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EXISTENCE RESULTS FOR A SUPERLINEAR SINGULAR
EQUATION OF CAFFARELLI-KOHN-NIRENBERG TYPE

BENJIN XUAN (¥)

ABSTRACT. In this paper, using the Mountain Pass Lemma and the Link-
ing Argument, we prove the existence of nontrivial weak solutions for
the Dirichlet problem for the superlinear equation of Caffarelli-Kohn-
Nirenberg type in the case where the parameter A € (0, A2), A2 being the
second positive eigenvalue of the quasilinear elliptic equation of Caffarelli-

Kohn-Nirenberg type.
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1. INTRODUCTION.

In this paper, we investigate the existence of weak solutions for the follow-
ing Dirichlet problem for the superlinear singular equation of Caffarelli-Kohn-
Nirenberg type:

(1.1)

—div (|z|~®|DulP~2Du) = Xz|~(@tDpte|y P2y 4 |2| 729 f (u), in Q
u =0, ondf,

where 2 C R” is an open bounded domain with C* boundary and 0 € Q, 1 <
p<n, 0<a< %, a<b<a+l1, g <p*(a,b) = nﬁgp, d=1+a-be|o0, 1],
and ¢ > 0.
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For a = 0, ¢ = p, many results of linking-type for critical points have been
obtained (e.g. [1, 2, 6] for p = 2, [12] for p # 2 and [14] for the case with
indefinite weights).

The starting point of the variational approach to these problems with a > 0 is
the following weighted Sobolev-Hardy inequality due to Caffarelli, Kohn and
Nirenberg [4], which is called the Caffarelli-Kohn-Nirenberg inequality. Let
1 < p < n. For all u € C§°(R™), there is a constant Cy; > 0 such that

r/q
(1.2) ([ el ar)™ < oo [ Jal="IDul?a,
n R’n

where

(13) ~co<a< 2L a<b<a+l, g=p'(ab)=—L  d=1+a—b.
p n—dp

Let Q C R™ be an open bounded domain with C* boundary and 0 € Q, D1}?(Q)
be the completion of C§°(R™), with respect to the norm || - || defined by

1/p
Jull = ([ Jol-erlDup dz) .
Q

From the boundedness of €2 and the standard approximation argument, it is
easy to see that (1.2) holds for any u € DLP(Q) in the sense:

(1.4) /|(E| )" dx SC/ |z|~“P| Dul? dz,

for1<r <, a<(l+a)r+ n(l — 1), that is, the embedding DLP(Q) —
L™(Q, |z|~*) is continuous, where L" (€2, |x| @) is the weighted L" space with
norm:

1
= ooy = ([ lel ol o)

In fact, we have the following compact embedding result which is an extension
of the classical Rellich-Kondrachov compactness theorem (cf. [7] for p = 2 and
[16] for the general case). For convenience of the readers, we include the proof
here.

Theorem 1 (Compact embedding theorem). Suppose that Q@ C R™ is an open
bounded domain with C* boundary and 0 € Q, 1 < p < n, —c0 < a < %.
The embedding DEP(Q) — L™(Q,|z|~%) is compact if 1 < r < b, a <
(I+a)r+n(l-71).

Proof.  The continuity of the embedding is a direct consequence of the
Caffarelli-Kohn-Nirenberg inequality (1.2) or (1.4). To prove the compactness,
let {u,,} be a bounded sequence in D}?(€2). For any p > 0, if B,(0) C Q is the
ball centered at the origin with radius p, it holds that {u,,} C W'?(Q\ B,(0)).
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Then the classical Rellich-Kondrachov compactness theorem guarantees the ex-
istence of a convergent subsequence of {u,,} in L"(Q \ B,(0)). By taking a
diagonal sequence, we can assume without loss of generality that {u,,} con-
verges in L™ (2 \ B,(0)) for any p > 0.

On the other hand, for any 1 <r < n"—_’;, there exists a b € (a,a + 1] such that
r < q=p*(a,b) = n:”;p, d=14+a—-be€]0, 1). From the Caffarelli-Kohn-
Nirenberg inequality (1.2) or (1.4), {u,,} is also bounded in L4(), |z|~%?). By
the Holder inequality, for any § > 0, it holds that

br) -2 =3
[ el = uiirde < ([ a7 )
|z|<d |z| <&
—br r 7'/q
><< F i — dx)
(1.5) Q

5 1—z
< C(/ Tn—l—(a—br)
0

q q
a-r dr)
q

_ C(;n—(a—br) =

where C' > 0 is a constant independent of m. Since v < (1+a)r +n(1—7), it
holds that n — (o — br)qfr > (0. Therefore, for a given € > 0, we first fix 6 > 0
such that

€
/ |z] ™%, —u;|"dx < =, Vm,j €N,
2| <5 2
then we choose N € N such that

€
/ 2| ™ [, — uj|" dx < Cy |um—uj|rdx§§, VY'm,j > N,
QN B;(0) Q~Bs(0)

where C,, = §7 if @ > 0 and C,, = (diam (2))™% if @ < 0. Thus
/ |x‘*04|um — uj‘r de <e, Vm,57> N,
Q

that is, {u,,} is a Cauchy sequence in L4((, |z|~%9). O
Our results will rely mainly on the results of the eigenvalue problem corre-
sponding to problem (1.1) in [15]. Let us first recall the main results of [15].
Consider the nonlinear eigenvalue problem:
(1.6) —div (Ja] = [ DulP~2Du) = Ala|~@HDPelup2y, in

. u =0, on 0,
where 2 C R" is an open bounded domain with C! boundary and 0 € €,
1<p<mn, 0§a<%, c> 0.
Let us introduce the following functionals in D} (€):

®(u) ;:/ 2| =% | Du|P dz, and J(u) ;:/ || =@t DPte |y P dg.
Q Q
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For ¢ > 0, J is well-defined. Furthermore, ®,J € C*(D.?(Q),R), and a
real value A is an eigenvalue of problem (1.6) if and only if there exists u €
DLP(Q) \ {0} such that ®'(u) = A\J'(u). At this point, we introduce the set

M :={ueDLP(Q) : J(u)=1}.

Then M # () and M is a C*' manifold in DLP(Q). It follows from the stan-
dard Lagrange multipliers arguments that the eigenvalues of (1.6) correspond
to the critical values of ®|x. From Theorem 1, ® satisfies the (PS) condition
on M. Thus a sequence of critical values of ®|r comes from the Ljusternik-
Schnirelman critical point theory on C'* manifolds. Let v(A) denote the Kras-
noselski’s genus on DP(Q) and for any k € N, set

Iy :={ACM : Aiscompact, symmetric and y(A4) > k}.
Then the values

a7 = o, e o)
are critical values and hence are eigenvalues of problem (1.6). Moreover, A; <
Ag s KA < = 00
One can also define another sequence of critical values minimaxing ® along a
smaller family of symmetric subsets of M. Denote by S* the unit sphere of
R*+1 and

O(S*, M) := {h € C(S¥, M) : his odd}.
Then for any k € N, the value

(1.8) [ = he@(lsr%f—l,m  ax ©(h(t))

is an eigenvalue of (1.6). Moreover Ay < py. This new sequence of eigenvalues
was first introduced in [11] and later used in [10, 9] for a = 0,¢ = p.

In [15], we proved that the first positive eigenvalue A\; = u; is simple, isolated
and it is the unique eigenvalue with positive eigenfunction, and \, := inf{\ €
R : X is eigenvalue and A > A1} = Ao = puo.

In this paper, based on the Mountain Pass Lemma and the Linking Argument,
we will prove the existence of nontrivial weak solutions to problem (1.1) in the
case where the parameter A € (0, A2).

2. LINKING RESULTS

Let e € M be the eigenfunction associated to Ay, then Hek”%l,p(m = Ak
Denote G = {u € M : ®(u) < Az}. Obviously, G is an open set containing e;

and e;. Moreover —G = (. First we prove the following Lemma.

Lema 2. e; and —e; do not belong to the same connected component of G.
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Proof. Otherwise, there exists a continuous curve ¢ connecting e; and —e; in
G. Let A =0 U{—0c}, then from the definition of M, 0 & A, hence v(A) > 1,
by connectedness of A, so A € T'y. Hence, as A is a compact set in GG, and from
the definition of G, we have max{®(u); u € A} < Ay and this contradicts the
definition of As. Q.E.D.

Let GGy be the connected component of G containing e;, then —G is the con-
nected component of G containing —e;. Let

K, = {tu: u e Gl,t > 0}, K=-K{UKj.
Then

(2.1) / || =P | DulP dz < /\2/ || ~(@FVP+e P de, Yu € K,
Q Q
and

(2.2) / |2| = | DulP do = Ag/ || =@tV |yP de, Vu € OK,
Q Q

where 9K is the boundary of K in X = D.P(Q). Let (0K), = {u € 9K :

[ull = p}.
Set

& =span{e}, & =span{e;, e},

Z—fucX: / \Duf? = /\2/ V(@)[ul}, then
Q Q

(2.2) implies 0K C Z.
In a similar way to Proposition 2.1-2.2 in [12] and Lemma 2.1-2.2 in [14], we
obtain the following two linking results.

Theorem 3. Assume that v € &, v # 0, Q = [—v, v] is the line segment
connecting —v and v, 0Q = {—v, v}. Then 0Q C Q and Z link in X, that is,
(i) 0QNZ =0 and
(ii) For any continuous map v : Q — X with Y|ag = id, it follows that
Y(Q)NZ #0.
Proof. It is obvious that 90Q N Z = 0. Now let ¢ : Q@ = [—v,v] — X be
continuous and 1|sg = id. From the definition of K and Lemma 2, K has two
connected components K7 and —K7. Assume v € Ky, —v € —K7, then ¢(Q) is

a continuous curve connecting v and —wv, therefore it holds that ¥(Q)NIK # ()
and thus ¥(Q) N 2 # 0. 0

Theorem 4. Assume 0 < p <r < oo, let € = el/)\i/p, €y = 62//\%/1), and

Q:Qr :{u:tlél +t2é22 Hu|| ST,tQ ZO},
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0Q=0Q, ={u=té1: [t1| <rpU{ue Q,: |u| =1},
Zy={ue Z: |lull = o).
Then 0Q, C Q, and Z, link in X.

Proof. 0Q,NZ, = 0 is obvious. Let ¢ : Q, — X be continuous and
¥]ag, = id. Denote dq = dist (é1,0K) and define the mapping P : X — &; as
follows:

W (min {dist (v, 0K),rd1})é1 + (|Jul| — p)éz, if u & —Kq;
P(u) =
— (min {dist (v, 0K),rd1})é1 + (|Jul| — p)éa, if u € —K;.

It is easy to see that P is continuous, and that P maps v = ré; to v; =
Pv = rdiéy + (r — p)éa, the origin 0 to 07 = PO = —pés, the line segment
[v,0] onto the line segment [v1,0;] homeomorphically; —v = —ré; to vy =
P(—v) = —rdié1 + (r — p)éa, the line segment [0,—v] onto a line segment
[01, v2] homeomorphically; and the half circle {u € 9Q : |lu|| = r} which is
from v to—v in Q onto the line segment [v1, v3], where P(rés) = (1 — p)és.

Let f = Pot:Q — &. From the discussion above, it holds that 0 € f(0Q),
and when v turns a circuit along 9Q) counterclockwise , f(u) also moves a circuit
around the original 0 in & counterclockwise . Hence by a degree argument, it
holds that deg (f,@,0) = 1. So there exists some u € @ such that f(u) = 0,
ie., P(¢(u)) = 0, which implies that ¢¥(u) € 0K and ||¢(u)|| = p. Thus
P(u) € (0K), and (Q) N (0K), # 0. Since (0K), C Z,, it follows that
HQ)NZ £0 O

3. EXISTENCE RESULTS FOR PROBLEM (1.1)

In this section, we will give some conditions on f(u) to guarantee that the
functional associated to problem (1.1) satisfies the Palais-Smale condition ((PS)
condition) for A € (0, A2), the geometric assumptions of the Mountain Pass
Lemma (cf. Theorem 6.1 in Chapter 2 of [13]) in the case of 0 < A < A1, and
those of the linking theorem (cf. Theorem 8.4 in Chapter 2 of [13]) in the case
of A\{ <A< o
Assume f: R — R satisfies:

(f1) (Subcritical growth) |f(s)] < c1]s]9! + ¢2, Vs € R, where 1 < ¢ <

p*(a,b) = NIXZP.
(f2) f € CR,R), f(0) =0, uf(u) 20, uecR.
(f3) (Asymptotic property at infinity) 36 € (p, p*(a,b)) and M > 0 such

that 0 < 0F (u) < uf(u) for |u| > M, where F(s) = / f)de.

0
(f1) (Asymptotic property at u = 0) lir% f(s)/|s|P~t =0.
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Theorem (1) and (f;) imply that the functional : X — R:
1 A
I(u) = 7/ |x|_ap|Du\pdx—f/ |x|—<a+1>p+6|u\de—/ [~ F () da
P Jo b Ja Q

is well-defined and I € C*(X;R) and that the weak solutions of problem (1.1)
is equivalent to the critical points of I. (f2) implies that 0 is a trivial solution
to problem (1.1).

Lema 5. If f satisfies assumptions (f1)-(fs), then I satisfies the (PS) condition
for A€ (0, \).

Proof. 1. The boundedness of (PS) sequences of I.

Suppose {un,} is a (PS) sequence of I, that is, there exists C' > 0 such that

[T (um)| < C and I'(uy,) — 0 in X', the dual space of X, as m — oo. The
properties of the first eigenvalue \; imply that for any v € X, one has

)\1/ |x|_(“+1)p+c|u|pdx§/ ([ =% Du|P dz.
Q Q

Let ¢ := sup I(uy, ). Then by the above inequality and (f3), as m — oo, it holds

that

1 1 1
c— —o(1)||uml| = f—f/x_apDumpdx
5ol = (= 3) [ lal="| D

11 ~(atDpte b1
—)\(* - 5)/ |JC‘ (aFhipe |um|p dx +/ |‘T| bq(éf(um)um - F(Um)) dx
p Q Q

1 1 A
>(=-2)1-+— x| 7P| Dy, |P d
> (= P30 [ lel7IDun

1
—b
+/Q(um2M) || q(@f(um)um — F(up)) dz

oy G i — Pl

1 1 A P
> (2= )1 = Dllunll ~ G,
where C; > 0 is a constant independent of u,,. The above estimate implies the
boundedness of {u,,} for 0 < A < Aq.
2. By (f1), f satisfies the subcritical growth condition and by a standard
argument there exists a convergent subsequence of {u,,} as a consequence of

the boundedness of {u,,} in X. O

Theorem 6. If [ satisfies assumptions (fi)-(f1), then problem (1.1) has a
nontrivial weak solution u € Wy () provided that 0 < A < A;.

Proof. We will verify the geometric assumptions of the Mountain Pass Lemma
(cf. [13] Chapter 2, Theorem 6.1):
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(1) I(0) = 0 is obvious;
(2) 3p>0,Fa>0: |lu|=p = I(u) >
In fact, Vu € X, it follows

B z|”*P|DulP dx — x| 7Y F (u) dx
B 1w 0= 5 [ el D de— [ ja ) da.

From (f4), Ve > 0, 3pg = po(e) such that if 0 < p = |Ju|| < po, then |f(u)| <
€lu[P~1, thus

u(@) € co€
/|o:\7qu(u)dsc§/ |£L'|7bq/ f)dtdx < 7/ || % |u|Pdz < == ||u]|.
Q Q 0 P Ja p
po(€o)

Choose coep = (1 — /\%)/2 >0, p= , from (3.1), one has

1 A AL — A
(3.2)  I(u) > —-(1—— —co€o) /Q |2| =P |Dul? dx > 21)\ p=:1a>0.

P A 1P
(3) Juy € X : |Jurl] = p and I(uq) < 0.

In fact, from (f3) and (f3), one can deduce that there exist constants cs,cq > 0
such that

(3.3) F(s) > cs|s|” —c4, Vs €R.

Since 6 > p, a simple calculation shows that as t — oo, it holds that

tP AtP
I(te;) < 7/ |x|7“p|Del|pd:r——/ ||~ (@t PFe| ey P dg
P Ja P Ja

(3.4) —03t9/ |m|_bq|el|9dx+04/ |x|_qu:v
Q Q

— —00,
which implies that I(te;) < 0 for t > 0 large enough.

Thus Lemma 5 and the Mountain Pass Lemma imply that value

= inf supE(u) > a >0
B Jnf sup (u) >

is critical, where P = {p € C°([0,1]; X) : p(0) = 0,p(1) = u}. That is, there
is a u € X, such that

E'(u)=0, E(u)=03>0.
E(u) = > 0 implies u # 0. O

Lema 7. Assume that \y < A < Ag and f satisfies assumptions (fi)-(f3). Then
I satisfies the (C). condition introduced by Cerami in [5], that is, any sequence
{um} C X such that I(uy) — ¢ and (1 + |lum|)[I (um)]|xs — O possesses a

com}ergent subsequence.
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Proof.
1. The boundedness of the (C). sequences in X.
Let {umm} C X be such that I(uy,,) — ¢ and (1 + ||um|)|| I (um)]| x> — 0. Then
from (f2), (f3) and (3.3), as m — oo, one has
(3.5)
pe+o(1) = pl(um)— < I'(um), pm >

- /Q 2]~ e f 1) — F ()
:/ |z|’bq(umf(um)fﬂF(um))dqu(pr)/¢9|z|7qu(um)dx
Q Q

Y]

—Cy + (6 — p)c3‘um|%9(ﬂ,|r|*bq) — C’4/Q ||~ dz.

Thus 6 > p implies the boundedness of {u,,} in L(€,|z|~*7).
On the other hand, a simple calculation shows that

Oc+o0(1) = 01 (upm)— < I'(Um), U >

0 0 —(a .
= (]; — 1)||DumHI£p(Q"wl,ap) — )\(;? -1) /Q || (a+1)p+ |tm? dzz

—ba(y, Uy ) — U T
+ /Q|x| (t f (t10) — OF (ty)) d

(3.6) > (g —1) /Q || =P | Dty |P dz — C
+ / 2|7 (g f () — OF (ury)) daw
Q(wm <M)
+ |2 7 (i f () — OF (u)) de

QU >M)

0
> (E - 1)||DumHIL7/P(Qy‘x|*uP) -G,

where C' > 0 is a universal constant independent of u,,, which may be different
from line to line. Thus 6 > p and (3.6) imply the boundedness of {u,,} in X.

2. By (f1), f satisfies the subcritical growth condition, by a standard argument,
one can obtain that there exists a convergent subsequence of {u,,} based on
the boundedness of {u,,} in X. O

Theorem 8. Suppose f satisfies assumptions (fi)-(f1), and furthermore, 6 >
ps/(s — 1) in (f3). Then problem (1.1) has a nontrivial weak solution u € X
provided that Ay < A < Ag.

Proof. It was shown in [3] that the (C). condition actually suffices to get a
deformation theorem (Theorem 1.3 in [3], and it was also remarked in [8] that
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the proofs of the standard Mountain Pass Lemma and saddle-point theorem go
through without change once the deformation theorem (Theorem 1.3 in [3] is
obtained with the (C). condition. Here we verify the assumptions of standard
Linking Argument Theorem(cf. [13] Chapter 2, Theorem 8.4) hold with the
(C). condition replacing the (PS),. condition.

Since 0Q), C @, and Z, link in X, it suffices to show that

(1) a9 = sup I(u) <0, when r > 0 is large enough.
UEIQ
(2) a= 1€n£ I(u) > 0, when p > 0 is small enough.

In fact, let u = te; € &, from assumption (f3), F(x,s) > 0 for all s € R and
almost every x € €, thus it holds that
(3.7)

t|P t|P
I(u) = I(te) gui/urmewm—LLf/urmﬂmﬂﬁwm
P Ja p Q

L4 A
= — ]_ _—— < .
(=l <0

Noticing that

_ 1/0
wmwmwm:pémwwﬂ,

is a norm on &, and that the norms of finite dimensional space are equivalent,
it follows that there exists a constant c5 > 0 such that

[ Jal ol d > sl
Q
From (3.3), it holds that

ul|? 4 ¢4|Q.

1
(3.8) I(u) < —Jlul]” = escs
p

Since 6 > p, it follows
I(u) = =00, as [lul| = o0, u € &,
this implies (1).
From (f4) and (f1), it follows that
/ 2| % F(u) dz = o(||ulP) as u — 0 in X,
Q

then for any u € Z, it holds that
1 A

(3.9) I(u) = (1 - *)/ |z~ Dul? dz + o([|u]]").
p A2” o

Since A < Az, (3.9) implies (2).
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Thus the Linking Argument Theorem (cf. [13] Chapter 2, Theorem 8.4) implies
that the value

B = inf sup E(h(u)) > a >0

hel ueo
is critical, where I' = {h € C°(X; X); hlag = id}. That is, there is a u € X,
such that
E'(u)=0, E(u)=03>0.
E(u) = > 0 implies u # 0. O
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