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MULTIPLE STATIONARY SOLUTIONS TO GKP EQUATION
IN A BOUNDED DOMAIN

BENJIN XUAN (*)

Abstract. In this paper, we study the existence of multiple stationary

solutions of Generalized Kadomtsev-Petviashvili (Abbr. GKP) equation

in a bounded domain with smooth boundary and for superlinear nonlinear

term f(u) = λ|u|p−2u + |u|q−2u where 1 ≤ p, q < 2∗ =
2(2n−1)
2n−3

. Our

methods are based on variational methods, and the results are divided

into two cases according to the different values of the parameters p, q.
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1. Introduction.

Kadomtsev-Petviashvili equation and its generalization appear in many ad-
vances in Physics (cf. [3], [4], [5], [7], [9], [10] and the references therein).
Generally, it reads

wt + wxxx + (f(w))x = D−1
x ∆yw,(1)
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where (t, x, y) ∈ R+ × R × Rn−1, n ≥ 2, D−1
x h(x, y) =

∫ x

−∞ h(s, y)ds, ∆y :=
∂2

∂y2
1

+ ∂2

∂y2
2

+ · · ·+ ∂2

∂y2
n−1

.

In [4] and [5], using the constrained minimization method, De Bouard and Saut
obtained the existence and nonexistence of solitary waves in the case where the
power nonlinearities are f(u) = up, p = k/l, with k, l relatively prime and
l is odd. In the Chapter 7 of [9], Willem extended the results of [4] to the
case where n = 2, f(u) is a continuous function satisfying some structure
conditions. In paper [10], we extended the results of [4], [5] and [9] to higher
dimensional spaces for a more general nonlinearity f(u) which satisfies some
structure conditions.

In this paper, we shall investigate the existence of multiple stationary solutions
to generalized Kadomtsev-Petviashvili equation in a bounded domain in Rn,
that is,

{
uxxx + (f(u))x = D−1

x ∆yu, in Ω,

D−1
x u|∂Ω = 0, u|∂Ω = 0,

(2)

where Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary ∂Ω, f(u) =
λ|u|p−2u + |u|q−2u, 1 ≤ p, q < 2∗ = 2(2n−1)

2n−3 , λ > 0 is a parameter. First, we
rewrite (2) in the following form:

{ −uxx + D−2
x ∆yu = f(u), in Ω,

D−1
x u|∂Ω = 0, u|∂Ω = 0,

(3)

Our methods are based on the variational methods. To do this, we apply the
following functional setting:

Definition 1. For Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω,
on Y := {gx | g ∈ C∞0 (Ω)}, we define the inner product:

(u, v) :=
∫

Ω

[
uxvx + D−1

x ∇yu ·D−1
x ∇yv

]
dV,(4)

where ∇y = (
∂

∂y1
, · · · ,

∂

∂yn−1
), dV = dxdy, and the corresponding norm

‖u‖ :=
( ∫

Ω

[
u2

x + |D−1
x ∇yu|2] dV

)1/2

.(5)

A function u : Ω → R belongs to X, if there exists {um}+∞m=1 ⊂ Y such that:

(a) um → u a.e. on Ω;
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(b) ‖uj − uk‖ → 0 as j, k →∞.

Note that the space X with inner product (4) and norm (5) is a Hilbert space
of infinite dimensions. In [10], using the imbedding theorem for anisotropic
Sobolev spaces (cf. Theorem 15.6 in [2]), we have shown that the exponent
2∗ = 2(2n−1)

2n−3 > 2 is as critical as the critical Sobolev exponent p∗ = np
n−p , that

is, there exists a constant C > 0 such that the estimate

‖u‖L2∗ (Rn) ≤ C
( ∫

Rn

[
u2

x + |D−1
x ∇yu|2] dV

)1/2

(6)

holds for all functions u ∈ C∞0 (Rn). Furthermore, there is the following con-
tinuous and compact imbedding theorem about X (cf. Lemmas 2.2 and 2.3 in
[11]):

Lemma 1 (Continuous and compact imbedding). Imbedding X ↪→ Lr(Ω) is
continuous if 1 ≤ r ≤ 2∗, and compact if 1 ≤ r < 2∗.

For the convenience, we include next its proof.

Proof.
1. The continuity of the imbedding is a direct consequence of estimate (6) and
the boundedness of Ω.

2. Compactness of the imbedding. By the interpolation theorem, it suffices to
prove that the imbedding X ↪→↪→ L2(Ω) is compact.
Suppose {um}∞m=1 ⊂ X be bounded in norm (9). Then without loss of generali-
ty, assume that um ⇀ u = 0 in X, and that there exists {gm}∞m=1 ⊂ L2(Ω) such
that um = ∂xgm. Let vm = (vm,1, vm,2, · · · , vm,n−1) = ∇ygm ∈ (L2(Ω))n−1.
Denote by F [u](r, s) the Fourier transform of u(x, y).
Let

Q−1 = {(r, s) ∈ Rn
∣∣ |r| ≤ ρ, |si| ≤ ρ2, i = 1, 2, · · · , n− 1},

Q0 = {(r, s) ∈ Rn
∣∣ |r| > ρ},

Q1 = {(r, s) ∈ Rn
∣∣ |r| < ρ, |s1| > ρ2}, · · · ,

Qi = {(r, s) ∈ Rn
∣∣ |r| < ρ, |s1| < ρ2, · · · , |si−1| < ρ2, |si| > ρ2}, · · · ,

Qn−1 = {(r, s) ∈ Rn
∣∣ |r| < ρ, |s1| < ρ2, · · · , |sn−2| < ρ2, |sn−1| > ρ2}.

Then Rn =
n−1⋃
i=−1

Qi and Qi ∩Qj = ∅, i 6= j.

For ρ > 0, we have
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∫

Ω

|um|2 dV =
∫

Rn

|F [um]|2 drds =
n−1∑

i=−1

∫

Qi

∣∣F [um]
∣∣2 drds.(7)

It is clear that
∫

Q0

∣∣F [um]
∣∣2 drds =

∫

Q0

1
4π2r2

∣∣F [∂xum]
∣∣2 drds ≤ 1

4π2ρ2
|∂xum|22,

and for i = 1, · · · , n− 1, we have
∫

Qi

∣∣F [um]
∣∣2 dxdy =

∫

Qi

r2

|si|2
∣∣F [vm,i]

∣∣2 drds ≤ 1
ρ2
|vm|22.

For any ε > 0, there exists ρ > 0 large enough, such that

n−1∑

i=0

∫

Qi

∣∣F [um]
∣∣2 drds ≤ ε/2.

From part 1, the continuity of the imbedding, {um} is bounded in L2(Ω), thus
up to a subsequence, still denoted by {um}, such that um ⇀ 0 in L2(Ω),
therefore

F [um](r, s) =
∫

Ω

um(x, y)e−2iπ(xr+y·s) dV → 0, as m →∞,

and

∣∣F [um](r, s)
∣∣ ≤ c0|um|2 ≤ c1.

Lebesgue dominated convergence theorem implies that
∫

Q−1

∣∣F [um]
∣∣2 drds → 0, as m →∞.

Thus we have proved that um → 0 in L2(Ω). ¤
From Lemma 1, for 1 ≤ p, q < 2∗, on X define a functional as

Eλ(u) :=
1
2

∫

Ω

[u2
x + |D−1

x ∇yu|2] dV − λ

p

∫

Ω

|u|p dV − 1
q

∫

Ω

|u|q dV.

Clearly, Eλ ∈ C1(X,R) and a critical point of Eλ is a weak solution to problem
(3) or (2).

In the case where 2 ≤ p < q < 2∗, the existence of infinitely many critical
points of Eλ is a consequence of Lemma 1 which ensures that Eλ satisfies (PS)c

condition in X and the Symmetric Mountain Pass Lemma due to Ambrosetti
and Rabinowitz [1]; but for the case where 1 ≤ p < 2 < q < 2∗, the geometric
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conditions of Mountain Pass Lemma are difficult to verify due to the sublinear
term λ|u|p−2u, so we apply the Index theory of minimax methods, namely
the concept of Kransnoselskii genus, to a truncated functional J ∈ C1(X,R)
instead of Eλ. The ideas to work with a truncated functional were developed
by Garcia and Peral [6] for p-Laplacian equation involving critical Sobolev
exponents.

In Section 2, we study the case where 2 ≤ p < q < 2∗; while Section 3 is
concerned with the case where 1 ≤ p < 2 < q < 2∗.

2. Case 2 ≤ p < q < 2∗

In this section, we study the existence of infinitely many critical points of Eλ

on X in the case where 2 ≤ p < q < 2∗.

Lemma 2 ((PS)c condition). For 2 ≤ p < q < 2∗, λ > 0, Eλ satisfies (PS)c

condition in X, i.e., any (PS)c sequence contains a strongly convergent subse-
quence in X.

Proof.
1. Boundedness of the (PS)c sequence.
Suppose that {um}∞m=1 ⊂ X is a (PS)c sequence of Eλ, i.e., |Eλ(um)| ≤ M and
E′

λ(um) → 0 in X ′ as m → +∞. Thus, as m → +∞, we have

Eλ(um) =
1
2

∫

Ω

[u2
mx + |D−1

x ∇yum|2] dV − λ

p

∫

Ω

|um|p dV − 1
q

∫

Ω

|um|q dV

≤ M + o(1),

(8)

and

(DEλ(um), um) = ‖um‖2X − λ‖um‖p
p − ‖um‖q

q = o(1)‖um‖,(9)

where, and in what follows, we use o(1) to denote any quantity that tends to
zero as m →∞.
If p > 2, from (8) and (9), a simple calculation shows that, as m → +∞, we
have

pM + o(1) + o(1)‖um‖ ≥ pEλ(um)− (DEλ(um), um)

= (
p

2
− 1)‖um‖2X + (1− p

q
)‖um‖q

q

≥ (
p

2
− 1)‖um‖2,

(10)
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the last inequality follows from the fact that p < q, and (10) implies that
{um}∞m=1 is bounded in X.
If p = 2, from (8) and (9), it follows

2M + o(1) + o(1)‖um‖ ≥ 2Eλ(um)− (DEλ(um), um)

= (1− 2
q
)‖um‖q

q.
(11)

If on the contrary there is a subsequence, still denoted by {um}∞m=1, such that
‖um‖ → ∞ as m → +∞, then from (11) there exists C > 0 such that

‖um‖q
q ≤ C‖um‖,

for all m. In what follows, C denotes the universal positive constant which is
independent of m. The Hölder inequality implies that

‖um‖22 ≤ C‖um‖2/q.

Therefore, the estimate (8) can not hold as m →∞, which is a contradiction.
Thus {um}∞m=1 is bounded in X in this case.
2. There exists a convergent subsequence of the (PS)c sequence.
From the boundedness of (PS)c sequence {um}∞m=1, up to a subsequence, still
denoted by {um}∞m=1, there exists an u0 ∈ X such that, um ⇀ u0 weakly in X
and um → u0 strongly in Lr(Ω) for any r ∈ [1, 2∗) by Lemma 1. Since X is a
Hilbert space, lim

m→+∞
(‖um‖2 − ‖um − u0‖2

)
= ‖u0‖2. It suffices to show that

lim
m→+∞

‖um‖ = ‖u0‖.
From the boundedness of the (PS)c sequence and E′

λ(um) → 0 in X ′ as m →
+∞, there hold as m → +∞

(DEλ(um), um) = ‖um‖2X − λ‖um‖p
p − ‖um‖q

q → 0(12)

and

(DEλ(um), u0) → ‖u0‖2X − λ‖u0‖p
p − ‖u0‖q

q = 0.(13)

Thus from (12) and (13), as m → +∞, there holds

‖um‖2X → λ‖u0‖p
p + ‖u0‖q

q = ‖u0‖2X ,

which implies the strong convergence um → u0 in X. ¤

Next, we recall the Symmetric Mountain Pass Lemma due to Ambrosetti and
Rabinowitz [1] as our Lemma 3.
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Lemma 3 (Symmetric Mountain Pass Lemma). Suppose X is an infinite di-
mensional Banach space, E ∈ C1(X,R) satisfies the (PS)c condition, E(u) =
E(−u) for all u, and E(0) = 0. Suppose X = X− ⊕ X+, where X− is finite
dimensional, and assume that the following conditions hold:

(1) ∃α > 0, ρ > 0 : ‖u‖ = ρ, u ∈ X+ =⇒ E(u) ≥ α;
(2) For any finite dimensional subspace W ⊂ X, there exists R = R(W ) > 0

such that E(u) ≤ 0 for all u ∈ W, ‖u‖ ≥ R.

Then E possesses an unbounded sequence of critical values.

Theorem 1. For all λ > 0, if 2 < p < q < 2∗, then there are infinitely many
critical points of Eλ on X, hence infinitely many solutions to problem (3) or
(2).

Proof. For 2 < p < q < 2∗, we verify the assumptions of the Symmetric
Mountain Pass Lemma-Lemma 3 with X− = ∅, X+ = X. From Lemma 2, Eλ

satisfies (PS)c condition in X. It suffices to verify the two geometric conditions.
1. ∃α > 0, ρ > 0 : ‖u‖ = ρ, u ∈ X+ =⇒ Eλ(u) ≥ α.
In fact, from Lemma 1, there exist c1, c2 > 0 such that

‖u‖p ≤ c1‖u‖X , ‖u‖q ≤ c2‖u‖X .(14)

Thus, for any u ∈ X, we have

Eλ(u) =
1
2
‖u‖2X − λ

p
‖u‖p

p −
1
q
‖u‖q

q

≥ 1
2
‖u‖2X − λ

p
cp
1‖u‖p

X − cq
2

q
‖u‖q

X

= ‖u‖2X(
1
2
− λcp

1

p
‖u‖p−2

X − cq
2

q
‖u‖q−2

X ).

(15)

Since p, q > 2, choosing ρ > 0 so small that
λcp

1

p
ρp−2 +

cq
2

q
ρq−2 ≤ 1

4
, for any

u ∈ X with ‖u‖X = ρ, we have

Eλ(u) ≥ 1
4
ρ2 := α > 0.

2. For any finite dimensional subspace W ⊂ X, there exists R = R(W ) > 0
such that Eλ(u) ≤ 0 for all u ∈ W, ‖u‖ ≥ R.
For any finite dimensional subspace W ⊂ X, all the norms are equivalent.
Then

c3 = c3(W ) = inf{‖u‖p; u ∈ W, ‖u‖X = 1} > 0
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and

c4 = c4(W ) = inf{‖u‖q; u ∈ W, ‖u‖X = 1} > 0.

Thus, for u ∈ W , we have

Eλ(u) ≤ 1
2
‖u‖2X − λcp

3

p
‖u‖p

X − cq
4

q
‖u‖q

X → −∞(16)

as ‖u‖X →∞. From (16), there exists R = R(W ) > 0 such that Eλ(u) ≤ 0 for
all u ∈ W, ‖u‖ ≥ R. ¤

Remark 1. From the proof of Theorem 1, if p = 2 < q < 2∗, then there exists
a λ0 > 0 such that for all λ ∈ (0, λ0), there are infinitely many critical points
of Eλ in X.

In fact, in Step 1 of the proof, choose λ0 > 0 such that
1
2
− λ0c

p
1

p
= 0. Then

for any λ ∈ (0, λ0), there exist α > 0 and ρ > 0 such that E|‖u‖=ρ ≥ α. The
rest of proof is the same as that of Theorem 1.

3. Case 1 ≤ p < 2 < q < 2∗

In this section, we study the existence of infinitely many critical points of Eλ on
X in the case where 1 ≤ p < 2 < q < 2∗. In this case, the geometric condition
of the Mountain Pass Lemma doesn’t hold due to the sublinear term. Instead of
the Mountain Pass Lemma, we apply the Index theory with Kranselskii genus
to a truncated functional.

From Lemma 1 and (14), it follows

Eλ(u) ≥ 1
2
‖u‖2X − λ

p
cp
1‖u‖p

X − cq
2

q
‖u‖q

X .

Let us define function f : R+ → R as

f(x) =
1
2
x2 − λcp

1

p
xp − cq

2

q
xq.

Then for any u ∈ X, Eλ(u) ≥ f(‖u‖X). Furthermore, there exists λ1 > 0
such that for any λ ∈ (0, λ1), f(x) attains its positive maximum at some point
R > 0, and there are two constants 0 < R0 < R < R1 such that f(x) < 0 for
x ∈ (0, R0) or x ∈ (R0, ∞), f(x) > 0 for x ∈ (R0, R1), and f(R0) = f(R1) = 0.

For λ ∈ (0, λ1), we make the following truncation of functional Eλ. Let τ :
R+ → [0, 1] be nonincreasing and of C∞, such that
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τ(x) = 1, if x ≤ R0, τ(x) = 0, if x ≥ R1,

ϕ(u) = τ(‖u‖X). Define the truncated functional J as

J(u) :=
1
2

∫

Ω

[u2
x + |D−1

x ∇yu|2] dV − λ

p

∫

Ω

|u|p dV − 1
q

∫

Ω

|u|qϕ(u) dV.

Observe that for ‖u‖X ≤ R0, J(u) = Eλ(u) and for ‖u‖X > R1, we have

J(u) =
1
2
‖u‖2X − λcp

1

p
‖u‖p

p > 0.

Furthermore J satisfies the following properties:

Lemma 4. 1). J ∈ C1(X,R);
2). If J(u) ≤ 0, then ‖u‖X ≤ R0, and J(v) = Eλ(v) for all v in a small

enough neighborhood of u;
3). There exists λ1 > 0 such that if λ ∈ (0, λ1), J satisfies the (PS)c condition

at negative level c < 0.

Proof. Conclusions 1) and 2) are immediate. To prove 3), observe that any
(PS)c sequence {um} of J at negative level c < 0 is bounded in X. In fact,
from 2), for m large enough, ‖um‖X < R0 and J(um) = Eλ(um). Similar to
Step 2 in the proof of Lemma 2, there exists a strongly convergent subsequence
of {um} in X. ¤
From 2) in Lemma 4, if we find some negative critical value of J , then we have
a negative critical value of Eλ. Next, we will construct an appropriate minimax
sequence of negative critical values of the truncated functional J by the Index
theory involving Kransnoselskii genus γ of a nonempty close Z2-symmetric set.

Lemma 5. For any integer k, there is δ = δ(k) > 0 such that

γ({u ∈ X; J(u) ≤ −δ}) ≥ k.

Proof. For any integer k, let Vk be a k-dimensional subspace of X. For any
u ∈ Vk with norm ‖u‖X = 1, and 0 < ρ < R0, we have

J(ρu) = Eλ(ρu) =
1
2
ρ2 − λ

p
ρp‖u‖p

p −
1
q
ρq‖u‖q

q.

Since Vk is a space of finite dimension, all norms are equivalent. Therefore

c3 = c3(Vk) = inf{‖u‖p; u ∈ Vk, ‖u‖X = 1} > 0
and
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c4 = c4(Vk) = inf{‖u‖q; u ∈ Vk, ‖u‖X = 1} > 0.

Thus,

J(ρu) ≤ 1
2
ρ2 − λcp

3

p
ρp − cq

4

q
ρq.

Note that p < 2 < q, so we choose δ > 0 (which depends on k) and η < R0, such
that J(ηu) ≤ −δ for any u ∈ Vk with ‖u‖X = 1. Let Sk = {u ∈ X; ‖u‖X = η}.
Then Sk ∩ Vk ⊂ {u ∈ X; J(u) ≤ −δ}, and the monotonicity of Kransnoselskii
genus γ implies that

γ({u ∈ X; J(u) ≤ −δ}) ≥ γ(Sk ∩ Vk) = k. ¤

From Lemmas 4 and 5, and the classical deformation lemma (e.g., Theorem
3.4 in [8]), we have the following Lemma:

Lemma 6. For any integer k, let Σk = {A ⊂ X \ {0}, A is closed, A =
−A, γ(A) ≥ k}, and Kc = {u ∈ X, J ′(u) = 0, J(u) = c}. If λ ∈ (0, λ1)
with λ1 as defined in Lemma 4, then the value

ck = inf
A∈Σk

sup
u∈A

J(u)

is finite and critical, and if c = ck = ck+1 = · · · = ck+l, then γ(Kc) ≥ l + 1. In
particular, if l > 0, then Kc is infinite.

Proof.
1. For any integer k, ck is negative and finite.
Denote J−δ = {u ∈ X; J(u) ≤ −δ}. From Lemma 5, for any integer k, there
exists δ(k) > 0 such that γ(J−δ) ≥ k. Since J is continuous and even, J−δ ∈ Σk.
Thus ck ≤ −δ(k) < 0. On the other hand J is bounded from below, hence ck

is finite.
2. ck is critical.
Assume by contradiction that ck is regular. Since ck < 0, J satisfies the (PS)c

condition at level c = ck < 0. Let ε ∈ (0, 1) and Φ : X × [0,∞) → X be
determined by the classical deformation lemma (e.g., Theorem 3.4 in [8]) with
ε̄ = 1, N = ∅. By definition of ck, there exists A ∈ Σk such that

sup
u∈A

J(u) < ck + ε,

that is, A ⊂ Jck+ε. From the properties of Φ and Kransnoselskii genus γ, it
follows Φ(A, 1) ∈ Σk and Φ(A, 1) ⊂ Jck−ε, that is,
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sup
u∈Φ(A,1)

J(u) < ck − ε,

which contradicts the definition of ck.
3. If c = ck = ck+1 = · · · = ck+l, then γ(Kc) ≥ l + 1.
Since c = ck = ck+1 = · · · = ck+l < 0, J satisfies the (PS)c condition at level
c < 0, hence Kc is compact and symmetric. Hence γ(Kc) is well-defined and
there exists a neighborhood N of Kc such that γ(N̄) = γ(Kc). For ε̄ = 1,
N and c as above, let ε and Φ : X × [0,∞) → X be determined by the
classical deformation lemma. Since J is even, we may assume that Φ is odd.
By definition of c, there exists γ(A) ≥ k + l such that

sup
u∈A

J(u) < ck + ε,

that is, A ⊂ Jck+ε. From the properties of Φ and Kransnoselskii genus γ, we
have Ã = Φ(A, 1) ∈ Σk+l and Ã ⊂ Jck−ε ∪N .
On the other hand, by definition of c = ck, it follows that γ(Jck−ε) < k.
Therefore

γ(Kc) = γ(N̄) ≥ γ(Jck−ε ∪N)− γ(Jck−ε)

> γ(Ã)− k ≥ γ(A)− k

≥ k + l − k = l,

which implies that γ(Kc) ≥ l+1, and in particular, if l > 0, then Kc is infinite.
¤
From Lemma 6, one immediately gets the following existence of infinitely many
critical points of Eλ on X with negative critical values in the case where 1 ≤
p < 2 < q < 2∗:

Theorem 2. Let 1 ≤ p < 2 < q < 2∗. For all λ > 0, there exists λ1 > 0, such
that for λ ∈ (0, λ1), there are infinitely many critical points of Eλ on X, hence
infinitely many solutions to problem (3) or (2).
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