3)!
Viot Fy+{dey — Ky )

0]

where ¢ = concentration of the compound averaged over the total
volume of the plant part
t= time (e.g. days) after the {last) application of the pesticide

On merging the constants, we obfain

P f2typeFef

c= (i)
Virl1)
resulting in:
_ (("I:/’).mr.olk1
Ll R | ky = B
[kl +{ky -y )]
Py=ky 157 V)l - B(P-B)
¢ sur,Q
(CV) '(ka‘k4)
Py = Twurd ky = P —k
’ [k +{k3—k4) o
Py =(k +k3) ky =0
TABLE 15

Comparison of the goodness of fit of three models,
and model parameters in the fitting function, for Figs. 11 b and 13 5
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Decline of an acaricide in apples.
a: Curves fitted with the RF 1.5th-order formal model and the 2nd-order physical model.

b: Curve fitted with the Two-zone model.
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As for the physical models which account for plant growth, we presentled the two-zone
mode] hoping that those interested in residue kinetics might feel encouraged to test it for further
investigation of its merits or demerits.

ADDENDUM

Reference: Section 2.1,

It should be noted that, because of the different ways of transformation of the residue values,
R, in the formal models (R being transformed into cither log R or 1/YR or 1/R), the resulting
confidence intervals are not directly comparable if a given set of data is evaluated by different
modets.

Reference: Section 2.2.1.
If the amount of L, is not known beforehand, e.g. in an unweighted linear regression, it can
be obtained by computing the following terms:

in 1st order functions: LO = (1()S - 1)+ 100

2
in 1.5th order functions: L) = [ﬁ-—] -1]-100

in 2nd order functions: Ly = [I—%J - 1i| 100
with § as defined in ArPENDIX 1.

These terms refer to the upper limits of the latitude ranges.
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"

APPENDIX 1; Confidence intervals for decline curves in linear regression J

First, we require the following terms:

SXX
syy
sxy
8sI

Z(x~X) =L x*-(ZxPn

Z(yi-¥)» =Zy*-(Zy)y/n

Lx-%)'(-7) =IZxy-Ex-Zy)n =Lxy-VIx
Z(yi-¥) =syy—b-sxy = syy — (sxy)¥/sxx

sum of squared residuals.

With the aid of the residual variance

SZ

we can calculate the two standard deviations,

Sp

=\2
g . _1_+(x -X)
n o osxx

standard deviation of an estimated § (value on the straight line) at a given
point X

=\2
N T s
n SXX

standard deviation of a predicted value y at a given point x,

and with them, the confidence intervals

Clsyy

Clg

Cley

where

§ tsg V2 F
9tSE't
i(iSp-t

¥ = estimated value(s) of y on the regression line

F =F3, n- 2) from tables of the F-distribution, normally at o. =3 %

t = t(q _ 2) from tables of the t-distribution, normally at o = 5 %
(two-sided).

Here, S is identical with the term sg,,, used in Appendices 5 and 7.
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APPENDIX 2: Test for the goodness of fit

The coefficient of determination (according to WALTER (/2)) is

Z(Ri - Rm'od)2

2 = 1
(% -Rf
with  R; = residue values measured
Rood = residue values on the (back-transformed) decline curve
R = mean of the measured R;,

This computation is performed in the back-transformed system because the selection of the best
fit model is also performed in this system,

The test quantity D is
D = |r]-—t
t2+ {n -2)
with || absolute value of the coefficient of correlation, r

t-value (two-sided), with n — 2 degrees of freedom, from the table of the
t-distribution.

-+
L

APPENDIX 3: Derivation of the absolute standard deviation in expressing analytical latitudes

The formula for the calculation of the relative standard deviation L (Table 5) can be modified to
represent the absolute standard deviation 3. By inserting the terms

L-R _ Lg
Labs W and Lo abs 100
in formula (I a) in Table 5 we cbtain
log (Laps) = log(Lpaps) + logR(logK+1)

log (Loass) * logR(log K +log 10)

log (Lgas) + logR(log 10K)

or, by taking antilogarithms,

Lo,abs CRlog (10K) = Lﬂ,abs . R 1+og (X}

Laps =
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[APPENDIX 4: Conversion of HORWITZ's formula

HORWITZ (5) expressed the relationship between the CF of the measured values and the
percentage content G of the analyte in a sample by the (here slightly modified) form

CV(%) —ol-05 log G.

But logG:Iog(R-lO_G),
and so the HORWITZ formula becomes

CV(R) = 2105[-6 + tog(R)] _ ;4-05 log (R)

:16-(%)’03(}{)
2

Since « 102 (8) = p 08 (@), we may interchange (715) and R in this equation, giving

log (—J
cV(R)=16.R \V2/.
A comparison with formula (I b), Table 5, and the formula in Figure 5 gives, as stated (CV = L):

1
Lp=16%, K=|—|=07071
o-10% K=(7]

APPENDIX 5: Linear weighted regression

In unweighted linear regression, the variance of the target (residue) values is regarded as
constant. By using a linear weighted regression it is possible to formulate a non-constant
variance so that for every value of Yj the variance (Var) is given explicitely by
2
Var(f)=2— (i=1,2.....n). 0}
W .
Here the weights w are known positive numbers which will be defined in such a way that they
correspond to a certain value X (Table 5). If the magnitude of &2 is unknown, the residual

variance, S, o, is used as the best estimate.

Calculation of weights

If we regard the formulae given in Table S as expressing the relative and absolute standard
deviation of the analytical error in the determination of R, we can use (Il a) to calculate the
variance. We obtain

Var(R) = L% = R2.L} e R¥EK) )
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According to the error propagation law (see APPENDIX 6) the variance of the transformed
analytical values Y = f (R) (see Table 1) is directly related to Var (R) as follows:

df P
Var(Y = f(R)) =~ = Var(R). (iii)
Thus in conjunction with (i) above, the weights may be calculated as
2 2
o o .
W = A . i)
Var(Y 2
™) [i] Var(R)
dR
The function f differs according to the model employed, being
o f=log(R) for the 1st- and RF 1st-order models
o f= R for the 1.5th- and RF 1.5th-order models
e f=1R for the 2nd- and RF 2nd-order models.

The appropriate forms of f must be employed in calculating the weights w for models A - F

(Table 1).

In these calculations, any constant factor occuring in the right hand side of formula (iv) above
can be omitted, because it would cancel out (e.g. in formulae (v) and (vi) below). This fact was
employed in the calculation of the weights, whereby formula (iv) resulted in the expressions
listed in Table 7.

Calculation of confidence intervals

To fit the model constants a and b (according to Table 1), the method of least squares is
employed in such a way that now a minimum is sought for the weighted sum
n
§= Y wit-a-bx).
i=1
We then obtain for a and b the expressions

hY — —
h=—"% a=Yw-b-Xw
SWH
where n = number of value pairs (Y; X)
Xy = weighted mean of all X -values = Z_Z“E
W
Yu = weighted mean of all ¥-values = P
>w
Sy = TowX2 - Zw(fw)z and Sy = D WXY - Y wXyTy.

As residual variance, whose expectation is proportional to 62, we obtain
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) 1 S
S?Eest = |:Swyy_ x}’:l

n-2 Swcx

Zsz —Zw(?w)z.

For our evaluation, we require the confidence interval for the entire line (Cl(g; y) and/or the
prediction interval Clpy.

il

with S,

The confidence interval of the line is given by

Y = Voo +b(X'-Xw) t ks - Ass )

(x-%0)

: 1
with k5=1/2 Fosu; (2,n-2) and ASS_SRest'JE"'—.

wax

where Fos o, (3 n-2) s the critical value of the F-distribution for a confidence level of 95 % with

2 and n-2 degrees of freedom, and X' is the point of the running coordinate.

The corresponding formula for the prediction interval is:
Y, = Yw+b(X'-Xw) kg - Asg (vi)

, = \2
with kg =1 and  Asg=s L, 1 o)
= 0. —pp = e — -
6 = fo504, f=n-2 86 = SRest "\ > Sw S
The factor t is taken from a table of critical values of the t-distribution for n-2 degrees of
freedom and a confidence level of 95 % (two-tailed). The weight w' at the point of the running
coordinate X' is calculated in accordance with formula (iv).

Formula (vi) can be used to determine the time at which a given residue level Y = Y" will exist,
taking the prediction interval into account. To do this, the equation is solved for X

X =?w+b(r—:’w)ik7-Ah (vii)

- 32

: s 1.1 (¥'~Fw)
with k7:t95%,f=n—2 and A%:%\/[F-‘-ﬁ]c-‘-_ﬁ—
WXxX

2
foge; f—p_2"S
where the quantity C is definedas C = 132—(959/’1r n-2 R”t).

wax
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IAPPENDIX 6: Gauss's error propagation law

With the aid of the error propagation law the error of a quantity z can be calculated from the
errors (if known) of the quantities’

x; (1=1,2,3,..)

if values of z and x are linked by a known function f in accordance with
z=f(x}, x3 %3 ...).

The variance of z, Var(z), is defined by (E = expectation)

Var(z) - E[(z - E(z))z].

For the sum of two values z; and zp we have

Var(z1+z2) = E[(zl+zz—E(zl+22))2:|.

Because
E(z)+2,) = E(z)+E(z),

by applying the binominal formula (a + b)? = a2 + 2ab + b2 we obtain
Var(z +z,) = Var(z) +Var(z)+2Cov(z,2)

where Cov is the covariance defined by
Cov(z,2) = E[(Zl -E(n)){z - E(Zz))]-
If we replace z; by kz; and z, by kyz, with two arbitrary constants k; and &, then since
E(kz) = kE(z)  and Var(ks) = KVar(z),
we obtain the somewhat more general equation
Var(kyz + kyzy) = k12 Var(z)+ k% Var(z,) + 2k, Cov(z,.2,). (0]

Now the function £ at the "0" position can be expanded into a Taylor series and broken off after
the first-order terms:

: - z“(%ll' (xl—x10)+(gc—j;l- (2= x20) .

Repeated application of equation (i) to this relation gives

var(2) -z [%T ar(s) + 25 [Zx_f

0 i<j ?

) [gx—f) Cav(x,- ,xj). (ii)
0 0

J
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Special case I. Only one variable x; = R, so that z = f(R)
Here the covariances vanish and the partial derivatives become ordinary derivatives, giving
2
Var(z) = f(R) = [%} Var(R)
(see APPENDIX 5).
Special case IT. Accuracy of (T/X), e.g. for the 1st-order model (see Section 2.3):

As in Special case I, there is again just one variable x; = b, and we have

2= (17x) = 2L~ 1)
s0 that, by analogy with Special case 1, we obtain
2
Var(T/ X) ~ [loi (2X )] Var(b)

- [@Tw(a)

{see Tables 9 and 11).

IAPPENDIx 7: Accuracy of times T/X |

The standard deviations of the decline times are derived with the aid of the error propagation
law (APPENDIX 6), using the model parameters a and b for the variables x;. For the variances of a
and b it is necessary to use

Var(a) = L+ X%v ~s%¢eﬂ and
Sw o Suxx
2
Var(b) — SRest
Swoex
and to take into account that both parameters are not independent of each other:
3 2
Xo-
Cov(a,b) = Z2W SRest
wax

(see APPENDIX 5 for definition of the individual terms).
For the individual models, we then obtain the corresponding expressions for calculating the

accuracy of the times T/X, expressed as the standard deviation St (Table 11). These
expressions are obtained in analogy to Special case II in APPENDIX 6.
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|APPENDIX 8: Multiple linear regression

In multiple linear regression there are k independent variables
X1,X2,X3,.... Xk
to be related to the dependent variable y as follows:
y =bg + x| +boxy + byxa+.. . +byxy +e Q]
Y=Ycte, (ii)
where
Yo = by + byx} +baxy + baxg+. +bexy
represents the value calculated from the regression function.

If there are n samples available for determination of the regression coefficients b and the residues
e, the relationship (i) for the n data sets can also be formulated, very simply, in matrix notation:

y=Xh+e (i)
y-values x-values

¥1 X1 Xz X130 Xk

¥2 X21 X3 X3 v X2k

¥n Xnl Xn2 Xp3 0 Xnk

Herey is a (n, 1) vector comprising the n sample values of y, b is a (k+1,1) vector comprising the
regression coefficients b, and e is a (n,1) vector comprising the residues:

Y1 e bo

e b

¥y= y.2 , e= 2 ; b= :1
¥n Cn by

X denotes the following (n,k+1) matrix:

X10 X311 X122 X133 Xk
X = X20 X1 X220 X3 - X2k
Xn0 Xnl Xn2 Xp3 "7 Xnk

To simplify the notation, here the additional variable xg is introduced, whose sample values x;
are all identical to 1.
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Further calculation with the aid of matrix algebra leads to

. values for the model parameters (regression coefficients)
¢  an estimate of the accuracy of the model parameters
] a definition of confidence intervals.

The regression coefficients b are determined, as usual, by the method of least squares. The
defining equations for the coefficients b are the so-called normal equation system.

In matrix notation the normal equation system is

(X'X)b=X'y,
where the prime (") indicates the transposed matrix obtained by interchanging the rows and
columns.
Determination of the inverse matrix with matrix elements Cj;

vyl

(X'X) " ={Cy}
finally yields for the coefficients b:

b=(X'X)!X"y. (iv)

Accuracy of the model parameters (variance-covariance matrix)

To access the accuracy of the model parameters, the variances of the regression coefficients are
required. These are best obtained from the so-called variance-covariance matrix of the regression
coefficients, the diagonal elements of which are the requird variances.

The variance-covariance matrix takes the form
Var(b) = E{[b- E(b)][b - E(b)]'}, v)

where E is the expectation. If Var denctes the variance and Cov denotes covariance, the
variance-covariance matrix in its expanded form is

Var(by)  Covibg,b;) Cov(bg,bp) - Cov(bg,by)
Var(b) = COV(]:Jl,bo) Vaf:(bl) COV(E’I,b2) COV(l:l,bk)'

COV(bk,bo) COV(bk,bl) COV(bk,bz) Var(bk)

Insertion of (iv) in (v) vields
Var(b) = o2 (X' X)L (vi)

If o is unknown, the residual variance
n
2., =1 <2
'Rest k-1 ,.,Z, i

is used as the best estimate.
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Thus the formula for calculating the variance-covariance matrix is finally

Var(b)~ 55, (X' X)\. (vid)

Definition of confidence intervals

To establish a confidence interval for the true value E(y) at the n sample positions, the variance
for the difference between vy (see equation (ii}) and E(y) at these sites must be determined.

In matrix notation y, = Xb and E(y) = XE(b), so that
Var{y ~E(y)} = XX X)7'X'= {Vi}.
Only the diagonal elements Vp,, of this matrix are used.

With the matrix elements of the variance-covariance matrix, denoted above by C,-j, we obtain
k k

2
Viam ~ Z Z Cij"mi"mj SRest-
i=0j=0
The confidence interval at the mth measurement point is then

Ve~ tas2 f=n-k-1"vVYmm < E(¥) < ¥e+1t5/2 f=n-k-1'vVYmm - (viii)

where ¢ is the significance level and t is the one-sided critical value of the t distribution.

If simultaneous confidence intervals (the confidence intervals of the curves) are to be stated, the
t factor in (viii) must be replaced by ,/2F-(1+ k), where F is the critical value of the F distribu-
tion for f; =k +1 and f; = n— k-1 degrees of freedom.

Confidence intervals for non-linear regression

For the case in which the model functicon that is to be fitted, f, depends non-linearly on the model
constants in accordance with

v; =f(bg,by,..., by X5, X2, X )+ & = £(b; x;) + ¢ where i =1,2,3,..,n,

the procedure is as follows:

Direct fitting using the method of least squares gives a set of model constants bj,. These can be
used to linearize the function f and replace it with the tangential plane:

of of of
— ¥ = —— | (bg—=bgg) +| =— | ‘(by—big)+---+| — | ‘(bx — bys).
Y Yo (5"30]0( 0 00) (abl)o( 1 10) [%k)o( k ko)
In matrix notation we then obtain
Y—¥o = J(b-by), (ix)

where J is the Jacobi matrix, in which the second subscript on the partial derivatives refers to the
sampling position;
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|

(i] i) of
by 0,1 b 0,1 by 0,1
(i) o (o

&g 0,2 by 0,2 by 0,2
= (,@f_) o of
d’q 0,3 abl_ 0,3 abk_ 0,3
(i] EAT i)
b 0,n 0y 0,n dby 0,n

Referring back from non-linear regression to multiple linear regression
Equation (ix) is structered exactly like equation (i), however with y and b being replaced by the
differences from the values at the linearization point. But, since

Var(b —b,) = Var(b),

the calculation of the variances is not hindered by this. The matrix X is replaced by the Jacobi
matrix J, and so all the formulae for the variance-covariance matrix and the confidence intervals
that were derived for the multiple linear case can be adopted directly after replacing X by J.

Confidence intervals and prediction intervals
The formulae for the confidence interval can be taken directly from (viil), the matrix elements C;;
being determined by the Jacobi matrix.

To obtain the formulae for the prediction interval, all that is necessary is to replace the quantity
Vi in (viid) by Vi, + s%lm as in the case of multiple linear regression.

|APPENDIX 9: Fitting to a degradation law of 1st order |

By using the coefficients given in Tables 12 and 13, and with V = /6 - D?, apple growth can be
described by

V/Vpge = 1093(T7 )t 0
Biologically, e.g. enzymatically, induced degradation obeying 1st-order kinetics is described by

d "
—V = -Vk ii
%¢ ¢ (if)
where V = fmit volume

¢ = residue concentration

k = reaction constant for degradation

t = T-Tp=time from Tp.
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By substituting (i) in (ii) and integration (initial conditions t = ty = 0, ¢ = ¢g) we obtain

exp(—kt
() = w——pw(u—-—)ﬁ— (ii)
(1+e/Tp)*
where ty = time at which the first sample for residue measurement is taken

¢g = residue concentration at time tg.

BPPEND!X 10: Fitting to a degradation law of arbitrary order

In analogy to formula (ii) in APPENDIX 9, biologically induced degradation obeying kinetics of
arbitrary order is described by the more general expression

%V(,‘: —Vke™, )

where » is the order of the reaction.

In the case k = 0 (no degradation), equation (i) has the solution
4 _ Vo

c v’
so the function f = % stands for the dilution effect, where '} is the volume at t = 0.

Assuming a multiplicative model, we can now introduce a function g standing for the
degradation effect, and where the combined effect is given by

¢ 14, .
Lo josky = (R)e (9
(e V
According to (i), g is a solution of the equation
-1
dg 9" )n n ;
= = —k-| == . th g{t=0) = 1.
dt [ V g with g(t=0)

If the growth profile for the period of interest, from the last use of the pesticide to maturity of
the crop, is represented by

vV = Vg +Bt, (ii)

then solution of the differential equation (i a) with the growth law (i} gives the following
equations for the degradaution effect alone:
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I
©

glk.1) — forn=1 (iii a)
17{1-n)

for 1<n<2. Bz 0 (iii b)

I
1 1
.
|
[FNEY
1|
=S
[
G'l-'p‘.‘
=
- o |o-
TN
=
S
~
k-
I
—_—
N’

-1
_ Vo _
= 1+§'C0°k'ln[70]] forn=2,Bz0 (iti ¢)
_1,1V/(1-n)
= [1+(n—1)kcﬁ t] forB=0.n#1 (i d)

(no increase in piant mass).

(i a) is then the expression for the combined effect of dilution and degradation.

To fit the solution (i a) to the experimental results, the constants V and B were first determined
from the weights of the individuals (m ~ V) by regression analysis. Here it is assumed that the
density of the plant material remains constant over time. Next, the constants k and ¢ at constant
reaction order, n, were determined via a direct fit. This step was repeated for various (assumed)
reaction orders. The goodness of fit was evaluated in terms of the sum of squares

F=LZ (ccalculated ~ cexperimental)z-
'The optimal reaction order is then the one for which the sum of squares is the smallest {(method
of least squares). In addition, the coefficient of determination (square of the correlation
coefficient) was considered:

r2=1-F/Z (Cexperimenta.l -c experimental)z-

APPENDIX 11: Derivation of the formulae for describing degradation according to the
Two-Zone Model

By introducing a mean concentration for the plant part as a whole

Vsur + Vinl
and the total volume
Vit = Veur +¥int (ii)

and integrating the two equations given in Figure 12, we obtain the solution

(o Fieh +(ks - ky)e Lthak
Viot by + (k3= k)

(iii)
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Integration of the system of equations
To integrate the differenttial equations let us make the substitution

Ysur = SsurV sur (iva)

MYim T GtV - (ivb)
We then obtain the following linear system with constant coefficients:

% = _(kl +k3)ysur + K2 Yins (va)

% = k]ysur - (k2 + k4)yint- . (V b)
For the general solution we assume the usual exponential law for the function y:

Veur = Ae™™ (via)

Vi = Be ™. (vib)
Insertion of (vi a} and (vi b) in (v &) and (v b} leades to a homogeneous system of equations:

(r—kl—k3)A+k2B"—“0 (Viia)

kA +(r-ky—k;) B=0 (vii b)

Equations (vii a) and (vii b) only have non-trivial solutions when the determinant of coefficients
is zero:
1—ky—k, ky

Det = kl l'—]tz —k4 0.

This gives the so-called characteristic equation for r, which has the following roots:

1'1,2 = %(kl-i-kz +}‘3 +k4)i\/%[k1+k2 +]C3+k4]2—k1k4—k2k3—k3k4.
In every case, there are fwo non-negative real roots satisfying the following equations:
n+r= ity v hy iy
nry = kyky  Raky | Ky Ky
The general solution of (v a) and (v b) is thus a sum of two exponential functions:
Ysur = Aleq]t + A2e-rZr
Yint = Bie™ +Bye ™.

To determine the four integration constants, the initial conditions must be taken into account.
Moreover the A; and B; are interconnected, ¢.g. via equation (vii b):

Your @=0) = g =00V, (=0 = C.s*ur,O'Vsur,O
ysur (t =10) 0.

kA +(n—ky—k) By =0
klAz +(r2 —k2 —k4) B2= 0.
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Hence the general solution is

[ ¥, _ _

Your = M[(fz"kl—"%)c W~ —k ~k3)e rzt]
n-n
Yt = K iCsur o Vaur 0 [ e T _ Rt ]
n-n
From these two functions the mean concentration

c = Ysur + Yint

Vsur + VFm

is now calculated, finally giving

Ssur 0V sur, 1t =y,
¢ = n-n)e M —(f—ky)e 2|
(Vsur +V.|"nt)(r2 _r]) [( 21 ! 3) ]

Growth is represented only by the bracket containing the total volume V. + V.., so only the
growth represented by the total volume ¥V, is relevant.

For the special case £y = 0 (no back transport), the expression for ¢ becomes as given in formula
(iii) above.

Explanation of symbols (if not explained ¢lsewhere)

ki, ky Exchange coefficients describing mass transport between surface zone and interior
zone :

k3 Rate constant of degradation reaction in surface zone

kg Rate constant of degradation reaction in interior zone

Veur,0 Volume of surface zone at time t = 0

Vinto Volume of interior zone at time t =0
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