REVISTA INVESTIGACION OPERACIONAL Vol. 30p/%, 109-116, 2009

ON THOMPSON TYPE ESTIMATORS FOR THE MEAN
OF NORMAL DISTRIBUTION

Zuhair A. Al-Hemyari*Anwer Khurshid® and Abbas Al-Joberi**

*Department of Mathematical and Physical, Sciendessersity of Nizwa, Oman
**College of Ibn Al-Haitham, University of Baghdatiag

ABSTRACT

Let X be a normally distributed with unknown meg# and varianced ~ . Assume that a prior estimajl, of H is available. Two
Thompson type shrinkage estimators of estimajlidgthat incorporates prior estimajd, are proposed. These estimators are shown to

have a smaller mean squared error in a region drgldg in comparison to existing estimators. The expogssior the bias and mean

squared error of the proposed t-estimators arengataNumerical results are provided when the psedcestimators are t-estimators of
level of significance . Comparisons with the earlier known results shiosvitsefulness of the testimators.
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RESUMEN
Sea X una variable distribuida normalmente con mefll y varianzad =~ desconocidas. Asuma que un estimado a pfdsi de U

esta disponible. Se proponen dos tipos de estiraadi@l tipo Thompson de encogimiento (shrinkage) patimar{ que incorporan el

estimado a priori. Se demuestra que estos estieaduwseen menos error cuadratico medio en la regji@dedor def/, en

comparacion con estimadores existentes. Las egpesspara el sesgo y el error cuadratico medimsléestimadores son obtenidos.
Resultados numéricos son presentados cuandotiogdsres propuestos son t-estimadores de niveigigficacion. Comparaciones
con previos resultados conocidos demuestran ldadide los t-estimadores.

1 INTRODUCTION

1.1 The model

The normal distribution is the most widely usedtritisition in statistics and many other sciences.b&ospecific, in
modeling the normal curve is an excellent approiomato the frequency distributions of observatidaken on a
variety of variables and as a limiting form of wars other distributions (see Davison, 2003). Exasmuf random

variables that have been modeled successfully byntbrmal distributions are the height and weightpebple,
diameters of bolts produced by a machine, the IQegple, the life of electronic products, and so on

Let X, X,,...,X, be a random sample of sife from the following normal distribution
f(x|u,0%) =@ ov2m)exp{—(x—u)? 120%};, -0 <Xx<o, —00< <o, g>0, (1)

where [/ being the mean (unknown) am@” is the variance.

1.2 Estimating the mean incorporating a guess

In many problems, the experimenter has some prigasg value regarding the value ¢f either due to past
experiences or to his familiarity with the behavaijrthe population under study. However, in certsituations the
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prior information is available only in the form ah initial guess value (natural origin)¥, of (. According to
Thompson (1968 a) such guess value may arise joore of a number of reasons, e.g., we are estigngii and:

i) we believe L/, is close to the true value gf ; or

ii) we fear that//, may be near the true value pf, i.e., something bad happensfif,= (, and we do not
know about it.

For such cases, this guess value may be utilizadpgoove the estimation procedure. For the philbsognd history of
shrinkage estimator and its importance see Ca@ag2) and Lemmer (2006).

1.3 Background

A standard problem in estimation of the unknowrapaeter ./ when some guess is available in the formLgf, is to

get an estimator with minimum mean square erranaximum relative efficiency. The commonly used agghes in
statistical inference which utilize the prior guesdue are the shrunken methods. The problem ohashg the mean

M when [, is available was first discussed by Thompson (18p&here he developed single stage shrunken

estimators for parameters of normal, binomial, misand gamma distributions. Following this severghors have
tried to develop new single stage shrunken estireaty using Thompson type shrinkage weight factord also
proposing new shrinkage weight factors. A genenagls stage shrunken estimator for the mefns defined as

follows: (i) Compute the sample me% based oM observations; (i) Construct a preliminary teggiom (R) in the
space ofi, based onl/, and an appropriate criterion. IK R, shrink X towards £/, by shrinkage factor

0< k <1 and use the estimatdet(X — £4,) + 4, for f1. But if X OR, take X as an estimator ofl.

Thus a single stage shrinkage estimatoyiotising the prior estimatg/, is given by:
a={[ k()?_ﬂ0)+ﬂ0] |R+[i]lﬁ}v ()

wherel ; and |  are respectively the indicator functions of theestance regiorR and the rejection regioﬁ. The
single stage shrunken estimatfr is completely specified if the shrinkage weighttéa K and the regionR are
specified. Consequently, the succesgbidepends upon the proper choicekofand R . Several authors have studied

estimators of the formiZ by choosing differentk and R [see Thompson (1968 a, b), Davis and Arnold (1970)
Mehta and Srinivasan (1971), Hirano (1977), Kantbenda and Al-Hemyari (1992)].

2. THE PROPOSED ESTIMATORS

In this paper we proposed two single stage shrumstimators for the meag/ when o? is known or unknown

denoted by[li, i =12, which are a modifications ofi defined in (2). The proposed estimator takes el
form:

=1 K(X = o)+ o] e+ [[(A= KX = 1) + 6] 1 2} ®

The main distinguishing feature of this type ofgkinstage estimator from conventional two stagakhge testimators
is that, the pretest region rejects the prior estimi/, only partially and even itX OR , My is given some
weightage though small in estimation of secondestdgpe expressions for the bias, mean squared, @mdrrelative
efficiency of ﬂ for the both cases whedr® known or unknown are derived and studied thealyiand numerically.

Some properties of/:l~ are studied. Conclusions regarding the constanishied in the proposed estimators are
presented. Comparisons with the earlier known tesare made. It may be noted here that Kambo, HandaAl-
Hemyari (1990) studied estimator (2) for exponéddistribution.

2.1 Estimator with known g2
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In this section first we define the estimator whefi is known. The bias, mean squared error, and reladficiency

expressions of the proposed testimator are derivesitable choice oK is obtained, and finally some properties are
also discussed.

Let X be normally distributed with unknowgy and known variancg®, assume that a prior estimatg, about l is
available from the past. The first proposed tedtimes:

By ={ [k (X = 1) + o)1 + @ k)X = 110) * 1)1 5 |- @

R, is taking as the pretest region of si@efor testingH , : {/ = {4, againstH, : i/ # {4,, where

R = [y = Zass s o * 2y 13 —=] (5)
- 0 al2 ' Mo al2 '
A/n A/n

Z,,, isthe uppeﬂ.O(Xa'/Z) th percentile point of the standard normal disthitu

a

The bias of,ZI“1 is given by:

B([{1|/J! R) = E(ﬂl) —H
= [k (X - ) + o] £ (Kl dX + [a-k)(X = )] £ (K| 0?) aX -, ©

XOR, XOR,
where f ()?\y, 02) is the pdf of X and ﬁl is the complement oR, .

Define

J.(a,b) = Z'exp-22%/2)dz, i= 012..., @)

D C— T

1
NeT
where Z :\/n_l(fl -u)/o.

The expression oB(,Z?l|,u, R,) after simplifications yields
B(Z| . R) = (0/Nm){@k ~D13,(8.5) - 43,3, BT + kA, ®
where A, =~/n(p, - p)/o. @, = A, - Z,, andb, = A, +7,,.

The mean squared error ﬁl is given by

MSE(fZ|p, R) = E(f - 1) = (07 /m){(2k=1)13,(3,,B,) = A3, (&, 0)] + K2 + (1= K)?}. ©)
For numerical computations we may use the relations

J,(a,b) = (exp(- a%/2) ~exp(-b?/2))/ V2, (10)
and

J,(a.b) = J,(a,b) + expC a%/2) —exp(b?/2) )/ 27 . (11)

If U4 = M,, then expression of bias and MSEﬁ{ respectively simplify to

B(Z o, R) =0, 12

111



and

MSE(fZ 5, R) = (0 /m){(2k =13, (a7, b)) + A= K)?}, (13)
whereai* =-Z,, and b1 =+Z,,.
Remark 1: Local minima choice ofk

When the regionR does not depend dna choice (local minima) fdris given below:
Selectk that minimizesMSE([llLuo, R) . From (13) we have

%MSE(M#O, R)= (02/n){(23,(a; b)) - 2~ K)}.

Now % MSE(,Z'I1|,UO, R) = 0 gives critical value ok as

b
[(X=5)? £ (X[, 0%) dX
k,=1-J,(a;,b]) =1-2

= 14
MSE(X) (1)

2
Clearly 66? MSE(,H1|,UO, R)> 0, K, is not a function of unknown parametgr and 0<k, <1.

It is easy to show thaB([/1|,u, R,) is an odd function ofA and MSE(ﬁl|,u, R,) is an even function ofd .
Moreover Lim B([]1|,u, R) =0 and Lim MSE(,L71|,U, R) = 0. This shows thag, is also a consistent estimator.
Nn-oo n-oo

2.2 Estimator with unknown g2

n .

When o is unknown, it is estimated bg® = Z:(Xi — X)?/(n—1) . Again taking regionR, as the pretest region
i=1

of size @ for testingH : 1/ = 4, againstH, : (£ # 4, in the testimator,l?l defined in equation (4) and denoting

the resulting estimator g4, . The estimatoriZ, is given by:
7, ={ ko (X = t15) + 11|V, +[@=K,)(X = p16) + o], } (15)

The testimator,l'j2 employs the intervaR, given by:

S S
R, = {,uo - ta/2,n—1ﬁ’/vlo 20 ﬁ} ; (19

andt,,,, isthe uppell0Q(a/ 2)th percentile point of the t-distribution witfh —1) degrees of freedom.

The expression for the bias gf, can be written as
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BT R,) = [ [[K(X - 1) + 1] £ (X|11, %) 1 (s7]0?) ds?dX
0 XOR, (17)
+ 7][(1— K)(X = )] £ (X[, 82) £ (s7]?) ds?X - 4,

XOR,

where f (SZ‘UZ) is the pdf ofS?. The simplification of the expression of the Hizeads to

B(,|14,R,) = (a/ﬁ){(zk—lﬁ[al(az,bz) = A230(a,,b,)1 (y) dy+kA2}.<1s>

Using the above simplifications, the expressiortli@ mean squared error is given by

MSE (7|, R2)=(aZ/n){(zk—l)T[Jz(az,bz)—ASJo(az,bz)lf(y)dwaAi +(1—k)2}, 19)

where A, =/n(u, - 1)/s, a, = A, ~toonaV Y/ (N=1), b, =4, +t,, 4 Y/(N-1) andy is a random
variable with a chi-square disribution wiffn —1) degrees of freedom.

In particular whenl/ = i, we have after some simple simplifications,

B(ﬁ2|luo’ R) =0, (20)

and

MSE(ﬂZL“O' R,)=

(2/n) {(1— K)* - (2k -1 (2ta/z,n_1)K2/Jﬂ(n -1 (n —1)/2ﬂ[1+ tana /(N -] -a- a)}

(21)
Remark 2:
Using the same method of Remark 1 the criticaleaiik (local minima) wheno? is unknown is given by
0 t17/2(5/0)
j j(x = 14,)* £ (X/ 14y,5%) f(s?/0?) dX ds?
k,=1- 0 o) 2(50) _
MSE(X)
(22)

a+ 2tt)//2,n—l I'(n/2)
JO=D) 2T (n-1)/2) i+12, ) /1 — e

Also K, is free from the function of unknown parametgtsand 0> and also0< k,<1.

4. NUMERICAL RESULTS AND CONCLUSIONS

The bias ratio(B(,Z]i|,ui R )/(U/\/ﬁ)) , mean squared error and relative efficiency offiteposed estimatorg/,
and /I, i.e., RE(f|X,R) = MSE(X)/MSE (%], R,) and RE(f;|X,R,) = MSE(X)/MSE(/, |14, R,)
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were computed for different values of constant®ived in these estimators. The following conclusiane based on
these computations:

Table 1: Relative efficiency RE(ﬁl‘)?, R,) and B(,Z'11|,u, Rl)/(a/\/ﬁ) of proposed estimator £, for different

values of @ and |/]l|

Al
a 0.0 0.1 0.2 0.3 0.4 05 0.6
0.002 | 44.843 |30.797 |16.203 | 9.382 6.161 4.467 3.489
(0.0) (0.095) |0.183) |(0.261) |(0.325) | (0.375) | (0.410)
0.01 13.042 | 11.587 | 8.787 6.342 4.849 3.934 3.176
(0.0) (0.084) | (0.162) | (0.230) | (0.287) | (0.330) | (0.363)
0.05 4971 | 4.831 4474 | 4.030 3.603 3.238 2.942
(0.0) (0.059) | (0.116) | (0.169) | (0.216) | (0.260) | (0.301)
0.1 4.060 | 4.009 3.810 3.673 3.451 3.224 3.001
(0.0) (0.051) | (0.101) | (0.150) | (0.200) | (0.249) | (0.299)
Al
a 0.7 0.8 0.9 1.0 15 2.0

0.002 | 2.881 | 2.483 2.210 2.018 1.597 1.113
(0.434) | (0.448) | (0.455) | (0.459) | (0.499) | (0.733)
0.01 2.739 | 2.440 2.228 2.069 1.502 0.905
(0.387) | (0.406) | (0.422) | (0.440) | (0.615) | (0.966)
0.05 2.701 | 2.498 2.315 2.141 1.306 0.861
(0.342) | (0.384) | (0.429) | (0.479) | (0.772) | (0.989)
0.1 2.781 | 2.561 2.341 2.123 1.240 0.840
(0.351) | (0.405) | (0.461) | (0.518) | (0.811 | (0.857)

(i) For the estimatorﬂl, numerical computations were performed by takide tpretest region
g

g

R=|y,-2,,-~ 9
{/Jo a2 P a/2 N
H,:u = U, againstH, : # y,, a = 002,001,005,0.1,015 and |/1| = 00(0.D20. In Table 1 some

sample values of the efficiency gi, relative to X, and that of(\/ﬁ/a) B([{J/J, R) shown in brackets are given

Mo +Z } which is the acceptance region of siz¢ for testing the hypothesis

for some selected values of and |/1| It is evident from the computations that gengrdfff (ﬁ1|,u, R) increases as

a decreases. Also 45\| increases, the efficiency decreases. It may bened that Hirano (1977) recommended

using @ = 015. The results of Table 1 compare favorably with thessical estimator. The bias ratio is minimum
when {4 = U, and increases with increasesAn

(i) For the estimator ﬁz, numerical computations were performed by takifge tpretest region

S S
Ry =| Ho ~tayzna—=» Mo 14200 ——= | Which is the acceptance region of sige for testing the hypothesis
Jn Jn

H, 4 = H, againstH, :u# p, when g is unknown, @ = 002,001,005,0.1,015, |/1| = 0.0(0.0)20
andn = 6,810,12. Some of the computations are given in Table 2.
(i) The relative efficiency of,ﬂ2 is a decreasing function di for 0 < |/]| < 20. The general behavioral

pattern of estimatogZ, is similar to that offi; as the bias ratio and relative efficiency are eoned.
(iv) It is observed that our estimatop§l and ﬂz are better in terms of higher relative efficiensfien

|/1i| =0 and |/1i| # 0 than the classical and existing shrinkage estirsato
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Table 2: Relative efficiency RE(,Z]Z‘)?, R,) and B(ﬁ2|,u, R)/(U/\/ﬁ) of proposed estimator /, for different

values 0f|/12|, n and a

el

a n_ 0.0 0.1 0.5 1.0 15 1.75 2.0
6 92571 | 47.289 | 4.798 | 2.007 | 1.462 |1.335 | 1.201
(0.0) | (0.024) | (0.123) | (0.371) | (0.452) | (0.512) | (0.652)
0.002 [8 77503 | 42529 | 4.740 | 2.007 | 1.453 | 1.330 | 1.191
(0.0) | (0.026) | (0.145) | (0.395) | (0.487) | (0.552) | (0.667)
10 | 69.498 | 36.503 | 4.4668 | 2.003 | 1.444 | 1.382 | 1.183
(0.0) | (0.028) | (0.147) | (0.411) | (0.531) | (0.566) | (0.676)
6 21.113 | 17.466 | 4.297 | 2.007 | 1.449 | 1.252 | 1.005
(0.0) | (0.024) | (0.144) | (0.377) | (0.466) | (0.531) | (0.662)
0.01 8 18547 | 15.795 | 4.190 | 2.007 | 1.452 | 1.245 | 1.025
(0.0) | (0.027) | (0.158) | (0.399) | (0.493) | (0.576) | (0.672)
10 | 17.196 | 14.679 | 4.116 | 2.002 | 1.441 | 1.238 | 1.000
(0.0) | (0.032) | (0.155) | (0.451) | (0.552) | (0.583) | (0.699)
6 4355 |4.277 |3.207 |2005 |1.265 |0.990 | 0.808
(0.0) | (0.025) | (0.154) | (0.382) | (0.472) | (0.552) | (0.677)
0.1 8 4251 | 4179 |3.201 |2.005 |1.258 |0.986 |0.807
(0.0) | (0.031) | (0.156) | (0.413) | (0.478) | (0.579) | (0.692)
10 | 4.198 | 4.124 |3.201 |2.002 |1.254 |0.985 | 0.802
(0.0) | (0.041) | (0.158) | (0.466) | (0.482) | (0.611) | (0.715)
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