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Exhaustively Axiomatizing oS3  and oS4

Gemma Robles*, Francisco Salto** and José M. Méndez*** 

RESUMEN
oS3  y oS4  son las restricciones con la Conversa de la Propiedad Ackermann

de los fragmentos implicativos de las lógicas S3 (S3 ) y S4 (S4 ) de Lewis, respecti-
vamente. El objetivo de este artículo es proporcionar todas las axiomatizaciones posi-
bles con axiomas independientes de oS3  y oS4  que pueden formularse con una 
modificación de la “lista fuerte y natural de implicaciones válidas” de Anderson y 
Belnap. 

ABSTRACT
oS3  and oS4  are the restrictions with the Converse Ackermann Property of 

the implicative fragments of Lewis’ S3 (S3 ) and S4 (S4 ) respectively. The aim of 
this paper is to provide all possible axiomatizations with independent axioms of oS3
and oS4  that can be formulated with a modification of Anderson and Belnap’s 
“strong and natural list of valid entailments”. 

I. INTRODUCTION

An implicative logic L has the Converse Ackermann Property (CAP) if 
(A B) C is unprovable in L whenever C is a propositional variable. The 
CAP can intuitively be interpreted as the non-derivability of non-necessitive 
propositions from necessitive ones (A is necessitive iff A is of the form �B).

The question about which systems do possess the CAP is first proposed 
in Anderson and Belnap (1975), §8.12. In Méndez (1987) it is answered for 
implicative and positive logics, in Méndez (1988) for logics with a so-called 
semi-classical negation, and in Kamide (2002) for logics with a strong nega-
tion. Syntactically speaking, logics with the CAP are defined by restricting 
contraction

(A  (A B)) (A B)
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and assertion

A ((A B) B),

to the case in which B is an implicative formula (A is implicative iff A is of 
the form B C). Thus, logics with the CAP are contractionless logics. Two 
interesting logics of this type are oS3 , and oS4 . These ones can intuitively 
be understood as the restrictions with the CAP of S3  and S4  respectively 
(i.e., the implicative fragments of Lewis’ S3 and S4 as they were axiomatized 
by Hacking [see Hacking (1963) and Méndez (1988)]. This paper is a sequel 
to Méndez (1987), Méndez (1988), Salto, Robles and Méndez (1999), Salto, 
Robles and Méndez (2001) and especially, Robles and Méndez (2002). We 
exhaustively axiomatize oS3  and oS4  with a modification of Anderson 
and Belnap’s “strong and natural list of valid entailments”.

II. LIST OF CHARACTERISTIC THESES

Anderson and Belnap’s list is the following (see Anderson and Belnap 
(1975), §8.15) 

1. A A

2. (A B) ((B C) (A C)) 

3. (B C) ((A B) (A C)) 

4. (A (A B)) (A B)

5. (A (B C)) ((A B) (A C))

6. (A B) ((A (B C)) (A C))

7. (D B) ((A (B C)) (A (D C))) 

8. (C D) ((A (B C)) (A (B D))) 

9. (A (B C)) (A ((D B) (D C))) 

10. (A (B C)) (A ((C D) (B D))) 

11. (A ((B C) D)) ((B C) (A D)) 

12. (B C) ((A ((B C) D)) (A D))

13. (A B) (((A B) C) C)

14. ((A A) B) B
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For oS3  we have added 

15. (B C) (A A)

16. (A B) ((C D) (A B)) 

and for oS4

17. B (A A)

18. (A B) (C (A B))

[see Méndez (1988)]. 
In order to preserve the CAP [see Méndez (1987)] 4, 5 and 6 must be 

restricted to: 

4'. (A (A (B C))) (A (B C))

5'. (A (B (C D))) ((A B) (A (C D))) 

6'. (A B) ((A (B (C D))) (A (C D))) 

and 11, 12, 13 and 14 to: 

11'. (A ((B C) (D E))) (((B C) (A (D E))) 

12'. (B C) ((A ((B C) (D E))) (A (D E))) 

13'. (A B) (((A B) (C D)) (C D)) 

14'. ((A A) (B C)) (B C) 

In other words, 4 and 14 are restricted to the case in which B is an im-
plicative formula; 5, 6 and 13 to the case in which C is an implicative for-
mula and 11 and 12 to the case in which D is an implicative formula. 

Now, S3  can be axiomatized with 1, 3, 5 and 16, and S4  with 1, 5 
and 18 with modus ponens as the sole rule of inference. Then, oS3  is axio-
matized with 1, 3, 5  and 16. Nevertheless, 1, 5  and 18 do not axiomatize 

oS4  (cfr, Matrix VI). Therefore, oS4  is axiomatized with 1, 3, 5 , and 18. 
On the other hand, 1–16 are theorems of S3  and 1–18 are theorems of S4 .
Consequently, 1–3, 4 , 5 , 6 , 7–10, 11 , 12 , 13 , 14 , 15 and 16 are theorems 
of oS3 , and for oS4  we add to these 17 and 18. 

In what follows we exhaustively axiomatize oS3  and oS4  with these 
theorems. 
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III. SYNTACTIC LEMMAS

The first one (elementary propositional axiomatics) reads:  

LEMMA III.1 

i)  3 is derivable from 1 and 9; 3 is derivable from 5  (6 ), 8 and 15 (17). 

ii)  2 is derivable from 1 and 10; 2 is derivable from 4  (5 , 6 ), 7 and 15 
(17). 

iii)  16 is derivable from 2 and 15; 18 is derivable from 2 and 17 

iv)  16 is derivable from 3, 5  (6 ) and 15; 18 is derivable from 3, 5  (6 )
and 17. 

v)  5  is derivable from 2 (3), 6  and 16 (18). 

vi)  3 is derivable from 2, 5  (6 ) and 16 (18). 

vii)  13 is derivable from 2, 4  and 16 (18). 

viii)  Trans. is derivable from 2 (3, 7, 8, 9, 10) and 14 .

ix)  As regards 1, 15 and 17: 

a.  1 is derivable from 15 (17) and any thesis of the form A B.

b.  15 is derivable from 1 and 16. 

c.  1 is derivable from 14 , 16 (18) and Trans.

d.  15 is derivable from 14 , 16 (18) and Trans.

e.  17 is derivable from 1 and 18. 

In (i)–(ix) the numerals refer to the theses in the list. The sole rule of in-
ference is modus ponens. The rule Trans. (Transivity) is: 

If A B and B C, then A C

Proof of Lemma III.1 is left to the reader. Now we remark a result of 
Robles and Méndez (2001) that can be useful. 

LEMMA III.2 (Exhaustive axiomatization of 0E with 1–3, 4 , 5 , 6 , 7–10,
11 , 12 , 13  and 14 ). oE  may be axiomatized (with modus ponens) using 
any selection that includes one (and only one) thesis from each set in the fol-
lowing groups: 
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a: {1}, {2,3,7,8,9,10}, {4  ,5  ,6 },{11  ,12  ,13 }. 

b: {14 }, {3,8,9}, {4 , 5 , 6 }, {11 , 12 , 13 }. 

c: {14 }, {2,7,10}, {4 , 5 , 6 }.

It is clear from Lemma III.1 that oE  plus 15 or 16 is oS3 , and that 
oE  plus 17 or 18 is oS4 . In the following lemma we exhaustively axioma-

tize oS3 .

LEMMA III.3 oS3  may be axiomatized (with modus ponens) using any se-
lection that includes one (and only one) thesis of each set in (a), (b), (c), (d), 
(e) and (f) below 

a: {5 , 6 }, {2, 3, 7, 8, 9, 10}, {15}. 

b: {1, 14 }, {5 , 6 }, {2, 3, 7, 8, 9, 10}, {16}. 

c: {4 }, {2, 7, 10}, {15}. 

d: {1, 14 }, {4 }, {2, 7, 10}, {16}. 

e: {4 }, {3, 8, 9}, {11 , 12 , 13 }, {15}. 

f: {1, 14 }, {4 }, {3, 8, 9}, {11 , 12 , 13 }, {16}. 

Proof: We recall that oS3  is axiomatized with 1, 3, 5  and 16 (see §II), 
and that oE  plus 16 (15) is oS3 . On the other hand, in the proof to follow, 
(i), (ii), etc. always refer to the items of Lemma III.1. We prove that all selec-
tions in each group are equivalent and that they all are equivalent to the stan-
dard axiomatization of oS3 .

Group (a): First note that 1 is always present in each selection (ix.a), so 
by (iv), 5 , 3 and 15, it is an axiomatization of oS3 . Now, (i) shows that 3 
can be replaced with 8 or 9; (iii), (vi) show that 2 can substitute 3; and (ii), 
with (iii) or (vi), that 7 or 10 are interchangeable with 3. (Notice that these 
changes can be made either in the presence of 5  or in the presence of 6 ). Fi-
nally, by (iv), (v), 5  can be replaced with 6 .

Group (b): by (viii), (ix.c), 1 is always present and by (ix.b), so is 15. 
Now apply the results on group (a). 

Group (c): by (ix.a), 1 is always present and by (ii), 2 is always present 
as well. By (iii), 16 is derivable. Next, by (vii), 13  is derivable. Now, 1, 2, 4
and 13  axiomatize oE .
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Group (d): inmediate: results on group (c) and (ix.b), (ix.d), and (viii). 

Group (e): by (ix.a), 1 is in each one of the selections. Now, {1}, {4 },
{3, 8, 9}, and {11 , 12 , 13 } axiomatize oE .

Group (f): by (ix.b), (ix.d), 1 is in each one of this selections. Now, ap-
ply the results on group (e). 

LEMMA III.4 oS4  may be axiomatized (with modus ponens) using any se-
lection that includes one (and only one) thesis from the sets in (a), (b), (c), 
(d), (e) and (f) below: 

a: {5 , 6 }, {2, 3, 7, 8, 9, 10}, {17}. 

b: {1, 14 }, {5 , 6 }, {2, 3, 7, 8, 9, 10}, {18}. 

c: {4 }, {2, 7, 10}, {17}. 

d: {1, 14 }, {4 }, {2, 7, 10}, {18 }. 

e: {4 }, {3, 8, 9}, {11 , 12 , 13 }, {17}. 

f: {1, 14 }, {4 }, {3, 8, 9}, {11 , 12 , 13 }, {18}. 

Proof: We recall that oS4  is axomatized with 1, 5 , 3 and 18 (see §II), 
and that oE  plus 17 (18) is oS4 . Now, the proof of Lemma III.4 is like 
that of Lemma III.3. 

IV MATRICES

We provide six matrices to be used in the independence proofs of sec-
tion 5. Designated values are starred. 

Matrix I
0 1 2 

0 2 2 2 
1 0 0 2 
2* 0 0 2 

VERIFIES: 2, 3, 4 –6 , 7–10, 11 –13 , 16 and 18. 
FALSIFIES: 1 (with A=1), 14  (with A=B=C=1), 15 (with A=B=1 and C=2) and 
17 (with A=B=1). 
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Matrix II 

0 1 2 
0 2 2 2 
1 1 2 2 
2* 0 1 2 

VERIFIES: 1–3, 7–10, 11 –14 , 15 and 18. 
FALSIFIES: 4  (with A=1, B=2 and C=0), 5  (with A=B=1, C=2 and D=0), and 
6  (with A=B=1, C=2 and D=0). 

Matrix III 

0 1 2 3 
0 2 2 2 2 
1 0 2 2 2 
2* 0 1 2 2 
3* 0 1 1 2 

VERIFIES: 1–3, 4 –6 7–10, 11 –14 , 15 and 16. 
FALSIFIES: 17 (with A=B=3) and 18 (with A=B=C=1).

Matrix IV 

0 1 2 3 
0 3 3 3 3 
1 0 2 0 3 
2* 0 0 2 3 
3* 0 0 0 3 

VERIFIES: 1–3, 4 –6 , 7–10, and 11 –14 .
FALSIFIES: 15 (with A=1 and B=C=3), 16 (with A=B=2 and C=D=3), 17 (with 
A=B=1) and 18 (with A=B=C=1).
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Matrix V 

0 1 2 3 
0 3 2 2 3 
1 3 3 3 3 
2 0 1 3 3 
3* 0 1 2 3 

VERIFIES: 1, 3, 4 , 8, 9, 14  and 15–18 
FALSIFIES: 2 (with A=2, B=0 and C=1), 5  (with A=2, B=0, C=2 and D=1), 6
(with A=2, B=0, C=2 and D=1), 7 (with A=2, B=0, C=1 and D=3), 10 (with 
A=B=2, C=0 and D=1), 11  (with A=B=2, C=0, D=2 and E=1), 12  (with 
A=B=2, C=0, D=2, and E=1), and 13  (with A=2, B=0, C=2 and D=1).

Matrix VI 

0 1 2 3 4 
0 4 4 4 4 4 
1 0 3 3 3 4 
2 0 2 3 3 4 
3* 0 0 2 3 4 
4* 0 0 2 3 4 

VERIFIES: 1, 4 –6 , 11 –14  and 15–18. 
FALSIFIES: 2 (with A=3, B=2, and C=1), 3 (with A=3, B=2 and C=1), 7 (with 
A=1, B=2, C=1 and D=3), 8 (with A=1, B=3, C=2 and D=1), 9 (with A=1,
B=2, C=1 and D=3) and 10 (with A=1, B=3, C=2 and D=1).

Regarding these matrices, we comment the following facts: 

1) Matrices I, II, IV and VI show that at least one thesis in the sets {1, 14 ,
15}, {2, 3, 7, 8, 9, 10}, {4 , 5 , 6 }, {15, 16} has to be included to axio-
matize oS3 . If 15 is chosen, we have group (a) (and the equivalent 
group (b)) and group (c) (and the equivalent group (d)) because 1, 3, 4 ,
8, 9, 14 , 15 and 16 do not axiomatize oS3  (Matrix V). 

2) Given that 1, 3, 4 , 8, 9, 14 , 15 and 16 do not axiomatize oS3 , we add 
any thesis from the set {11 , 12 , 13 } which gives us group (e) and the 
equivalent group (f). 
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3) 1–3, 4 –6 , 7–10, 11 –14  do not axiomatize oS3  (Matrix IV). 

4) Comments on (i) and (ii) are mutatis mutandis applicable to oS4  (just 
change 15 and 16, whenever present, for 17 and 18, respectively). 

5) 1–3, 4 –6 , 7–10, 11 –14 , 15 and 16 do not axiomatize oS4  (Matrix 
III). 

V. EXHAUSTIVELY AXIOMATIZING oS3  AND oS4

Finally, we prove 

THEOREM V.1. oS3  may be axiomatized (with modus ponens) using any se-
lection that includes one (and only one) thesis from each set in the following 
groups:  

a: {5 , 6 }, {2, 3, 7, 8, 9, 10}, {15}. 

b: {1, 14 }, {5 , 6 }, {2, 3, 7, 8, 9, 10}, {16}. 

c: {4 }, {2, 7, 10}, {15}. 

d: {1, 14 }, {4 }, {2, 7, 10}, {16}. 

e: {4 }, {3, 8, 9}, {11 , 12 , 13 }, {15}. 

f: {1, 14 }, {4}, {3 ,8, 9}, {11 , 12 , 13 }, {18}. 

The 72 resulting selections (the order of the axioms is not taken into ac-
count) are the only axiomatizations of oS3  that can be formulated with the 
sixteen first theses in the list.  

THEOREM V.2. Replace 15 and 16 in groups (a)–(f) above with 17 and 18 re-
spectively. Then, oS4  may be axiomatized (with modus ponens) using any 
selection that includes one (and only one) thesis from each set in these 
groups. The 72 resulting selections (the order of the axioms is not taken into 
account) are the only axiomatizations of oS4  that can be formulated with 
the eighteen theses in the list. 

In order to prove that all selections in theorems 1, 2 have independent 
axioms, use the matrices in section IV as follows:  
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Independence of 1 and 14 : Matrix I. 

Independence of 4 , 5  and 6 : Matrix II. 

Independence of 2, 3, 7, 8, 9 and 10: Matrix VI. 

Independence of 11 , 12  and 13 : Matrix V. 

Independence of 15 and 16: Matrix IV. 

Independence of 17 and 18: Matrix III.**** 
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