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Abstract. The ABS methods have been used extensively for solv-

ing linear and nonlinear systems of equations. In this paper attempt

has been made to find explicitly all solutions of a system of m linear

inequalities in n variables, m ≤ n, with full rank matrix. Having ob-

taining the result, the problem of finding the least squares point in that

polyhedral set is transformed to nonnegative least squares with m vari-

ables. Also, those results are applied to the LP problem with m ≤ n

inequality constraints, obtaining optimality conditions and an explicit

representation of all solutions.
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Resumen. Se buscan expĺıcitamente todas las soluciones de un sis-
tema de m desigualdades lineales en n variables, m ≤ n, con una matriz
de rango completo. Después de obtener este resultado, el problema de
hallar el punto de mı́nimos cuadrados en este conjunto poliédrico en m
variables se transforma a uno de mı́nimos cuadrados no negativos en
m variables. Estos resultados se aplican al problema LP con m ≤ n
restricciones lineales para obtener condiciones de optimalidad y una
representación expĺıcita de todas las soluciones.
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1. Introduction

Let A ∈ Rm,n, m ≤ n, be a full row rank matrix and b ∈ Rm. Consider the
system of linear inequalities

Ax ≤ b, x ∈ Rn. (1)

Given a general system of inequalities Ax ≤ b, it is called feasible if there
exists a vector x∗ ∈ Rn such that Ax∗ ≤ b, and x∗ is a feasible solution,
otherwise it is called infeasible. It is clear that system (1) is feasible if A is full
rank, since equation Ax = c, c ∈ Rn is solvable for any c ≤ b. The intersection
of every finite number of half spaces aT

i x ≤ bi, i = 1, . . . ,m, is a polyhedron in
Rn. Thus, the system (1) denotes a polyhedron in Rn. Our aim is to define an
explicit form for points of the polyhedron (1) using the ABS methods.

The ABS methods [1] have been used extensively to solve general linear
systems of equations and optimization problems. They are a class of direct
iteration type methods that, in a finite number of iterations, either determine
the general solution of a system of linear equations or establish its inconsistency.
ABS methods for solving a linear system of equations are extensively discussed
in monograph [2], while monograph [14] considers their application to several
problems in optimization, including an ABS reformulation and generalization
of the classical simplex method and Karmarkar interior point method for the
LP problem.

Zhang [11] and Zhang [15] have applied the ABS methods to get a solution
of a linear inequalities system. In particular, Zhang [12] has shown that the
Huang algorithm in the ABS class can be coupled with a Goldfarb-Idnani active
set strategy, see [3], to determine, in a finite number of iterations, the least
Euclidean norm of an inequalitiy linear system. Here, we find that solution by
converting the problem to a nonnegative least squares. Shi [8] has applied the
Huang algorithm to generate a sequence of solutions of a linear system such
that any limit point is a nonnegative solution.

In this paper attempt has been made to use the ABS methods in order to
determine feasible points of the polyhedron defined by (1), providing an explicit
form of the feasible points. Hence, we can compute the least squares solutions
for (1). Then, we apply that approach to a class of LP problems.

Spedicato and Abaffy [9] have discussed the solution of the linear pro-
gramming problem with constraints (1). Their method is based on the LU
implicit algorithm in the ABS class. The problem is solved by getting an ex-
plicit form of the points of the polyhedron that is independent of the selection



An ABS representation theorem for polyhedral Sets 13

of a particular algorithm in the ABS class. Hence, the present approach is
more general in character.

Section 2 recalls the class of ABS methods and provides some of its prop-
erties. Furthermore, in this section the Huang algorithm in the ABS class has
been presented. In section 3, reasons have been adduced for solving an inequal-
ity linear system by providing a representation of the points of a polyhedron
type (1). By using this representation theorem, in section 4, computing the
least squares solutions of polyhedron (1) is presented. In section 5, the solu-
tion of full rank inequality constrained linear programming problems giving the
conditions of optimality and unboundedness is considered.

2. ABS Methods for Solving Linear Systems

The ABS methods have been developed by Abaffy, Broyden & Spedi-
cato [1]. Consider the system of linear equations

Ax = b, (2)

where A ∈ Rm,n, b ∈ Rm and rank (A) = m. Let A = (a1, . . . , am)T , ai ∈ Rn,
i = 1, . . . ,m and b = (b1, . . . , bm)T . Also let Ai = (a1, . . . , ai) and b(i) =
(b1, . . . , bi)T .

Give x1 ∈ Rn arbitrary and H1 ∈ Rn,n, Spedicato’s parameter is arbitrary
and nonsingular. It must be borne in mind that any x ∈ Rn can be represented
by x = x1 + HT

1 q for some q ∈ Rn.
The basic ABS class of methods consists of direct iteration type methods

for computing the general solution of (2). In the beginning of the ith iteration,
i ≥ 1, the general solution for the first i − 1 equations is at hand. It is clear
that if xi is a solution for the first i− 1 equations and if Hi ∈ Rn,n is such that
the columns of HT

i span the null space of AT
i−1, then

x = xi + HT
i q,

with arbitrary q ∈ Rn, forms the general solution of the first i − 1 equations.
That is, with

HiAi−1 = 0,

the following result is obtained:

AT
i−1x = b(i−1).

Now, since HT
i is a spanning matrix for null (AT

i−1), by assumption (one that
is trivially valid for i = 1), then if it is assumed that

pi = HT
i zi,
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with arbitrary zi ∈ Rn,Broyden’s parameter, such that

aT
i HT

i zi �= 0,

then AT
i−1pi = 0 and

x(α) = xi − αpi,

for any scalar α, solves the first i − 1 equations. We can set α = αi so that
xi+1 = x(αi) solves the ith equation as well. By assuming

αi =
aT

i xi − bi

aT
i pi

,

then
xi+1 = xi − αipi

is a solution for the first i equations. Now, to complete the ABS step, Hi must
be updated to Hi+1 so that Hi+1Ai = 0. It is sufficient to let

Hi+1 = Hi − uiv
T
i (3)

and to select ui, vi so that Hi+1aj = 0, j = 1, . . . , i. The updating formula
(3) for Hi is a rank-one correction to Hi. The ABS methods of the unscaled
or basic class define ui = Hiai and vi = HT

i wi/wT
i Hiai, where wi, Abaffy’s

parameter, is an arbitrary vector satisfying

wT
i Hiai �= 0.

Thus, the updating formula can be written as below:

Hi+1 = Hi − Hiaiw
T
i Hi

wT
i Hiai

. (4)

The matrix Hi is generally known as the Abaffian. Zhang [13] has shown that
every n×n matrix is an Abaffian matrix. At this point the general steps of an
ABS algorithm are given [1, 2]. In the algorithm below, ri+1 denotes the rank
of Ai and hence the rank of Hi equals n − ri+1 + 1.

The Basic ABS Algorithm for Solving General Linear Systems

(1) Choose x1 ∈ Rn, arbitrary, and H1 ∈ Rn,n, arbitrary and nonsingular.
Let i = 1 and ri = 0.

(2) Compute ti = aT
i xi − bi and si = Hiai.

(3) If (si = 0 and ti = 0) then let xi+1 = xi, Hi+1 = Hi, ri+1 = ri and go
to step (7). If (si = 0 and ti �= 0) then Stop.
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(4) Compute the search direction pi = HT
i zi, where zi ∈ Rn is an arbitrary

vector satisfying zT
i si = aT

i pi �= 0. Compute

αi =
ti

aT
i pi

and let
xi+1 = xi − αipi.

(5) Update Hi to Hi+1 by

Hi+1 = Hi − Hiaiw
T
i Hi

wT
i Hiai

where wi ∈ Rn is an arbitrary vector satisfying wT
i si �= 0.

(6) Let ri+1 = ri + 1.
(7) If i = m then Stop else let i = i + 1 and go to step (2).

Remark 2.1.

• If si = 0 and ti = 0 then the ith equation is redundant.
• If si = 0 and ti �= 0 then the ith equation and hence the system is

incompatible.
• If the system (2) is compatible then the general solution is given by

x = xm+1 + HT
m+1q, (5)

where q ∈ Rn is arbitrary.

Below is listed certain properties of the ABS methods [2]. For simplicity, it
is assumed that rank (Ai) = i.

• Hiai �= 0 if and only if ai is linearly independent of a1, . . . , ai−1.
• Every row of Hi corresponding to a nonzero component of wi is linearly

dependent on other rows.
• The search directions p1, . . . , pi are linearly independent.
• The matrix

Li = AT
i Pi,

where Pi = (p1, . . . , pi), is a nonsingular lower triangular matrix.
• The set of directions p1, . . . , pi together with independent columns of

HT
i+1 form a basis for Rn.

• The matrix Wi = (w1, . . . , wi) has full column rank and

null (HT
i+1) = range (Wi), null (Hi+1) = range (Ai).
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• If si �= 0 then

rank (Hi+1) = rank (Hi) − 1.

• The updating formula Hi can be written as:

Hi+1 = H1 − H1Ai(WT
i H1Ai)−1WT

i H1, (6)

where WT
i H1Ai is strongly nonsingular (the determinants of all of its

forward principal submatrices are nonzero).

Remark 2.2. Using the second property, Gu [4], Spedicato & Zhu [10]
modified the ABS algorithm such that the Abaffian matrices Hi are rectangular
with full row rank.

Huang Algorithm. Huang algorithm [5] is one of the most important algo-
rithms in ABS class. It corresponds to

H1 = I, zi = wi = ai

for parameters of ABS algorithm. Thus it can be shown that (see [2])

• Abaffian matrices Hi are symetric and projection to the orthogonal
complement range space of the matrix Ai−1.

• The updating formula (6) can be written as

Hi = I − AiA
+
i ,

where A+
i is the Moore-Penrose pseudo inverse of the matrix Ai.

• Vectors pi, i = 1, . . . ,m, are corresponding to vectors obtained by
Gram-Schmidt orthogonalization process applied to rows of A.

• If x1 is a multiplier of a1 then, xm+1 is the least squares solution of
(2).

In the next section, representation of the general solution of an inequality
linear system using the modified ABS algorithm has been deduced.

3. Solving Certain Linear Inequalities System

Consider the inequality linear system

Ax ≤ b, (7)
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where A = (a1, . . . , am)T ∈ Rm,n, b ∈ Rm and m ≤ n. Suppose rank (A) = m.
The aim of this paper is to determine the general solution of (7) using the ABS
methods. In doing so, consider the linear system

Ax = y, x ∈ Rn, (8)

where y = (y1, . . . , ym)T ∈ Rm is a parameter vector. Note that x is a solution
to (7) if and only if it satisfies (8) for some y ≤ b. Thus, the solutions of (7)
can be obtained by solving (8) for all parameter vectors y such that y ≤ b.

Now consider a parameter vector y such that y ≤ b. The system (8) can be
solved by using the ABS methods. For this task, take x1 ∈ Rn and H1 ∈ Rn,n

arbitrary and nonsingular. From the ABS properties, xi+1, for all i, 1 ≤ i ≤ m,
satisfies the first i equations of (8). Since, yj ≤ bj , for j ≤ i, then xi+1

satisfies the first i inequalities of (7) too. Therefore, xm+1 is a solution to
inequalities (7). Note that xm+1 is a function of the parameter vector y, i.e.
xm+1 = xm+1(y). Thus by varying y, y ≤ b, an infinite number of solutions to
(7) of the form xm+1 = xm+1(y) can be obtained. However, an explicit form
of xm+1 as a function of the parameter vector y is not obvious.

At this juncture the intention is to obtain an explicit form for xm+1 =
xm+1(y). Let Ai = (a1, . . . , ai) and Wi = (w1, . . . , wi). The matrix
(WT

i H1Ai)−1WT
i H1 is called a Wi-left inverse of Ai and is denoted by A−1

Wi
.

It is obvious from the ABS properties, that Qi = WT
i H1Ai is strongly nonsin-

gular and also that

Hi+1 = H1 − H1Ai(WT
i H1Ai)−1WT

i H1 = H1 − H1AiA
−1
Wi

. (9)

The proof to the following theorem can be found in [7].

Theorem. Suppose that A is a m × n matrix with full row rank. For the
system of equations (8) we can have

(a) The vector A−T
Wi

y(i), where y(i) = (y1, . . . , yi)T , satisfies the first i equa-
tions of (8).

(b) If wj = zj , for all j, 1 ≤ j ≤ i, then the general solution for the first i
equations of (8) is given by

x = A−T
Wi

y(i) +
(
I − A−T

Wi
AT

i

)
x1 + HT

i+1q, (10)

where q is an arbitrary vector. ��

If H1 is an arbitrary nonsingular matrix, then from (9) we have that:
H−1

1 Hi+1 = I − AiA
−1
Wi

. Hence A−T
Wi

y(i) +
(
I − A−T

Wi
AT

i

)
x1 = A−T

Wi
y(i) +
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HT
i+1H

−T
1 x1. Therefore, by setting

xi+1 = A−T
Wi

y(i) + HT
i+1H

−T
1 x1,

and noticing that xi+1 is a solution of the first i equations of (8), then (10) is
just another form of (5).

Remark 3.1. The matrix A−T
Wi

can be computed by the recurrence

A−T
W1

= HT
1 w1/aT

1 HT
1 w1,

A−T
Wi

=
[(

I − HT
i wia

T
i /aT

i HT
i wi

)
A−T

Wi−1
HT

i wi/aT
i HT

i wi

]

or, if it is supposed that wi = zi, for all i, by the recurrence

A−T
W1

= p1/aT
1 p1,

A−T
Wi

=
[(

I − pia
T
i /aT

i pi

)
A−T

Wi−1
pi/aT

i pi

]
.

(For a proof see [7]). Thus, the explicit form of the particular solution xi+1 =
xi+1

(
y(i)

)
of the first i equations of (8) is

xi+1

(
y(i)

)
= A−T

Wi
y(i) + HT

i+1H
−T
1 x1,

where y(i) = (y1, . . . , yi)T .
In this manner the following theorem is proved.

Theorem 3.1. If we take wi = zi, for all i, in the ABS algorithm, then the
general solution of the inequality system (7) is

x = xm+1 + HT
m+1q, q ∈ Rn−m

where y ∈ Rm, y ≤ b, is an arbitrary vector and

xm+1 = A−T
Wm

y + HT
m+1H

−T
1 x1. ��

The vector y ∈ Rm is called a feasible parameter vector for (7) if y ≤ b. In
what follows, a relation between the coefficient matrix A, the matrix L in the
implicit transformation of A by the ABS algorithm, and the feasible parameter
vector y is obtained.
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From the ABS algorithm we have

xi+1 = xi − aT
i xi − yi

δi
pi,

where δi = aT
i pi = sT

i zi �= 0. Since zi is arbitrary, we can assume δi > 0
without loss of generality. Let αi = (aT

i xi−yi)/δi. Then yi = aT
i xi−αiδi. But

yi ≤ bi, thus αi ≥ (aT
i xi − bi)/δi. Therefore, yi has the form yi = aT

i xi − αiδi,
where δi = aT

i pi > 0 and αi ≥ (aT
i xi − bi)/δi is arbitrary. Consequently, since

xi = x1 −
i−1∑
j=1

αjpj

the following formula results

yi = aT
i xi − αiδi = aT

i xi − αia
T
i pi = aT

i (xi − αipi) = aT
i

(
x1 −

i∑
j=1

αjpj

)
.

Since for j > i, aT
i pj = 0, thus yi = aT

i (x1 − Pα) where P = (p1, . . . , pm) and
α = (α1, . . . , αm)T . Therefore, every feasible vector y can be written as

y = A(x1 − Pα) = Ax1 − Lα,

where L = AP is a nonsingular lower triangular matrix and α ∈ Rm satisfies
the inequality system

Lα ≥ Ax1 − b. (11)
At this point it is proved that (11) is not only a necessary but is also a sufficient
condition for y to be a feasible parameter vector.

Theorem 3.2. Let x1 ∈ Rn be an arbitrary initial point for an ABS algorithm
with wi = zi, for all i, and let α be a vector with components αi as set in the
i-th iteration of the ABS algorithm. The vector y is feasible for the inequality
system (7) if and only if

y = A(x1 − Pα) = Ax1 − Lα (12)

and (11) holds.

Proof: it is proved above that if y is a feasible parameter vector then it has
the form (12). Conversely, assume that for some x1 we have:

y = Ax1 − Lα, Lα ≥ Ax1 − b.

Then
y = Ax1 − Lα = Ax1 − APα = A(x1 − Pα),
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implies that x = x1 − Pα satisfies the system (8). On the other hand,

y = Ax1 − Lα ≤ Ax1 − Ax1 + b = b.

Therefore, y is a feasible parameter vector for the inequalities (7). ��

Remark 3.2.

(1) Every feasible parameter vector y from a feasible parameter vector y∗

can be deduced. To show this, suppose that y∗ is a feasible parameter
vector (y∗ = Ax1 − Lα∗, where Lα∗ ≥ Ax1 − b). If y = y∗ − Lβ,
where Lβ ≥ y∗ − b, then y is a feasible parameter vector since firstly,
b ≥ y∗−Lβ = y and secondly, the system Ax = y is compatible becuse
y∗ ∈ range (A) by (12) and Lβ = APβ ∈ range (A). Conversely, if y is
a feasible parameter vector, then

y = Ax1 − Lα = y∗ + Lα∗ − Lα = y∗ − L(α − α∗) = y∗ − Lβ,

for β = α − α∗, and

Lβ = Lα − Lα∗ ≥ Ax1 − b − Lα∗ = y∗ − b.

(2) If b ≥ 0, then y∗ = 0 is a feasible parameter vector. In this case, the
feasible parameter vectors y are in the form of y = Lβ, where Lβ ≤ b.

Now, let H = Hm+1. By Theorem 3.2 and the property

null (A) = range (HT ) ,

the following theorem can be proved.

Theorem 3.3. Let A−T
Wm

be the right Wm-inverse of A obtained from the
application of an ABS algorithm with wi = zi for all i, to A and H be the
resulted Abaffian. Then

{x ∈ Rn | Ax ≤ b} = {A−T
Wm

b − A−T
Wm

u − HT q | q ∈ Rn−m, u ∈ Rm
+ }. (13)

Proof: In the first place it is shown that

{x ∈ Rn | Ax ≤ b} = {x1 − Pα − HT q | q ∈ Rn−m, α ∈ Rm, Lα ≥ Ax1 − b}.
To continue, suppose x ∈ Rn has the form x = x1−Pα−HT q, where q ∈ Rn−m

and α ∈ Rm is such that Lα ≥ Ax1 − b. Then Ax = Ax1 − Lα ≤ b.
Conversely, assume x∗ satisfies Ax ≤ b. Let y∗ = Ax∗. Thus the system

Ax = y∗ is compatible. Hence, by using the ABS algorithm, it may be written
x∗ = x1 −Pα∗ −HT q∗, for some α∗ ∈ Rm and q∗ ∈ Rn−m. Thus, y∗ = Ax∗ =
Ax1 − Lα∗. Since y∗ ≤ b, then α∗ satisfies Ax1 − Lα∗ ≤ b.
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Now, let wi = zi, for all i. Then

{x ∈ Rn | Ax ≤ b}
= {x1 − Pα − HT q | q ∈ Rn−m, α ∈ Rm, Lα ≥ Ax1 − b}
= {x1 − Pα − HT q | q ∈ Rn−m, α ∈ Rm,

Lα = APα = Ax1 − b + u, u ∈ Rm
+ }

= {x1 − Pα − HT q | q ∈ Rn−m, α ∈ Rm,

Pα = A−T
Wm

(Ax1 − b + u) + (I − A−T
Wm

A)x1 + HT q, u ∈ Rm
+ }

= {x1 − A−T
Wm

(Ax1 − b + u) − (I − A−T
Wm

A)x1 − HT q | q ∈ Rn−m, u ∈ Rm
+ }

= {A−T
Wm

b − A−T
Wm

u − HT q | q ∈ Rn−m, u ∈ Rm
+ }.

��

4. Least Squares Solution for Linear Inequalities System

In this section, the results obtained previously are applied for finding the
least squares point of a polyhedral set as (1):

min
Ax≤b

‖ x ‖2 . (14)

Consider Huang algorithm on ABS class in which, H1 = I and Wm = AT .
Therefore,

A−1
Wm

=
(
AAT

)−1
A =

(
AT

)+
= (A+)T

and
H = I − AT

(
AT

)+
= I − (

A+A
)T = I − A+A = PN(A),

where, A+ is the Moore-Penrose pseudo-inverse of A and PN(A) the matrix
projection into its null space. Then, from (13) it is implied that

{x ∈ Rn | Ax ≤ b} = {A+b − A+u − (I − A+A)q | q ∈ Rn−m, u ∈ Rm
+ }.

It has been shown below that (14) is equivalent to the nonnegative least squares
problem

min
u≥0

‖ x̄ − A+u ‖2, (15)

where, x̄ = A+b. To do so, let y(u) = x̄ − A+u. Since the Abaffian matrix H
is symmetric, hence the optimal value of the least squares problem

min
q

‖ y(u) − HT q ‖2 (16)
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will be ‖ (I − H+H) y(u) ‖2. On the other hand, PN(H) = I − H+H is the
projection matrix into the null space of H. By the ABS properties, null (H) =
range (AT ) is obtained. Therefore, PN(H) = PR(AT ) = A+A and the optimal
value of (16) is ‖ A+Ay(u) ‖2.

Hence the following results are obtained:

min
Ax≤b

‖ x ‖2 = min
u≥0

min
q

‖ x̄ − A+u − HT q ‖2

= min
u≥0

‖ A+A(x̄ − A+u) ‖2

= min
u≥0

‖ A+AA+(b − u) ‖2

= min
u≥0

‖ A+(b − u) ‖2

= min
u≥0

‖ x̄ − A+u ‖2 .

The following theorem is thus proved.

Theorem 4.1. If A is a m×n matrix with full row rank then by using Huang
algorithm in the ABS class, we have

min
u≥0,q

‖ x̄ − A+u − HT q ‖2= min
Ax≤b

‖ x ‖2= min
u≥0

‖ x̄ − A+u ‖2 .

��

From the above theorem, solving (14), with n variables, is equivalent to
solving the nonnegative least squares problem (15), with m variables. The
following algorithm may thus be used for solving (15) [6].

(1) set N = φ, M = {1, . . . , m}, and u = 0.
(2) compute the m-vector w = A+T (x̄ − A+u).
(3) If the set M is empty or wj ≤ 0 for all j ∈ M , go to Step (12).
(4) Find such an index t ∈ M that wt = max

j∈M
{wj}.

(5) Move the index t from set M to set N .
(6) Let B denote the n × m matrix defined by Bej = 0 for j ∈ M , and

Bej = A+ej for j ∈ N . Compute the m-vector z as a solution of the
least squares problem Bz = x̄. Define zj = 0 for j ∈ M .

(7) If zj > 0 for all j ∈ N , set u = z and go to Step (2).
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(8) Find such an index r ∈ N that

ur

ur − zr
= min

j∈N

{
uj

uj − zj
| zj ≤ 0

}
.

(9) Set α = ur/(ur − zr).
(10) Set u = u + α(z − u).
(11) Move from set N to set M all indices j ∈ N for which uj = 0. Go to

Step (6).
(12) Comment: The computation is completed.

It is proved that the above algorithm is finite and the number of iterations
is typically O(m/2).

5. ABS Solution of a Certain Linear Programming Problem

Now consider the linear programming problem

max cT x : Ax ≤ b (17)

where A ∈ Rm,n, m ≤ n, rank (A) = m, and b ∈ Rm. For simplicity, take
M = A−T

Wm
and x∗ = Mb. From Theorem 3.3, the above problem is equivalent

to
min (cT Mu + cT HT q) : u ∈ Rm

+ , q ∈ Rn−m. (18)

Now, let c̄ = MT c and
I+ = {i | c̄i > 0},
I− = {i | c̄i < 0},
I0 = {i | c̄i = 0}.

(19)

Theorem 5.1. Let the ABS algorithm be applied to A as in Theorem 3.3.
Then

(a) If Hc �= 0, then problem (17) is unbounded with no solution.
(b) If Hc = 0 and I− �= φ, then problem (17) is unbounded with no

solution.
(c) If Hc = 0 and I− = φ, then there are an infinite number of optimal

solutions for (17) in the form of

x = x∗ − HT q −
∑
j∈I0

ujMej ,
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where q ∈ Rn−m and uj ≥ 0, j ∈ I0, are arbitrary and ej is the j-th
unit vector in Rm.

Proof:

(a) Considering (18), as Hc is not a zero vector, it is obvious that q can be
set appropriately to obtain an arbitrarily small value for the objective
function.

Using the notation of (19), problem (17) can be rewritten as

min z =
∑
j∈I−

c̄juj +
∑
j∈I+

c̄juj +
∑
j∈I0

0uj : uj ≥ 0 ∀j.

(b) Since I− �= φ then k ∈ I− exists. Letting u = tek, then z → −∞,
when t → ∞. Hence (17) is unbounded and has no solution.

(c) In this case, z =
∑
j∈I+

c̄juj +
∑
j∈I0

0uj . The minimizers of z are written

as u =
∑
j∈I0

ujej , where uj ≥ 0, j ∈ I0, is arbitrary. Thus, the optimal

solutions to (17) have the form

x = x∗ − HT q −
∑
j∈I0

ujMej ,

where q ∈ Rn−m and uj ≥ 0, j ∈ I0, are arbitrary. ��

Remark 5.1. According to the ABS properties, HAT = 0 and hence
range (AT ) = null (H). The condition Hc = 0 is then equivalent to the Kuhn-
Tucker condition c = AT λ, for some λ. Since AT has full column rank, λ is
unique. On the other hand, the vector c̄ satisfies the system AT λ = c, be-
cause, the rows of A−1

Wm
being linearly independent, the solution of AT λ = c is

equivalent to the solution of

A−1
Wm

AT λ = A−1
Wm

c

and hence λ = A−1
Wm

c = c̄. Thus, c̄ has the same sign as the Lagrange multi-
pliers, component-wise. If c̄ �≥ 0 then the problem is unbounded and has no
solution. In this case, it can be realized that λi < 0, for all i ∈ I−, and λi ≥ 0,
for all i �∈ I−. If c̄ ≥ 0 then the problem has infinitely many optimal solutions.
Here, as it is expected for optimality, λi ≥ 0, for all i.

Using the above theorem, the following algorithm is suggested for solving
the linear programming problem (17).
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An ABS Algorithm for Solving the Linear Programming Problem
(17):

(1) Applying an ABS algorithm to the coefficient matrix A and computing
M = A−T

Wm
and H = Hm+1.

(2) If Hc �= 0 then Stop (the problem is unbounded and hence has no
solution).

(3) Let c̄ = MT c and form the following sets

I+ = {i | c̄i > 0},
I− = {i | c̄i < 0},
I0 = {i | c̄i = 0}.

(4) If I− �= φ then Stop (the problem is unbounded and hence has no
solution).

(5) (I− = φ) Compute
x∗ = Mb.

The optimal solutions have the form

x = x∗ − HT q −
∑
j∈I0

ujMej ,

where q ∈ Rn−m, uj ≥ 0, j ∈ I0, are arbitrary numbers and ej denotes
the j-th unit vector in Rm. Stop.

Conclusion

In this paper a representation theorem on the basis of ABS methods has
been implemented to obtain the points of a polyhedral set. By making use
of the above theorem it has been shown that the problem of finding the least
squares points in the polyhedral set is equivalent to a nonnegative least squares
problem. Similarly, by applying the above theorem certain typical LP problems
have been considered and dwelt upon in detail to obtain optimality conditions
and an explicit representation of all solutions.
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