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EXISTENCE RESULTS FOR A SUPERLINEAR SINGULAR
EQUATION OF CAFFARELLI-KOHN-NIRENBERG TYPE
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Abstract. In this paper, using the Mountain Pass Lemma and the Link-

ing Argument, we prove the existence of nontrivial weak solutions for

the Dirichlet problem for the superlinear equation of Caffarelli-Kohn-

Nirenberg type in the case where the parameter λ ∈ (0, λ2), λ2 being the

second positive eigenvalue of the quasilinear elliptic equation of Caffarelli-

Kohn-Nirenberg type.
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1. Introduction.

In this paper, we investigate the existence of weak solutions for the follow-
ing Dirichlet problem for the superlinear singular equation of Caffarelli-Kohn-
Nirenberg type:
(1.1){

−div (|x|−ap|Du|p−2Du) = λ|x|−(a+1)p+c|u|p−2u+ |x|−bqf(u), in Ω

u = 0, on ∂Ω,

where Ω ⊂ Rn is an open bounded domain with C1 boundary and 0 ∈ Ω, 1 <
p < n, 0 ≤ a < n−p

p , a ≤ b ≤ a+1, q < p∗(a, b) = np
n−dp , d = 1+a−b ∈ [0, 1],

and c > 0.
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For a = 0, c = p, many results of linking-type for critical points have been
obtained (e.g. [1, 2, 6] for p = 2, [12] for p 6= 2 and [14] for the case with
indefinite weights).
The starting point of the variational approach to these problems with a ≥ 0 is
the following weighted Sobolev-Hardy inequality due to Caffarelli, Kohn and
Nirenberg [4], which is called the Caffarelli-Kohn-Nirenberg inequality. Let
1 < p < n. For all u ∈ C∞0 (Rn), there is a constant Ca,b > 0 such that

(1.2)
( ∫

Rn

|x|−bq|u|q dx
)p/q

≤ Ca,b

∫
Rn

|x|−ap|Du|p dx,

where

(1.3) −∞ < a <
n− p

p
, a ≤ b ≤ a+ 1, q = p∗(a, b) =

np

n− dp
, d = 1 + a− b.

Let Ω ⊂ Rn be an open bounded domain with C1 boundary and 0 ∈ Ω, D1,p
a (Ω)

be the completion of C∞0 (Rn), with respect to the norm ‖ · ‖ defined by

‖u‖ =
( ∫

Ω

|x|−ap|Du|p dx
)1/p

.

From the boundedness of Ω and the standard approximation argument, it is
easy to see that (1.2) holds for any u ∈ D1,p

a (Ω) in the sense:

(1.4)
( ∫

Ω

|x|−α|u|r dx
)p/r

≤ C

∫
Ω

|x|−ap|Du|p dx,

for 1 ≤ r ≤ np
n−p , α ≤ (1 + a)r + n(1− r

p ), that is, the embedding D1,p
a (Ω) ↪→

Lr(Ω, |x|−α) is continuous, where Lr(Ω, |x|−α) is the weighted Lr space with
norm:

‖u‖r,α := ‖u‖Lr(Ω,|x|−α) =
( ∫

Ω

|x|−α|u|r dx
)1/r

.

In fact, we have the following compact embedding result which is an extension
of the classical Rellich-Kondrachov compactness theorem (cf. [7] for p = 2 and
[16] for the general case). For convenience of the readers, we include the proof
here.

Theorem 1 (Compact embedding theorem). Suppose that Ω ⊂ Rn is an open
bounded domain with C1 boundary and 0 ∈ Ω, 1 < p < n, −∞ < a < n−p

p .
The embedding D1,p

a (Ω) ↪→ Lr(Ω, |x|−α) is compact if 1 ≤ r < np
n−p , α <

(1 + a)r + n(1− r
p ).

Proof. The continuity of the embedding is a direct consequence of the
Caffarelli-Kohn-Nirenberg inequality (1.2) or (1.4). To prove the compactness,
let {um} be a bounded sequence in D1,p

a (Ω). For any ρ > 0, if Bρ(0) ⊂ Ω is the
ball centered at the origin with radius ρ, it holds that {um} ⊂W 1,p(ΩrBρ(0)).
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Then the classical Rellich-Kondrachov compactness theorem guarantees the ex-
istence of a convergent subsequence of {um} in Lr(Ω r Bρ(0)). By taking a
diagonal sequence, we can assume without loss of generality that {um} con-
verges in Lr(Ω rBρ(0)) for any ρ > 0.
On the other hand, for any 1 ≤ r < np

n−p , there exists a b ∈ (a, a+ 1] such that
r < q = p∗(a, b) = np

n−dp , d = 1 + a − b ∈ [0, 1). From the Caffarelli-Kohn-
Nirenberg inequality (1.2) or (1.4), {um} is also bounded in Lq(Ω, |x|−bq). By
the Hölder inequality, for any δ > 0, it holds that

(1.5)

∫
|x|<δ

|x|−α|um − uj |r dx ≤
( ∫

|x|<δ

|x|−(α−br) q
q−r dx

)1− r
q

×
( ∫

Ω

|x|−br|um − uj |r dx
)r/q

≤ C
( ∫ δ

0

rn−1−(α−br) q
q−r dr

)1− r
q

= Cδn−(α−br) q
q−r ,

where C > 0 is a constant independent of m. Since α < (1 + a)r+ n(1− r
p ), it

holds that n− (α− br) q
q−r > 0. Therefore, for a given ε > 0, we first fix δ > 0

such that ∫
|x|<δ

|x|−α|um − uj |r dx ≤
ε

2
, ∀ m, j ∈ N,

then we choose N ∈ N such that∫
ΩrBδ(0)

|x|−α|um − uj |r dx ≤ Cα

∫
ΩrBδ(0)

|um − uj |r dx ≤
ε

2
, ∀ m, j ≥ N,

where Cα = δ−α if α ≥ 0 and Cα = (diam (Ω))−α if α < 0. Thus∫
Ω

|x|−α|um − uj |r dx ≤ ε, ∀ m, j ≥ N,

that is, {um} is a Cauchy sequence in Lq(Ω, |x|−bq). �
Our results will rely mainly on the results of the eigenvalue problem corre-
sponding to problem (1.1) in [15]. Let us first recall the main results of [15].
Consider the nonlinear eigenvalue problem:

(1.6)

{
−div (|x|−ap|Du|p−2Du) = λ|x|−(a+1)p+c|u|p−2u, in Ω

u = 0, on ∂Ω,

where Ω ⊂ Rn is an open bounded domain with C1 boundary and 0 ∈ Ω,
1 < p < n, 0 ≤ a < n−p

p , c > 0.
Let us introduce the following functionals in D1,p

a (Ω):

Φ(u) :=
∫

Ω

|x|−ap|Du|p dx, and J(u) :=
∫

Ω

|x|−(a+1)p+c|u|p dx.
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For c > 0, J is well-defined. Furthermore, Φ, J ∈ C1(D1,p
a (Ω),R), and a

real value λ is an eigenvalue of problem (1.6) if and only if there exists u ∈
D1,p

a (Ω) r {0} such that Φ′(u) = λJ ′(u). At this point, we introduce the set

M := {u ∈ D1,p
a (Ω) : J(u) = 1}.

Then M 6= ∅ and M is a C1 manifold in D1,p
a (Ω). It follows from the stan-

dard Lagrange multipliers arguments that the eigenvalues of (1.6) correspond
to the critical values of Φ|M. From Theorem 1, Φ satisfies the (PS) condition
on M. Thus a sequence of critical values of Φ|M comes from the Ljusternik-
Schnirelman critical point theory on C1 manifolds. Let γ(A) denote the Kras-
noselski’s genus on D1,p

a (Ω) and for any k ∈ N, set

Γk := {A ⊂M : A is compact, symmetric and γ(A) ≥ k}.

Then the values

(1.7) λk := inf
A∈Γk

max
u∈A

Φ(u)

are critical values and hence are eigenvalues of problem (1.6). Moreover, λ1 ≤
λ2 ≤ · · · ≤ λk ≤ · · · → +∞.
One can also define another sequence of critical values minimaxing Φ along a
smaller family of symmetric subsets of M. Denote by Sk the unit sphere of
Rk+1 and

O(Sk,M) := {h ∈ C(Sk,M) : h is odd}.
Then for any k ∈ N, the value

(1.8) µk := inf
h∈O(Sk−1,M)

max
t∈Sk−1

Φ(h(t))

is an eigenvalue of (1.6). Moreover λk ≤ µk. This new sequence of eigenvalues
was first introduced in [11] and later used in [10, 9] for a = 0, c = p.
In [15], we proved that the first positive eigenvalue λ1 = µ1 is simple, isolated
and it is the unique eigenvalue with positive eigenfunction, and λ2 := inf{λ ∈
R : λ is eigenvalue and λ > λ1} = λ2 = µ2.
In this paper, based on the Mountain Pass Lemma and the Linking Argument,
we will prove the existence of nontrivial weak solutions to problem (1.1) in the
case where the parameter λ ∈ (0, λ2).

2. Linking results

Let ek ∈ M be the eigenfunction associated to λk, then ‖ek‖p

D1,p
a (Ω)

= λk.
Denote G = {u ∈ M : Φ(u) < λ2}. Obviously, G is an open set containing e1
and e2. Moreover −G = G. First we prove the following Lemma.

Lema 2. e1 and −e1 do not belong to the same connected component of G.
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Proof. Otherwise, there exists a continuous curve σ connecting e1 and −e1 in
G. Let A = σ ∪ {−σ}, then from the definition of M, 0 6∈ A, hence γ(A) > 1,
by connectedness of A, so A ∈ Γ2. Hence, as A is a compact set in G, and from
the definition of G, we have max{Φ(u); u ∈ A} < λ2 and this contradicts the
definition of λ2. Q.E.D.

Let G1 be the connected component of G containing e1, then −G1 is the con-
nected component of G containing −e1. Let

K1 = {tu : u ∈ G1, t > 0}, K = −K1 ∪K1.

Then

(2.1)
∫

Ω

|x|−ap|Du|p dx < λ2

∫
Ω

|x|−(a+1)p+c|u|p dx, ∀u ∈ K,

and

(2.2)
∫

Ω

|x|−ap|Du|p dx = λ2

∫
Ω

|x|−(a+1)p+c|u|p dx, ∀u ∈ ∂K,

where ∂K is the boundary of K in X = D1,p
a (Ω). Let (∂K)ρ = {u ∈ ∂K :

‖u‖ = ρ}.
Set

E1 = span {e1}, E2 = span {e1, e2},

Z = {u ∈ X :
∫

Ω

|Du|p = λ2

∫
Ω

V (x)|u|p}, then

(2.2) implies ∂K ⊂ Z.
In a similar way to Proposition 2.1-2.2 in [12] and Lemma 2.1-2.2 in [14], we
obtain the following two linking results.

Theorem 3. Assume that v ∈ E1, v 6= 0, Q = [−v, v] is the line segment
connecting −v and v, ∂Q = {−v, v}. Then ∂Q ⊂ Q and Z link in X, that is,

(i) ∂Q ∩ Z = ∅ and
(ii) For any continuous map ψ : Q → X with ψ|∂Q = id, it follows that

ψ(Q) ∩ Z 6= ∅.

Proof. It is obvious that ∂Q ∩ Z = ∅. Now let ψ : Q = [−v, v] → X be
continuous and ψ|∂Q = id. From the definition of K and Lemma 2, K has two
connected components K1 and −K1. Assume v ∈ K1, −v ∈ −K1, then ψ(Q) is
a continuous curve connecting v and −v, therefore it holds that ψ(Q)∩∂K 6= ∅
and thus ψ(Q) ∩ Z 6= ∅. �

Theorem 4. Assume 0 < ρ < r <∞, let ẽ1 = e1/λ
1/p
1 , ẽ2 = e2/λ

1/p
2 , and

Q = Qr = {u = t1ẽ1 + t2ẽ2 : ‖u‖ ≤ r, t2 ≥ 0},
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∂Q = ∂Qr = {u = t1ẽ1 : |t1| ≤ r} ∪ {u ∈ Qr : ‖u‖ = r},

Zρ = {u ∈ Z : ‖u‖ = ρ}.

Then ∂Qr ⊂ Qr and Zρ link in X.

Proof. ∂Qr ∩ Zρ = ∅ is obvious. Let ψ : Qr → X be continuous and
ψ|∂Qr = id. Denote d1 = dist (ẽ1, ∂K) and define the mapping P : X → E2 as
follows:

P (u) =


(
min {dist (u, ∂K), rd1}

)
ẽ1 + (‖u‖ − ρ)ẽ2, if u 6∈ −K1;

−
(
min {dist (u, ∂K), rd1}

)
ẽ1 + (‖u‖ − ρ)ẽ2, if u ∈ −K1.

It is easy to see that P is continuous, and that P maps v = rẽ1 to v1 =
Pv = rd1ẽ1 + (r − ρ)ẽ2, the origin 0 to 01 = P0 = −ρẽ2, the line segment
[v, 0] onto the line segment [v1, 01] homeomorphically; −v = −rẽ1 to v2 =
P (−v) = −rd1ẽ1 + (r − ρ)ẽ2, the line segment [0,−v] onto a line segment
[01, v2] homeomorphically; and the half circle {u ∈ ∂Q : ‖u‖ = r} which is
from v to−v in ∂Q onto the line segment [v1, v2], where P (rẽ2) = (r − ρ)ẽ2.
Let f = P ◦ ψ : Q → E2. From the discussion above, it holds that 0 6∈ f(∂Q),
and when u turns a circuit along ∂Q counterclockwise , f(u) also moves a circuit
around the original 0 in E2 counterclockwise . Hence by a degree argument, it
holds that deg (f,Q, 0) = 1. So there exists some u ∈ Q such that f(u) = 0,
i.e., P (ψ(u)) = 0, which implies that ψ(u) ∈ ∂K and ‖ψ(u)‖ = ρ. Thus
ψ(u) ∈ (∂K)ρ and ψ(Q) ∩ (∂K)ρ 6= ∅. Since (∂K)ρ ⊂ Zρ, it follows that
ψ(Q) ∩ Z 6= ∅ �

3. Existence results for problem (1.1)

In this section, we will give some conditions on f(u) to guarantee that the
functional associated to problem (1.1) satisfies the Palais-Smale condition ((PS)
condition) for λ ∈ (0, λ2), the geometric assumptions of the Mountain Pass
Lemma (cf. Theorem 6.1 in Chapter 2 of [13]) in the case of 0 < λ < λ1, and
those of the linking theorem (cf. Theorem 8.4 in Chapter 2 of [13]) in the case
of λ1 ≤ λ < λ2.
Assume f : R → R satisfies:

(f1) (Subcritical growth) |f(s)| ≤ c1|s|q−1 + c2, ∀s ∈ R, where 1 < q <

p∗(a, b) = Np
N−dp .

(f2) f ∈ C(R,R), f(0) = 0, uf(u) ≥ 0, u ∈ R.
(f3) (Asymptotic property at infinity) ∃ θ ∈ (p, p∗(a, b)) and M > 0 such

that 0 < θF (u) ≤ uf(u) for |u| ≥M , where F (s) =
∫ s

0

f(t)dt.

(f4) (Asymptotic property at u = 0) lim
s→0

f(s)/|s|p−1 = 0.
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Theorem (1) and (f1) imply that the functional I : X → R:

I(u) =
1
p

∫
Ω

|x|−ap|Du|p dx− λ

p

∫
Ω

|x|−(a+1)p+c|u|p dx−
∫

Ω

|x|−bqF (u)dx

is well-defined and I ∈ C1(X; R) and that the weak solutions of problem (1.1)
is equivalent to the critical points of I. (f2) implies that 0 is a trivial solution
to problem (1.1).

Lema 5. If f satisfies assumptions (f1)-(f3), then I satisfies the (PS) condition
for λ ∈ (0, λ1).

Proof. 1. The boundedness of (PS) sequences of I.
Suppose {um} is a (PS) sequence of I, that is, there exists C > 0 such that
|I(um)| ≤ C and I ′(um) → 0 in X ′, the dual space of X, as m → ∞. The
properties of the first eigenvalue λ1 imply that for any u ∈ X, one has

λ1

∫
Ω

|x|−(a+1)p+c|u|p dx ≤
∫

Ω

|x|−ap|Du|p dx.

Let c := sup
m
I(um). Then by the above inequality and (f3), as m→∞, it holds

that

c− 1
θ
o(1)‖um‖ = (

1
p
− 1
θ
)
∫

Ω

|x|−ap|Dum|p dx

−λ(
1
p
− 1
θ
)
∫

Ω

|x|−(a+1)p+c|um|p dx+
∫

Ω

|x|−bq(
1
θ
f(um)um − F (um)) dx

≥ (
1
p
− 1
θ
)(1− λ

λ1
)
∫

Ω

|x|−ap|Dum|p dx

+
∫

Ω(um≥M)

|x|−bq(
1
θ
f(um)um − F (um)) dx

+
∫

Ω(um<M)

|x|−bq(
1
θ
f(um)um − F (um)) dx

≥ (
1
p
− 1
θ
)(1− λ

λ1
)‖um‖p − C1,

where C1 ≥ 0 is a constant independent of um. The above estimate implies the
boundedness of {um} for 0 < λ < λ1.
2. By (f1), f satisfies the subcritical growth condition and by a standard
argument there exists a convergent subsequence of {um} as a consequence of
the boundedness of {um} in X. �

Theorem 6. If f satisfies assumptions (f1)-(f4), then problem (1.1) has a
nontrivial weak solution u ∈W 1,p

0 (Ω) provided that 0 < λ < λ1.

Proof. We will verify the geometric assumptions of the Mountain Pass Lemma
(cf. [13] Chapter 2, Theorem 6.1):
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(1) I(0) = 0 is obvious;
(2) ∃ ρ > 0, ∃α > 0 : ‖u‖ = ρ =⇒ I(u) ≥ α;

In fact, ∀u ∈ X, it follows

(3.1) I(u) ≥ 1
p
(1− λ

λ1
)
∫

Ω

|x|−ap|Du|p dx−
∫

Ω

|x|−bqF (u) dx.

From (f4), ∀ ε > 0, ∃ ρ0 = ρ0(ε) such that if 0 < ρ = ‖u‖ < ρ0, then |f(u)| <
ε|u|p−1, thus∫

Ω

|x|−bqF (u) dx ≤
∫

Ω

|x|−bq

∫ u(x)

0

f(t) dt dx ≤ ε

p

∫
Ω

|x|−bq|u|pdx ≤ c0ε

p
‖u‖.

Choose c0ε0 = (1− λ
λ1

)/2 > 0, ρ =
ρ0(ε0)

2
, from (3.1), one has

(3.2) I(u) ≥ 1
p
(1− λ

λ1
− c0ε0)

∫
Ω

|x|−ap|Du|p dx ≥ λ1 − λ

2λ1p
· ρ =: α > 0.

(3) ∃u1 ∈ X : ‖u1‖ ≥ ρ and I(u1) < 0.
In fact, from (f2) and (f3), one can deduce that there exist constants c3, c4 > 0
such that

(3.3) F (s) ≥ c3|s|θ − c4, ∀s ∈ R.

Since θ > p, a simple calculation shows that as t→∞, it holds that

(3.4)

I(te1) ≤ tp

p

∫
Ω

|x|−ap|De1|p dx−
λtp

p

∫
Ω

|x|−(a+1)p+c|e1|p dx

−c3tθ
∫

Ω

|x|−bq|e1|θ dx+ c4

∫
Ω

|x|−bq dx

→ −∞,

which implies that I(te1) < 0 for t > 0 large enough.
Thus Lemma 5 and the Mountain Pass Lemma imply that value

β = inf
p∈P

sup
u∈p

E(u) ≥ α > 0

is critical, where P = {p ∈ C0([0, 1]; X) : p(0) = 0, p(1) = u1}. That is, there
is a u ∈ X, such that

E′(u) = 0, E(u) = β > 0.

E(u) = β > 0 implies u 6≡ 0. �

Lema 7. Assume that λ1 ≤ λ < λ2 and f satisfies assumptions (f1)-(f3). Then
I satisfies the (C)c condition introduced by Cerami in [5], that is, any sequence
{um} ⊂ X such that I(um) → c and (1 + ‖um‖)‖I ′(um)‖X′ → 0 possesses a
convergent subsequence.
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Proof.
1. The boundedness of the (C)c sequences in X.
Let {um} ⊂ X be such that I(um) → c and (1 + ‖um‖)‖I ′(um)‖X′ → 0. Then
from (f2), (f3) and (3.3), as m→∞, one has
(3.5)

pc+ o(1) = pI(um)− < I ′(um), um >

=
∫

Ω

|x|−bq(umf(um)− pF (um)) dx

=
∫

Ω

|x|−bq(umf(um)− θF (um)) dx+ (θ − p)
∫

Ω

θ|x|−bqF (um) dx

≥ −C1 + (θ − p)c3|um|θLθ(Ω,|x|−bq) − C4

∫
Ω

|x|−bq dx.

Thus θ > p implies the boundedness of {um} in Lθ(Ω, |x|−bq).
On the other hand, a simple calculation shows that

(3.6)

θc+ o(1) = θI(um)− < I ′(um), um >

= (
θ

p
− 1)‖Dum‖p

Lp(Ω,|x|−ap) − λ(
θ

p
− 1)

∫
Ω

|x|−(a+1)p+c|um|p dx

+
∫

Ω

|x|−bq(umf(um)− θF (um)) dx

≥ (
θ

p
− 1)

∫
Ω

|x|−ap|Dum|p dx− C

+
∫

Ω(um<M)

|x|−bq(umf(um)− θF (um)) dx

+
∫

Ω(um≥M)

|x|−bq(umf(um)− θF (um)) dx

≥ (
θ

p
− 1)‖Dum‖p

Lp(Ω,|x|−ap) − C,

where C > 0 is a universal constant independent of um, which may be different
from line to line. Thus θ > p and (3.6) imply the boundedness of {um} in X.
2. By (f1), f satisfies the subcritical growth condition, by a standard argument,
one can obtain that there exists a convergent subsequence of {um} based on
the boundedness of {um} in X. �

Theorem 8. Suppose f satisfies assumptions (f1)-(f4), and furthermore, θ >
ps/(s − 1) in (f3). Then problem (1.1) has a nontrivial weak solution u ∈ X

provided that λ1 ≤ λ < λ2.

Proof. It was shown in [3] that the (C)c condition actually suffices to get a
deformation theorem (Theorem 1.3 in [3], and it was also remarked in [8] that
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the proofs of the standard Mountain Pass Lemma and saddle-point theorem go
through without change once the deformation theorem (Theorem 1.3 in [3] is
obtained with the (C)c condition. Here we verify the assumptions of standard
Linking Argument Theorem(cf. [13] Chapter 2, Theorem 8.4) hold with the
(C)c condition replacing the (PS)c condition.
Since ∂Qr ⊂ Qr and Zρ link in X, it suffices to show that

(1) α0 = sup
u∈∂Qr

I(u) ≤ 0, when r > 0 is large enough.

(2) α = inf
u∈Zρ

I(u) > 0, when ρ > 0 is small enough.

In fact, let u = te1 ∈ E1, from assumption (f2), F (x, s) ≥ 0 for all s ∈ R and
almost every x ∈ Ω, thus it holds that
(3.7)

I(u) = I(te1) ≤ |t|p

p

∫
Ω

|x|−ap|De1|p dx−
|t|pλ
p

∫
Ω

|x|−(a+1)p+c|e1|p dx

=
|t|p

p
(1− λ

λ1
)‖e1‖ ≤ 0.

Noticing that

|um|Lθ(Ω,|x|−bq) =
( ∫

Ω

|x|−bq|u|θ
)1/θ

,

is a norm on E2, and that the norms of finite dimensional space are equivalent,
it follows that there exists a constant c5 > 0 such that∫

Ω

|x|−bq|u|θ dx ≥ c5‖u‖θ,

From (3.3), it holds that

(3.8) I(u) ≤ 1
p
‖u‖p − c3c5‖u‖θ + c4|Ω|.

Since θ > p, it follows

I(u) → −∞, as ‖u‖ → ∞, u ∈ E2,

this implies (1).
From (f4) and (f1), it follows that∫

Ω

|x|−bqF (u) dx = o(‖u‖p) as u→ 0 in X,

then for any u ∈ Z, it holds that

(3.9) I(u) =
1
p
(1− λ

λ2
)
∫

Ω

|x|−ap|Du|p dx+ o(‖u‖p).

Since λ < λ2, (3.9) implies (2).
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Thus the Linking Argument Theorem (cf. [13] Chapter 2, Theorem 8.4) implies
that the value

β = inf
h∈Γ

sup
u∈Q

E(h(u)) ≥ α > 0

is critical, where Γ = {h ∈ C0(X;X); h|∂Q = id}. That is, there is a u ∈ X,
such that

E′(u) = 0, E(u) = β > 0.

E(u) = β > 0 implies u 6≡ 0. �
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