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Resumen  
 
La calidad de la coordinación de las expectativas, un factor clave para la política monetaria, 
se obtiene de dos canales interrelacionados: tanto la credibilidad de las intervenciones del 
banco central y la habilidad de agentes descentralizados para coordinarse en un equilibrio 
dinámico importan. Para ambos procesos es importante comprender la forma de 
aprendizaje de los agentes. En efecto, muchos estudios de política monetaria se centran en 
procesos de aprendizaje que se rigen por reglas evolutivas en tiempo real (tales como reglas 
de aprendizaje adaptativo). El punto de vista eductivo, tal como he ilustrado en trabajos 
anteriores, toma el concepto de aprendizaje en tiempo real, a fin de capturar directamente 
las características propias de una buena coordinación en el sistema. En primer lugar, el 
artículo presenta la filosofía analítica de la coordinación de expectativas. Luego explora las 
diferencias entre el punto de vista tradicional y el eductivo en su relación con el análisis 
estándar de política monetaria. Esta exploración es por ahora tentativa, pero encierra una 
oportunidad. 
 
 
Abstract  
 
The quality of the coordination of expectations, a key issue for monetary policy, obtains 
from different, but interrelated, channels: both the credibility of the central bank 
intervention and the ability of decentralized agents to coordinate on a dynamical 
equilibrium matter. For both purposes, it is important to understand how agents learn. 
Indeed, many studies on monetary policy focus on learning processes involving evolutive, 
real-time learning rules (such as adaptive learning rules). The eductive viewpoint, as 
illustrated in previous works, partly abstracts from the real-time dimension of learning, 
with the aim of more directly capturing the systems’ coordination-friendly characteristics. 
The paper first presents the analytical philosophy of expectational coordination underlying 
the eductive viewpoint. Following the review, the paper explores the differences between 
the traditional viewpoint and this competing viewpoint as they relate to standard monetary 
policy analysis. This exploration is tentative, yet promising. 
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1. INTRODUCTION 
 
The quality of the coordination of expectations, a key issue for monetary policy, obtains from 

different, but interrelated, channels: both the credibility of the central bank intervention and the 
ability of decentralized agents to coordinate on a dynamical equilibrium matter. For both purposes, 
it is important to understand how agents learn. Indeed, many studies on monetary policy focus on 
learning processes involving evolutive, real-time learning rules (such as adaptive learning rules). 

The eductive viewpoint, as illustrated in Guesnerie (2005) and other references cited herein, 
partly abstracts from the real-time dimension of learning, with the aim of more directly capturing 
the systems’ coordination-friendly characteristics. The paper first presents the analytical philosophy 
of expectational coordination underlying the eductive viewpoint. Providing a synthesis of the 
eductive viewpoint is a prerequisite to comparing the methods that this viewpoint suggests with 
those actually adopted in most present studies of learning in the context of macroeconomic and 
monetary policy. Such a comparison rests on the review of existing learning results in the context of 
dynamic systems, which is currently the main field for applying the eductive method to 
macroeconomics.1 Such applications, however, have not had a direct bearing on monetary policy 
issues. Following the review, the paper explores the differences between the traditional viewpoint 
and this competing viewpoint as they relate to standard monetary policy analysis. This exploration is 
tentative, yet promising. 

The paper proceeds as follows. The next section lays out the logic behind the eductive viewpoint 
and compares it with the evolutive approach. I then review results that support a comparison 
between the most standard expectational criteria and the eductive criterion, first in the framework 
of a simple one-dimensional dynamic system (section 2) and then in a multidimensional system 
(section 3). The comparison with standard approaches is completed in section 4. The analysis 
emphasizes the role of heterogeneity of expectations and may suggest that the alternative view 
completes and deepens—rather than contradicts—the conclusions of more standard approaches. 
However, section 5 undertakes an eductive analysis of a simple cashless economy in an infinite-
horizon model with infinitely-lived agents, which stresses conditions for expectational coordination 
that are strikingly different from the classical ones. In particular, the eductive evaluation of the 
stabilizing performance of the Taylor rule suggests that its reaction coefficient to inflation has to be 
severely restricted. 

 
 

2. EXPECTATIONAL STABILITY: THE EDUCTIVE VIEWPOINT 
 
The notion of an eductively stable or strongly rational equilibrium has game-theoretical 

underpinnings and draws on ideas like rationalizability, dominance solvability, common knowledge. 
These concepts serve to provide a high-tech justification of the proposed expectational stability 
criteria. The next subsection emphasizes this high-tech approach for proposing global stability 
concepts that have a clearly eductive flavor. The local view of the global approach allows a more 
intuitive, low-tech interpretation which is presented in the second subsection, and the section closes 
with comments on the connections between the eductive viewpoint and the standard evolutive 
learning viewpoint. 

 
2.1 Global Eductive Stability 

 
The model assumes rational economic agents (modeled as a continuum), who know the logic of 

the collective economic interactions (that is, the underlying model). Both the rationality of the agents 
and the model are common knowledge. The state of the system is denoted E and belongs to some 
subset ε of some vector space. The state E can be a number, (the value of an equilibrium price or a 

                                                      
1. See, in particular Evans and Guesnerie (2005); for a static macroeconomic example, see Guesnerie (2001).  
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growth rate), a vector (of equilibrium prices, for example), a function (an equilibrium demand 
function), an infinite trajectory of states, or a probability distribution. For example, in the variant of 
the Muth model considered in Guesnerie (1992), E is a number—namely, the market clearing price 
tomorrow on the wheat market. The agents are farmers whose profits depend on the wheat price. 
They know the model in the sense that they understand how the market price depends on the total 
amount of wheat available tomorrow: the market clearing price, as a function of the total crop, is 
determined from the inverse of a known demand function. Agents know all this, (Bayesian) 
rationality and the model, and they know that it is known, and they know that it is known that it is 
known, and so on. With straightforward notation, (it is known)p for any p (that is, it is common 
knowledge. In general equilibrium models (Guesnerie, 2001, 2002; Ghosal, 2006), E is a price or 
quantity vector. In models focusing on the transmission of information through prices (Desgranges, 
2000; Desgranges and Heinemann, 2005; Desgranges, Geoffard, and Guesnerie, 2003), E is a 
function that relates the non-noisy part of excess demand to the asset price. In infinite horizon 
models, E is an infinite trajectory consisting, at each date t, of either a number or a vector, 
describing the state of the system at this date. Introducing uncertainty in these partial equilibrium, 
general equilibrium, and intertemporal models leads to substituting E with a probability distribution 
over the set of finite or infinite dimensional vectors previously considered.  

In this paper, I focus on rational expectations or perfect foresight equilibria. Emphasizing the 
expectational aspects of the problem, I view an equilibrium of the system as a state, E*, that prevails 
if everybody believes that it prevails. Note that in the described context, E* is such that the 
assertion, “it is common knowledge that E = E*” is meaningful. 

I say that E* is eductively stable or strongly rational if the following assertion A implies assertion 
B (given that Bayesian rationality and the model are common knowledge):  

Assertion A: It is common knowledge that E ∈ ε;  
Assertion B: It is common knowledge that E = E*. 
The mental process that leads from assertion A to assertion B is as follows. First, since everybody 

knows that E ∈ ε, everybody knows that everybody limits their responses to actions that are the best 
responses to some probability distributions over ε. It follows that everybody knows that the state of 
the system will be in ε(1) ⊂ ε. Second, if ε(1) is a proper subset of ε, the mental process goes on as in 
the first step, but it is now based on ε(1) instead of ε. Third, the process continues indefinitely, 
resulting in a (weakly) decreasing sequence ε(n) ⊂ ε(n – 1) ⊂ … ⊂ ε(1) ⊂ ε . When the sequence 
converges to E*, the equilibrium is strongly rational or eductively stable. When convergence does not 
occur, the limit set is the set of rationalizable equilibria of the model (see Guesnerie and Jara-
Moroni, 2007).  

Global eductive stability is clearly very demanding, although it can be shown to hold under 
plausible economic conditions in a variety of models, including partial and general equilibrium 
standard market contexts (Guesnerie, 1992, 2001), financial models of the transmission of 
information through prices (Desgranges, Geoffard, and Guesnerie, 2003), and general settings 
involving strategic complementarities or substitutabilities (Guesnerie and Jara-Moroni, 2007). 

 
2.2 Local Eductive Stability 

 
Local eductive stability may be defined through the same high-tech or hyperrational view. 

However, the local criterion also has a very intuitive, low-tech, and in a sense boundedly rational 
interpretation. 

 
2.2.1 Local eductive stability as a common knowledge statement 

 
I say that E* is locally eductively stable or locally strongly rational if there is some nontrivial 

neighborhood of E*, V(E*), such that assertion A implies assertion B:  
Assertion A: It is common knowledge that E ∈ V(E*); 
Assertion B: it is common knowledge that E = E*. 
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Hypothetically, the state of the system is assumed to be in some nontrivial neighborhood of E*, 
and this hypothetical assumption of common knowledge implies common knowledge of E*. In other 
words, the deletion of non-best responses starts under the assumption that the system is close to its 
equilibrium state. In that sense, this is the same hyperrational view referred to above. However, the 
statement can be read in a simpler way. 

 
2.2.2 Local eductive stability as a common sense requirement 

 
An intuitively plausible definition of local expectational stability is as follows: there is a 

nontrivial neighborhood of the equilibrium such that if everybody believes that the state of the 
system is in this neighborhood, it is necessarily the case that the state is, in fact, in this 
neighborhood, regardless of the specific form of everybody’s belief. Intuitively, the absence of such a 
neighborhood signals some tendency to instability: there can be facts falsifying any universally 
shared conjecture on the set of possible states, unless this set reduces to the equilibrium itself. The 
failure of local expectational stability in the precise sense defined above is (roughly) equivalent to a 
failure of the local intuitive requirement. 

 
2.3. Eductive versus Evolutive Learning Stability 

 
Milgrom and Roberts (1990) suggest an informal argument according to which, in a system that 

repeats itself, non-best responses to existing observations will be deleted after a while, initiating a 
real-time counterpart of the notional-time deletion of non-best responses that underlies eductive 
reasoning. I focus here on the connections between local eductive stability and the local convergence 
of standard evolutive learning rules. Local eductive stability, as just defined, implies that once the 
(possibly stochastic) beliefs of the agents are, for whatever reason, trapped in V(E*), they will remain 
in V(E*) whenever updating satisfies natural requirements that are met in particular by Bayesian 
updating rules. Although this does not guarantee that any evolutive learning rule will converge, local 
eductive stability does mean that every reasonable evolutive real-time learning rule will converge 
asymptotically in many settings (see Guesnerie, 2002; Gauthier and Guesnerie, 2005). Furthermore, 
the failure to find a set V(E*) for which the equilibrium is locally strongly rational signals a tendency 
to trigger away in some cases reasonable states of beliefs that are close to the equilibrium (and are 
thus likely to be reachable with some reasonable evolutive updating process) a fact that threatens 
the convergence of the corresponding learning rule.2  

The very abstract and hyperrational criterion thus provides a shortcut for understanding the 
difficulties of expectational coordination, without entering into the business of specifying the real-
time bounded rationality considerations. Naturally, the eductive criterion is generally more 
demanding than most fully specified evolutive learning rules (as strongly suggested by the argument 
sketched above and precisely shown in the previously cited works).  

The connection, however, is less clear-cut than just suggested in models with extrinsic 
uncertainty. In such cases, the equilibrium, as well as a state of the system in the sense of the word 
used here, is a probability distribution. However, an observation is not an observation on the state in 
this sense, but information on the state in the standard sense of the word. Evolutive and eductive 
learning may then differ significantly. 

 
 

3. EXPECTATIONAL COORDINATION: INFINITE HORIZON AND ONE-DIMENSIONAL 
STATE 

 
Models used for monetary policy generally adopt an infinite horizon approach. This section and 

the following review existing results on expectational coordination in general and eductive stability 
in particular, in infinite horizon models. They are based on Gauthier (2003), Evans and Guesnerie 

                                                      
2. It also forbids a strong form of monotonic convergence.  
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(2003, 2005), and Gauthier and Guesnerie (2005). The review will support an expansion of the 
comparison of the game-theoretical viewpoint stressed in this paper with the standard 
macroeconomic approach to the problem as reported in Evans and Honkapohja (2001). I start with 
one-dimensional one-step-forward models with one-period memory.  

 
3.1 The Model 

 
Consider a model in which the one-dimensional state of the system today is determined from its 

value yesterday and its expected value tomorrow, according to the following linear (for the sake of 
simplicity) equation:  
 
γE [x(t + 1)|It] + x(t) + δ x(t − 1)=0,  
 
where x is a one-dimensional variable and γ and δ are real parameters (γ, δ ≠ 0).3 

A perfect foresight trajectory is a sequence (x(t), t ≥ –1) such that  
 
γx(t + 1) + x(t) + δx(t − 1)=0 (1) 
 
in any period t ≥ 0, given the initial condition x(–1). 

Assume that the equation g1 = − γg12 − δ has only two real solutions, λ1 and λ2 (which arise if and 
only if 1 – δγ ≥ 0), with different moduli (with ⏐λ1⏐ < ⏐λ2⏐ by definition). Given an initial condition 
x(–1), there are many perfect foresight solutions, but only two perfect foresight solutions have the 
simple form  
 
x(t) = λ1 x(t – 1)  
 
and  
 
x(t) = λ2 x(t – 1).. 
 
They are called constant growth rate solutions.  

The steady-state sequence (x(t) = 0, t ≥ –1) is a perfect foresight equilibrium if and only if the 
initial state x(–1) equals 0. The steady state is a sink if ⏐λ2⏐ < 1, a saddle if ⏐λ1⏐ < 1 < ⏐λ2⏐, or a 
source if ⏐λ1⏐ > 1. I focus here on the saddle case, for which the solution, x(t) = λ1x(t – 1), is generally 
called the saddle path. Economists have long considered this the focal solution, on the basis of 
arguments that refer to expectational plausibility. The rest of this section reviews the standard 
expectational criteria that are used and confirms that the saddle-path solution fits them.  

 
3.2 The Standard Expectational Criteria 

 
The standard expectational criteria basically fall into four categories: determinacy, immunity to 

sunspots, evolutive learning, and iterative expectational stability. I briefly explore each of these in 
turn and then relate their solutions in an equivalence theorem.  

 
3.2.1 Determinacy 

 
The first criterion is determinacy. Determinacy means that the equilibrium under consideration 

is locally isolated. In an infinite horizon setting, determinacy has to be viewed as a property of 
trajectories: a trajectory (x(t), t ≥ –1) is determinate if there is no other equilibrium trajectory (x′(t), t 

                                                      
3. Such dynamics obtain, in particular, from linearized versions of overlapping generations models with production, at 

least for particular technologies (Reichlin, 1986), or infinite horizon models with a cash-in-advance constraint (Woodford, 
1994). 
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≥ –1) that is close to it. This calls for a reflection about the notion of proximity of trajectories, that is, 
on the choice of a topology. While the choice of the suitable topology is open, the most natural 
candidate is the C0 topology, according to which two different trajectories, (x(t), t ≥ –1) and (x′(t), t ≥ 
–1), are said to be close whenever ⏐x(t) – x′(t)⏐ < ε, for any arbitrarily small ε > 0 and any date t ≥ –1. 
In fact, with such a concept of determinacy, the saddle-path solution, along which x(t) = λ1x(t – 1) 
when ⏐λ1⏐ < 1 < ⏐λ2⏐, is the only solution to be locally isolated—that is, determinate—in the C0 
topology. 

In the present context of models with memory, a saddle-path solution is characterized by a 
constant growth rate of the state variable. This suggests that determinacy should be applied in 
terms of growth rates, in which case the closeness of two trajectories, (x(t), t ≥ –1) and (x′(t), t ≥ –1), 
would require that the ratio x(t) / x(t – 1) be close to x′(t) / x′(t – 1) in each period t ≥ 0. This is an 
ingredient of a kind of C1 topology, as advocated by Evans and Guesnerie (2003). In this topology, 
two trajectories, (x(t), t ≥ –1) and (x′(t), t ≥ –1), are said to be close whenever both the levels x(t) and 
x′(t) are close, and the ratios x(t) / x(t – 1) and x′(t) / x′(t – 1) are close in any period. 

As emphasized by Gauthier (2002), the examination of proximity in terms of growth rates leads 
to the analysis of the dynamics with perfect foresight in terms of growth rates. Define g(t) = x(t) / x(t 
– 1) for any x(t – 1) and any t ≥ 0. The perfect foresight dynamics then imply either  
 
x(t) = – [γg(t + 1) g(t) + δ] x(t – 1)  
 
or  
 
g(t) = – [γg (t + 1) g(t) + δ]. (2) 
 

The perfect foresight dynamics of growth rates then follows from the initial perfect foresight 
dynamics defined in equation (1). The growth factor g(t) is determined at date t from the correct 
forecast of the next growth factor g(t + 1). This new dynamics of equation (2) are nonlinear, and they 
have a one-step-forward-looking structure, without predetermined variables. 

The problem has thus been reassessed in terms of one-dimensional one-step-forward-looking 
models that are more familiar.  

 
3.2.2 Immunity to sunspots on growth rates 

 
Maintaining the focus on growth rates, I now define a concept of sunspot equilibrium, in the 

neighborhood of a constant growth rate solution. Suppose that agents a priori believe that the 
growth factor is perfectly correlated with sunspots. Namely, if the sunspot event is s = 1, 2, at date t, 
they a priori believe that g(t) = g(s), that is,  
 
 x(t) = g(s) x(t –1). 
 
Thus, their common expected growth forecast is 
 
E [x(t + 1)|It ] = π(s, 1) g(1) x(t) + π(s, 2) g(2) x(t),  
 
where π(s, 1) and π(s, 2) are the sunspot transition probabilities. 

As shown by Desgranges and Gauthier (2003), this consistency condition is written 
 
g(s) = –{γ [π(s, 1) g(1) + π(s, 2) g(2)] g(s) + δ}. (3) 
 
When g(1) ≠ g(2), the formula defines a sunspot equilibrium on the growth rate, as soon as the 
stochastic dynamics of growth rates are extended:4  
 

                                                      
4. This equivalence relies on special assumptions about linearity and certainty equivalence. 
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g(t) = –γ E [g(t+1)|It ] g(t) – δ. 
 

3.2.3 Evolutive learning on growth rates 
 
It makes sense to learn growth rates from past observations. Agents then update their forecast of 

the next period growth rates from the observation of past or present actual rates. Reasonable 
learning rules in the sense of Guesnerie (2002) and Gauthier and Guesnerie (2005) consist of 
adaptive learning rules that are able to detect cycles of order two..  

 
3.2.4 Iterative expectational stability  

 
This subsection applies the iterative expectational (IE) stability criterion (see, for example, 

Evans, 1985; DeCanio, 1979; Lucas, 1978)5 to conjectures on growth rates. Let agents believe a priori 
that the law of motion of the economy is given by  
 
x(t) = g(τ) x(t – 1),  
 
where g(τ) denotes the conjectured growth rate at step τ in some mental reasoning process. They 
expect the next state variable to be g(τ)x(t), so that the actual value is x(t) = –δ x(t –1) / [γg(τ) + 1]. 
Assume that all agents understand that the actual growth factor is –δ / [γg(τ) + 1]. When their initial 
guess is g(τ), they should revise their guess as  
 

( 1) =
( ) 1

g
g

δ
τ + −

γ τ +
. (4) 

 
By definition, IE stability obtains whenever the sequence (g(τ),τ ≥ 0) converges toward one of its 

fixed points, a fact that is interpreted as reflecting the success of some mental process of learning 
(leading to the constant growth rate associated with the considered fixed point). These dynamics are 
the time mirror of the perfect foresight growth rate dynamics: then, a fixed point λ1 or λ2 is locally IE 
stable if and only if it is locally unstable in the previous growth rate dynamics, that is, in these 
dynamics, it is locally determinate. 

This simple model provides a somewhat careful reminder of the four possible (and more or less 
standard) viewpoints on expectational stability. I later compare these viewpoints with the so called 
eductive viewpoint emphasized here. This comparison is facilitated by the fact that these a priori 
different approaches to the problem select the same solutions, as described in the proposition below. 

 
3.2.5 An equivalence theorem for standard expectational criteria 

 
Proposition 1. For a one-step-forward, one-dimensional linear model (with one lagged 

predetermined variable, where γ, δ ≠ 0), the following four statements are equivalent: 
1. A constant growth rate solution is locally determinate in the perfect foresight growth rate 

dynamics and equivalently here is determinate in the C1 topology of trajectories. 
2. A constant growth rate solution is locally immune to (stationary) sunspots on growth rates. 
3. For any a priori given reasonable learning rules bearing on growth rates, a constant growth 

rate solution is locally asymptotically stable. 
4. A constant growth rate solution is locally IE stable.  
In particular, a saddle-path solution that clearly meets the first requirement meets all the 

others. The argument presented in Guesnerie (2002) incorporates earlier findings. For example, the 
fact that reasonable learning processes converge relies on a definition of reasonableness integrating 
the suggestions of Grandmont and Laroque (1991) and the results of Guesnerie and Woodford (1991). 

                                                      
5. This concept differs from the more usual concept of differential expectational stability (see Evans and Honkapohja, 

2001).  
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Section 4 will compare the standard criteria with the eductive viewpoint on learning, but some 
game theory flesh will have to be introduced into the model. Before doing that, I focus on a multi-
dimensional version of the model. 

 
 

4. STANDARD EXPECTATIONAL CRITERIA IN INFINITE HORIZON MODELS: THE 
MULTIDIMENSIONAL CASE 

 
While keeping with one-step-forward-looking linear models with one-period memory, I now turn 

to the case of a multidimensional state variable. 
 

4.1 The Framework 
 
The dynamics of the multidimensional linear one-step-forward-looking economy with one 

predetermined variable are now governed by  
 
GE [x(t + 1)|It] + x(t) + Dx(t − 1) = 0,  
 
where x is an n × 1 dimensional vector, G and D are two n × n matrices, and 0 is the n × 1 zero 
vector. A perfect foresight equilibrium is a sequence (x(t), t ≥ 0) associated with the initial condition 
x(–1), such that 
 
G x(t + 1) + x(t) + Dx(t − 1) = 0. (5) 
 
The dynamics with perfect foresight are governed by the 2n eigenvalues λi (i = 1,…, 2n) of the 
following matrix (the companion matrix associated with the recursive equation):  
 

   
A =

−G−1 −G−1D
I

n
(0 )

⎛

⎝
⎜

⎞

⎠
⎟ , 

 
where (0) is the n-dimensional zero matrix. 

The discussion centers on the perfect foresight dynamics restricted to a n-dimensional 
eigensubspace, especially the one spanned by the eigenvectors associated with the n roots of lowest 
modulus. I assume that the eigenvalues are distinct and define ⏐λi⏐ < ⏐λj⏐ whenever i < j (i, j = 1,…, 
2n). I then focus on the generalized saddle-path case, where ⏐λn⏐ < 1 < ⏐λn+1⏐. 

Let ui denote the eigenvector associated with λi (i = 1,…, 2n). Since all the eigenvalues are 
distinct, the n eigenvectors form a basis of the subspace associated with λ1,…, λn. Let  

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

i
i

i

v
u

v
, 

 
where vi and iv  are of dimension n. If ui is an eigenvector, then =i i iλv v . 

Hence, on picking up some x(0), and if the n-dimensional subspace generated by (u1,…, un) is in 
“general position,” there is a single x(1) such that (x(0), x(1)) = Σaiui is in the subspace. This 
generates a sequence (x(t), t ≥ 0), (x(1), x(2)) = Σaiλiui following the dynamics defined in equation (5). 
This generates a solution that is converging in the saddle-path case.  

The methodology proposed in the previous section for constructing a constant growth rate 
solution can be replicated to obtain what is called a minimum-order solution. Assume that  
 
x(t) = B x(t − 1) (6) 
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in every period t and for any n-dimensional vector x(t – 1) (B is an n × n matrix). Also, x(t + 1) = 
Bx(t). It must therefore be the case that 
 
B = − (GB + In)−1 D,  
 
or equivalently 
 
(GB + In) B + D = 0. (7) 
 

A matrix  B  satisfying this equation is a minimum-order solution in the sense of McCallum 
(1983).6 Gauthier (2002) calls it a stationary extended growth rate. In view of the previous section’s 
analysis of constant growth rate solutions, I use this latter terminology and focus on the 
expectational stability of extended growth rates. 

 
4.2. The Expectational Plausibility of Extended Growth Rate Solutions According to 
Standard Criteria  

 
This section concentrates on three of the above criteria: determinacy, immunity to sunspots, and 

IE stability. Determinacy is viewed through the dynamics of perfect foresight of extended growth 
rates, which extends the growth rate dynamics previously introduced. For every t, B(t) is an n-
dimensional matrix whose ijth entry is equal to bij(t) and x(t) = B(t)x(t – 1). This matrix is called an 
extended growth rate (EGR), in line with the terminology of stationary extended growth rates. 

Assume that such a relationship holds in all t, so that x(t + 1) = B(t + 1)x(t); the dynamics with 
perfect foresight of the endogenous state variable x(t) imply  
 
GB(t + 1) x(t) + x(t) + Dx(t – 1) = 0,  
 
that is,  
 
x(t) = – [GB(t + 1) + In]–1 Dx(t – 1),  (8) 
 
provided that GB(t + 1) + In is a n-dimensional regular matrix. 

Then, a perfect foresight dynamics of such matrices B(t) may be associated with a sequence of 
matrices (B(t), t ≥ 0) such that:  
 
B(t) = −[GB(t + 1) + In] –1 D  ⇔  [GB(t + 1) + In] B(t) + D = 0.   (9) 
 
This defines the perfect foresight EGR dynamics. Its fixed points are the stationary matrices B  such 
that    B (t ) = B , in all t. They are solutions of equation (7). 

The determinacy of the stationary extended growth rate associated with the matrix B , is 
standardly defined as the fact that  B  (the infinite trajectory with constant extended growth rate) is 
locally isolated, that is, that there does not exist a sequence B(t) of perfect foresight extended growth 
rates converging to  B .  

A sunspot equilibrium on extended growth rates, in the spirit of the previous section, is a 
situation in which the whole matrix B(t) that links x(t) to x(t – 1) is perfectly correlated with 
sunspots. If a sunspot event is s (s = 1, 2) at date t, then  
 
E [x(t + 1)|s] = [π(s, 1) B(1) + π(s, 2) B(2)] B(s) x(t − 1)  

                                                      
6. Evans and Guesnerie (2005) show that B = VΛV−1 , where Λ is an n × n diagonal matrix whose iith entry is λi (i = 

1,…, n) and V is the associated matrix of eigenvectors. In what follows, I focus on the saddle-path case, where ⏐λn⏐ < 1 < 
⏐λn+1⏐. 
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and 
 
x(t) = − {G[π(s, 1) B(1) + π(s, 2) B(2)] B(s) + D} x(t − 1).  
 
In a sunspot equilibrium, the a priori belief that B(t) = B(s) is self-fulfilling in all x(t – 1), so that  
 
B(s) = − {G[π(s, 1) B(1) + π(s, 2) B(2)] B(s) + D}. 
 

Finally, the (virtual-time) learning dynamics associated with the IE-stability criterion are as 
follows. At virtual time τ of the learning process, agents believe that, in all t,  
 
x(t) = B(τ) x(t − 1), 
 
where B(τ) is the τth estimate of the n-dimensional matrix B. Their forecasts are accordingly  
 
E [xt+1|It] = B(τ) xt.  
 
The actual dynamics are obtained by reintroducing forecasts into the temporary equilibrium map:  
 
GB(τ)xt + xt + Dxt−1 = 0  ⇔  xτ = − [GB(τ) + In]−1 Dxτ-1. 
 
As a result, the dynamics with learning are written  
 
B(τ + 1) = − [GB(τ) + In]−1D. (10) 
 
A stationary EGR  B  is a fixed point of the above dynamics. It is locally IE stable if and only if the 
dynamics are converging when B(0) is close enough to B .  

 
4.3 The Dynamic Equivalence Principle 

 
The following proposition describes the equivalence principle in one-step-forward, 

multidimensional linear systems with one-period memory. 
Proposition 2. For a stationary EGR, the following three statements are equivalent:  
1. The EGR solution is determinate in the perfect foresight extended growth rate dynamics. 
2. The EGR solution is immune to sunspots, that is, there are no neighboring local sunspot 

equilibria on extended growth rates with finite support, as defined above. 
3. The EGR solution is locally IE stable.  
In particular, the saddle-path solution—which exists when the n smallest eigenvalues of A have 

modulus less than 1, with the (n + 1)th having modulus greater than 1—meets all these conditions. 
The proposition, which is proved in Gauthier and Guesnerie (2005), has a flavor similar to that of 

the one-dimensional case.7 The connection between evolutive learning and eductive learning is now 
more intricate, however. It is not as easy to assess the performance of adaptive learning processes in 
the multidimensional extended growth rates context as in the one-dimensional situation of the 
previous section: part 3 of proposition 1 has no counterpart here. 

 
 

                                                      
7. The equivalence of propositions 1 and 3 follows easily from the above definitions and sketch of analysis. The 

equivalence with proposition 2 is clearly plausible.  
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5. EDUCTIVE LEARNING IN DYNAMIC MODELS  

 
The discussion of eductive learning requires fleshing out the dynamic models under scrutiny with 

elements from game theory. In other words, the dynamic model needs to be imbedded in a dynamic 
game. For the sake of completeness, I present the construct proposed in Evans and Guesnerie (2003), 
which is based on an overlapping generations (OLG) model. 

At each period t, there exists a continuum of agents, some of whom react to expectations while 
others use strategies that are not reactive to expectations (in an OLG context, the latter are in the 
last period of their lives).8 The former are denoted ωt and belong to a convex segment of R, endowed 
with Lebesgue measure dωt. More precisely, agents ωt have a (possibly indirect) utility function that 
depends on three factors: their own strategy s(ωt); sufficient statistics on the strategies played by 
others, that is, = ( { ( )}, ),t tt

sωΠ ω ∗y F  where F, in turn, depends first on the strategies of all agents 

who react to expectations at time t and second on (∗ ), which here represents sufficient statistics on 
the strategies played by agents who do not react to expectations and includes (but is not necessarily 
identified with) yt–1; and the sufficient statistics for time t + 1 as perceived at time t, —that is, 
yt+1(ωt), which may be random—and also, now directly, the t – 1 sufficient statistics yt–1. 

I assume that the strategies played at time t can be made conditional on the equilibrium value of 
the t sufficient statistics yt. Now, let (•) denote both (the product of) yt–1 and the probability 
distribution of the random variable y t+1(ωt) (the random subjective forecasts held by ωt of yt+1). Let 
G(ωt, yt, •) be the best response function of agent ωt. Under these assumptions, the sufficient 
statistics for the strategies of agents who do not react to expectations is (∗ ) = (yt–1, yt). 

The equilibrium equations at time t are written as follows:  
 

( )1 1 1= { [ , , , ]}, ,t t t t t t t ttω − + −Π ω ωy F G y y y y y . (11) 

 
When all agents have the same point expectations, denoted 1 ,e

t +y  the equilibrium equations 
determine what is called the temporary equilibrium mapping:  
 

1 1 1 1 1( , , ) = { [ ( , , , )], , }e e
t t t t t t t t t tt− + ω − + −− Π ωQ y y y y F G y y y y y . 

 
Also assuming that all 1t +y  have a very small common support around some given 1

e
t +y , decision 

theory suggests that G, to the first order, depends on the expectation of the random variable 
1 ( )t t+ ωy , which is denoted 1 ( )e

t t+ ωy  (and is close to 1
e
t +y ). Equation (11), can be linearized around 

any initially given situation, denoted (0), as follows:  
 

1 1= (0) (0) (0, ) ( )e
t t t t t t td− ++ + ω ω ω∫y U y V y W y , 

 
where 1 1, , ( )e

t t t t− + ωy y y  now denote small deviations from the initial values of yt, yt–1, yt+1, and U(0), 
V(0), W(0, ωt) are n × n square matrices. 

If such a linearization is considered only around a steady state of the system, then yt, yt–1, and so 
on will denote deviations from the steady state and U(0), V(0), W(0, ωt) are simply U, V, W(ωt). 

                                                      
8. An agent in period t is different from any other agent in period t′, t′ ≠ t. This means either that each agent is physically 

different or that the agents have strategies that are independent from period to period. In an OLG interpretation of the model, 
each agent lives for two periods, but only reacts to expectations in the first period of his life. 
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Adding an invertibility assumption yields two reduced forms. First, the standard temporary 
equilibrium reduced form, associated with homogenous expectations 1 1( ) =e e

t t t+ +ωy y  is  
 

1 1= e
t t t+ −+y By Dy , (12) 

 
Second, the stochastic beliefs reduced form is 
 

1 1= ( ) ( )e
t t t t t td− ++ ω ω ω∫y Dy B Z y , (13) 

 
where ( ) =t tdω ω∫Z I . I use the reduced form in equation (13) to analyze eductive stability.  

 
5.1 Eductive Stability in a One-Dimensional Setting 

 
Based on the above analysis, it seems natural to index beliefs to growth rates. As highlighted in 

Evans and Guesnerie (2003), beliefs on the proximity of trajectories in the C0 sense do not have 
enough grip on the agents’ actions. Hence, the hypothetical common knowledge assumption to be 
taken into account concerns growth rates (the C1 topology).  

(Hypothetical) common knowledge assumption: The growth rate of the system is between λ1 – ε 
and λ1 + ε. 

Such an assumption about growth rates triggers a mental process that, in successful cases, 
progressively reinforces the initial restriction and converges toward the solution. The mental process 
takes into account the variety of beliefs associated with the initial restriction. Common beliefs with 
point expectations are then a particular case, and it is intuitively easy to guess that convergence of 
the general mental process under consideration implies convergence of the special process under 
examination when studying IE stability. This is stressed as such: IE stability is a necessary 
condition of eductive stability (Evans and Guesnerie, 2003). Proposition 3 then follows from the 
earlier equivalence theorem (proposition 1): 

Proposition 3: If a constant growth rate solution is locally eductively stable or locally strongly 
rational then it is determinate in growth rates, is locally IE stable, is locally immune to sunspots, 
and attracts all reasonable evolutive learning rules.  

 Eductive stability is thus more demanding in general than all the previous equivalent criteria. 
The fact that it is strictly more demanding is shown by Evans and Guesnerie (2003), although it 
becomes equally demanding when some behavioral homogeneity condition is introduced. 

 
5.2 Eductive Stability in a Multidimensional Setting 

 
The hypothetical common knowledge assumption to be taken into account naturally has to bear 

on extended growth rates. 
(Hypothetical) common knowledge assumption: The extended growth rate of the system B 

belongs to V( B ), where V( B ) is a neighborhood in the space of matrices (which has to be defined 
with respect to some distance, normally evaluated from some matrix norm). 

As mentioned earlier, if common knowledge of B ∈ V( B ) ⇒ B = B , then the solution is locally 
eductively stable or locally strongly rational. As in the one-dimensional case, proposition 4 now 
follows from proposition 2. 

Proposition 4: If a stationary extended growth rate solution is locally eductively stable or locally 
strongly rational, then it is determinate, locally IE stable, and locally immune to sunspots.  

Again, eductive stability is more demanding, in general, than all the standard and equivalent 
criteria. The reason is that it takes into account the stochastic nature of beliefs and the 
heterogeneity of beliefs. Both dimensions are neglected explicitly in the iterative expectational 
stability construct and implicitly in the other equivalent constructs. In fact, as soon as local eductive 
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stability is concerned, point expectations and stochastic expectations may not make much difference 
(see Guesnerie and Jara-Moroni, 2007). At least locally, the key differences between strong 
rationality and standard expectational stability criteria stem from the heterogeneity of expectations.  

 
5.3 Standard Expectational Coordination Approaches and the Eductive Viewpoint: A 
Tentative Conclusion 

 
My comparison of the eductive viewpoint with the standard expectational coordination criteria 

(determinacy, absence of neighbor sunspot equilibria, and IE-stability) has been limited to the above 
class of models. An exhaustive attempt would have to extend the class of models under scrutiny in 
different directions. First, uncertainty (intrinsic uncertainty) would have to be introduced into the 
models. The analysis should extend, with some technical difficulties, the appropriate objects under 
scrutiny being respectively probability distributions on growth rates and extended growth rates. The 
equivalence proposition 2 would most likely have a close counterpart in the new setting. Second, the 
models would need to incorporate longer memory lags or more forward-looking perceptions (or both). 
The theory seems applicable, although the concept of extended growth rate becomes more intricate 
(Gauthier, 2004).  

The next set of remarks brings me back to the models used in monetary theory (starting, for 
example, with Sargent and Wallace, 1975). A number of these models have a structure analogous to 
the ones examined here, although they often involve intrinsic uncertainty. This suggests two 
provisional conclusions that will be put under scrutiny in the next section. First, the standard 
criterion used in monetary theory for assessing expectational coordination, local determinacy, is less 
demanding than the eductive criterion. This can be seen, within the present perspective, as the 
reflection of a neglect of a dimension of heterogeneity of expectations that is present in the problem. 

Second, the connections between the evolutive and eductive viewpoints are less clear-cut than in 
the prototype model. The differences have two sources: the theoretical connection between the two 
types of learning is less well established in the multidimensional case, which often obtains in 
monetary models of the New-Keynesian type, than in the one-dimensional one (that is, proposition 1-
3 has no counterpart in proposition 2); and in a noisy system, agents do not observe, at each step, a 
state of the system, as defined in the construct (that is, a probability distribution), but a random 
realization drawn from this probability distribution. Rules on learning, aimed at being efficient, have 
to react slowly to new information. Intuitively, IE stability and thus eductive stability will be more 
demanding local criteria than the success of necessarily slow evolutive learning. 

However, the above analysis and its provisional conclusions implicitly refer to a true overlapping-
generations framework. The equations from which the expectational coordination aspects of 
monetary policy are most often examined are indeed overlapping, but they come from non-OLG 
infinite horizon models. Their interpretation within the framework of an eductive analysis should 
therefore be different.  

 
 

6. EDUCTIVE STABILITY IN A CASHLESS ECONOMY 
 
The objective here is to introduce very simple versions or models that are used for the discussion 

of monetary policy and central bank policy. The discussion centers on a simple model of a cashless 
economy, in the sense of Woodford (2003).  

 
6.1 The Model and the Standard Viewpoint 
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Consider an economy populated by a continuum of identical agents, who live forever. Each agent 
α receives  y  units of a perishable good in every period.9 There is money, and the good has a money 
price Pt in each period, 

The agents have an identical utility function:  
 

= ( )t
tU u Cβ∑ , 

 
where   u(Ct )  is iso-elastic  
 

(1 )1( ) = ( )
1t tu C C −σ

− σ
. 

 
The first-order conditions are 
 

1

1 1

1 1

'( )1 1(1 ) = =
( )

t t t t
t

t t t t

u C P P C
i

u C P P C

− σ

+ +

+ +

⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
+ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟′β β⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

 
where it is the nominal interest rate. 

The central bank decides on a nominal interest rate according to a Wicksellian rule. The rule 
takes the following form: 
 

  
i
t
m = φ

P
t

P
t−1

⎛

⎝
⎜

⎞

⎠
⎟ , 

 
where φ is increasing. 
The targeted inflation rate is Π* > β, so that  
 

*
*1 ( ) = Π

+ φ Π
β

. 

 
The money price at time 0 is denoted   P0

* . The targeted price path is  
 

* * *
0= ( )t

tP P Π . 
 
The economy is considered to start at time 1. 

The path   Pt
= P

t
* ,   Ct

(α) = y , t = 1, 2,… + ∞, defines a rational expectations (here a perfect 
foresight) equilibrium, associated with a nominal interest rate φ(Π*) = (Π*/β) – 1.  

Is this equilibrium determinate? Since all agents are similar and face the same conditions in any 
equilibrium, any equilibrium has to meet C

t
(α) = y.  It follows that any other (perfect foresight) 

equilibrium {Pt′} has to meet 
 

                                                      
9. Although the continuum interpretation continues to hold, the reasoning formally refers to a representative consumer, 

leaving aside the notation α. 
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1

1

1 =t t

t t

P P

P P
+

−

⎡ ⎤ ⎞⎛ ⎞ ⎛′ ′
⎟⎢ ⎥⎜ ⎟ ⎜+ φ β

⎜ ⎟ ⎜ ⎟′ ′⎢ ⎥⎝ ⎠ ⎝⎣ ⎦ ⎠
, 

 
which can be rewritten, using πt as the inflation rate:  
 
[1 + φ (πt)] = πt+1.    
 
Any equilibrium close to the stationary equilibrium Π* would satisfy (with straightforward notation)  
 
φ′(∗ )β (δπt) = (δπt+1), 
 
an equation incompatible with the proximity of the new equilibrium trajectory to the steady-state 
trajectory, as soon as φ′(∗ )β > 1. In other words, if φ′(∗ ) > (1/β), then the equilibrium is locally 
determinate, and this is the condition associated with the Taylor rule (see, for example, Taylor, 
1999). 

The argument sketched above does not demonstrate that there are no other perfect foresight 
equilibria outside the neighborhood under consideration, although the one under scrutiny is the only 
stationary one. Moreover, if the equations are viewed as coming from an OLG framework, I would 
argue that the equilibrium is locally IE stable, or even here locally eductively stable. Indeed, assume 
that (a) it is initially common knowledge that inflation will remain forever in the neighborhood of Π*, 
and (b) it is common knowledge that a (general) departure of inflation expectations of δπt+1 involves a 
departure of period t inflation of δπt = (1/βφ′)δπt+1. The two assertions together imply that the steady-
state inflation ∗  is common knowledge. In other words, the equilibrium ∗  is locally eductively 
stable.10  

However, assertion (b), which is a core element of the OLG framework, makes no full sense here, 
where what happens today depends not only on expectations for tomorrow, but necessarily on the 
whole trajectory of agents’ beliefs. To put it in another way, the fact that tomorrow’s (period t + 1) 
inflation expectation is πt+1 has no final bite on what the equilibrium price may be today in period t. 
Indeed, an agent’s demand in period t as seen from period 1 is 
 

1/

( 1)/ 1
1 1

1

( ) = ( ) (1 )t t s
t s

s

P
C C i

P

σ

− σ −

+

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪α α β Π +⎢ ⎥⎨ ⎜ ⎟ ⎬
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

. 

 
In period t, agent α may be viewed as determining its demand as follows. First, take Ct(α) as a 
starting parameter and compute the infinite sequence,  
 

1/

( 1)/ 1

1

( ) = ( ) (1 )t t s
t t t s

s

P
C C i

P

σ

+τ− σ +τ−
+τ

+

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪α α β Π +⎢ ⎥⎨ ⎜ ⎟ ⎬
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

.  

 
Then choose Ct(α) so that it meets the consumer’s discounted intertemporal budget constraint.  

Clearly, such a computation has to be fed by the whole agents’ beliefs over the period and not 
only by their beliefs over the next period! In other words, the connection between t and t + 1 
emphasized above for the analysis of eductive stability only captures one intermediate step of the 
choice procedure and not the whole story, as it would in a true OLG framework. 

                                                      
10. Strictly speaking, the sketched argument only shows that the equilibrium ∗  is locally IE stable. The fact that agents 

are identical here is more than needed to ensure that heterogeneity of beliefs does not matter, so that IE stability implies 
eductive stability. 
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The right question is then the following: if hypothetically it is common knowledge that πs is close 
to   Πs

*  = Π*, then is the equilibrium common knowledge? The next section addresses this question. 
 

6.2 Eductive Stability in the Infinite Horizon Cashless Economy: Preliminaries  
 
Consider the world at time 1 and assume that, at the margin of the stationary equilibrium, 

where the real interest rate is r*, all agents expect a small departure drs, s = 1,…. At this stage, it 
does not matter whether such a departure comes from an expected change in nominal interest rate 
or an expected change in inflation. Given these changes in beliefs, what is the new first-period 
equilibrium? 

Consumption will not change in period 1. The only adjustment variable is the first period interest 
rate, which will become r* + dr1. What will be the equilibrium dr1? The answer is given by lemma 1. 

Lemma 1: The new equilibrium real interest rate is, to the first-order approximation, r* + dr1, 
with 
 

1 2= ( )
1

dr dr⎛ ⎞β
−⎜ ⎟− β⎝ ⎠

. 

 
Proof: Consider the first-order conditions: 

 
( 1)/ 1 1/

1 1( ) = ( ) (1 )t t
t sC C r− σ − σ⎡ ⎤α α β Π +⎣ ⎦ . 

 
Take the log, 
 

1

1
1

1 1log = log log log(1 )
t

t s

tC C r
−−⎛ ⎞ ⎛ ⎞+ β + +⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠
∑ , 

 
so that, approximately, in the neighborhood of the stationary equilibrium with consumption C* and 
interest rate r* and with β(1 + r*) = 1, 
 

  

dC
t

C ∗

⎛

⎝
⎜

⎞

⎠
⎟ =

dC
1

C ∗

⎛

⎝
⎜

⎞

⎠
⎟ +

β
σ

⎛

⎝⎜
⎞

⎠⎟ s=1

t−1

∑dr
s

⎛

⎝⎜
⎞

⎠⎟
. 

 
Singling out the adjustment variable dr1, 
 

  

dC
t

C ∗

⎛

⎝
⎜

⎞

⎠
⎟ =

dC
1

C ∗

⎛

⎝
⎜

⎞

⎠
⎟ +

β
σ

⎛

⎝⎜
⎞

⎠⎟
dr

1
+

β
σ

⎛

⎝⎜
⎞

⎠⎟ s=2

t−1

∑dr
s

⎛

⎝⎜
⎞

⎠⎟
. 

 
A key remark is that the expected price change only induces a second-order welfare change for 

the consumer. As is known from consumption theory, the welfare change obtains to the first-order 
approximation, as the inner product of the price change and of the market exchange vector (the 
difference between the consumption and the endowment vector).11 Since this latter vector is zero, the 
result obtains. Now, the above finding implies that  
 

                                                      
11. The fact that this is an infinite-commodity setting does not modify the part of the theory under consideration. 
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  1

+∞

∑βt−1 dC
t

C ∗

⎛

⎝
⎜

⎞

⎠
⎟ = 0 . 

 
I next compute the above expression: 
 

  1

+∞

∑βt−1 dC
t

C ∗

⎛

⎝
⎜

⎞

⎠
⎟ = 1

1 − β

⎛

⎝⎜
⎞

⎠⎟
dC

1

C ∗

⎛

⎝
⎜

⎞

⎠
⎟ +

1
σ

⎛

⎝⎜
⎞

⎠⎟
βt dr

1
+

s=2

t−1

∑dr
s

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

+∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. 

 
In the case of drs = dr2, ∀s,  
 

1 1
1 2

1 2 3

1 1= ( ) ( 2) ( )
1

t t ttdC dC
dr t dr

C C

+∞ +∞ +∞
− ⎧ ⎫⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞β + β + − β⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥∗ − β ∗ σ⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎩ ⎭

∑ ∑ ∑ . 

 

Because   2

+∞∑ βt = β2 / (1 − β) , 
  3

+∞∑ (t − 2)βt = β3 / (1 − β)2 , this implies that 
 

2 3
1

1 2= ( ) (1 )( )
dC

dr dr
C

⎛ ⎞ ⎛ ⎞β β⎛ ⎞
− − − β⎜ ⎟ ⎜ ⎟⎜ ⎟∗ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
As in equilibrium dC1= 0, the result follows.  

 
6.3 Eductive Stability: The Core Analysis 

 
As explained above, I implicitly assume that both the model and rationality are common 

knowledge. Also the monetary rule of the central bank (φ) is credibly committed and hence believed. 
The initial common knowledge restriction has to be a hypothetical restriction on the state of the 
system. Here the state of the system is entirely defined, once the monetary rule is adopted, by the 
sequence of inflation rates. Since the equilibrium inflation rate is Π*, a natural local restriction on 
beliefs is that the inflation rate is in the range of [Π* – є, Π* + є].  

Does this belief trigger a collective mental process leading to the general conclusion that ∗  will 
emerge? The process under discussion takes place in period 1. To illustrate this process, I explore 
what will happen if in period 1, all agents believe that future inflation will be for ever Π* + є. First, 
the expected price path will then be Pt′ = P1(Π* + є)t–1, t = 2,… + ∞. Second, the expected real interest 
rate between t and t + 1, t ≥ 2 will be 
 

*

*

1 ( )є
є

+ ϕ Π +
Π +

; 

 
that is, it will differ from r* by approximately  
 

*
* 2

1 ' (1 )
( )

є⎡ ⎤ ⎡ ⎤ϕ Π − + ϕ⎢ ⎥ ⎣ ⎦Π⎣ ⎦
. 

 
That is,  
 

*

1 1 є
⎛ ⎞⎛ ⎞ ′ϕ −⎜ ⎟⎜ ⎟Π β⎝ ⎠⎝ ⎠

. 
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I assume that in period one, agents make plans contingent on the interest rate (that is, they submit 
a demand curve). Their conditional inference of the nominal interest rate is then ϕ(P1/P0*). 

With regard to their inference of the next period price P2, P2 = P1(Π* + є).12 Hence, the expected 
real interest rate is  
 

*
1 0

*

1 ( )P P
є

+ ϕ
Π +

; 

 
that is, approximately, when writing the first-period inflation rate (P1/P0*) = (Π* – є′),  
 

* * 2 *

(1 ) 1 1=
( )

є є є є
⎡ ⎤′ ′ ⎛ ⎞ϕ + ϕ⎡ ⎤⎛ ⎞ ⎛ ⎞ ′ ′− ϕ −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥Π Π Π β⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

  

 
Setting v = ϕ′ yields the next lemma. 
Lemma 2: Under the state of beliefs just considered, the first-period inflation rate is (Π* – є′), 

where  
 

1 1=
1

vє v є
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞β′ − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟β − β β⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
Proof: The above formula is applied:  

 

1 2= ( )
1

dr dr
⎛ ⎞β

−⎜ ⎟− β⎝ ⎠
, 

 
with  
 
 

2 *

1 1=dr є
⎛ ⎞⎛ ⎞ ′ϕ −⎜ ⎟⎜ ⎟Π β⎝ ⎠ ⎝ ⎠

 

 
and  
 

1 *

1 1=dr є є⎛ ⎞⎛ ⎞ ′ ′ϕ −⎜ ⎟⎜ ⎟Π β⎝ ⎠⎝ ⎠
 

 
If ϕ′ = v, then 
 

1 1=
1

vє v є
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞β′ − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟β − β β⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

 
This leads to my main result, as presented in the following proposition.  

                                                      
12. A different assumption on beliefs would be to see the expected price path as Pt’ = P0*(Π* – є)t, t = 2, … +∞, so that 

* * 2
2 0 ( )eP P є= Π +  in period 1.  
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Proposition 5. A necessary condition for the strong rationality of the equilibrium is (1/β) ≤ v ≤ 
(1/β)[1/(2β – 1)]. Since 1 + r* = 1/β, the condition can also be written  
 

* 2
*

*

(1 )(1 )
(1 )

rr v
r

+
+ ≤ ≤

−
. 

 
Proof: For eductive stability to hold, the initial belief must not be self-defeating. For that, it must 

be the case that 
 

  
−1 ≤

1
βv

⎛

⎝⎜
⎞

⎠⎟
−

β
1 − β

⎛

⎝⎜
⎞

⎠⎟
1 −

1
βv

⎛

⎝⎜
⎞

⎠⎟
≤1 . 

 
Take the inequality ≤ 1. It follows that 
 
(1 )(1 ) 1

(1 ) 1
v ⎛ ⎞β − β + β β

≤ + ⎜ ⎟− β − β⎝ ⎠
. 

or  
 

  

1
βv

⎛

⎝⎜
⎞

⎠⎟
≤1 . 

 
Take the inequality –1 ≤ [ ]. Then, 
 
(1 )(1 ) 1

(1 ) 1
v ⎛ ⎞β − β + β β

≥ − + ⎜ ⎟− β − β⎝ ⎠
, 

 
or  
 

1 ( 1 2 )
v

⎛ ⎞
≥ − + β⎜ ⎟β⎝ ⎠

, 

 
or  
 

  
v ≤

1
β

⎛

⎝⎜
⎞

⎠⎟
1

2β −1
⎛

⎝⎜
⎞

⎠⎟
. 

 
Indeed one conjecture is that this necessary condition is sufficient, as soon as one specifies the 

initial set of beliefs as avoiding sweeping beliefs (that is, alternating expectations of high and low 
inflation). In the sense of the general discussion at the beginning of the paper, this is like choosing 
an appropriate topology for the neighborhood of the steady state (with sweeping beliefs being 
considered as non-close to the initial one).13 The proof would consist in showing that the initial 
beliefs induce a smaller deviation from the targeted inflation, not only in the first period but in any 
period, and then iterating the argument using the common knowledge assumption. 

The result is striking. The range of v = ϕ′ that insures eductive stability is rather small. With β 
close to 1, the condition looks roughly as follows: 

                                                      
13. This is reminiscent of the distinction between C0 and C1 topology discussed in section 2. 
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1 1 1 2(1 )v
⎛ ⎞ ⎛ ⎞

≤ ≤ + − β⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎣ ⎦β β⎝ ⎠ ⎝ ⎠
. 

 
For the sake of illustration, with a high β = 0.95, this is roughly 
 
(1.05) (1.05)(1.1) = (1.15)v≤ ≤ . 
 
More generally, for small r*, the window for the reaction coefficient is, to the first-order 
approximation, [1 + r*, 1 + 2r*].  

The analysis thus suggests that standard Taylor rules are too reactive. Another striking, but not 
surprising, conclusion is that a plausible intuition within the determinacy viewpoint (that is, the 
equilibrium is more determinate, and in a sense more expectationally stable, whenever v increases) 
is plainly wrong here; there is a small window, above 1/β (and shrinking with β and vanishing when 
β tends to 1), for expectational stability.  

 
7. CONCLUSION 

 
Any conclusions are necessarily provisional, since an outsider’s random walk in monetary models 

(albeit starting from a well-established base camp) has to be subjected to criticism. It must also be 
enriched to develop an intuition that is somewhat missing in the present state of my understanding 
of the specialized issues that have been addressed. This outsider’s walk has, however, attempted to 
raise interesting questions for insiders and thus open new fronts of thinking.  
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