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A NOTE ON A COMMON FIXED

POINT THEOREM OF B. FISHER

Mohamed Akkouchi(*)

Abstract. The subject of this note is to establish a common fixed point theo-
rem in complete metric spaces which improves a well known result of B. Fisher
(see [1]). Our theorem solves also the problem posed in [2].
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§ 1 Introduction and statement of the result

The study of common fixed points has started in the year 1936 by the well
known result of Markov and Kakutani. Since this year, many works were
devoted to Fixed Point Theory. Many authors have studied the existence of
fixed and common fixed points and now the literature on the subject is very
rich. B. Fisher has proved in his paper [1] the following result:

Theorem 1.1. [B. Fisher]: Let (M, d) be a complete metric space. let S, T be
two self-mappings of M such that

(i) S is continuous,
(ii) d(Sx, TSy) ≤ αd(x, Sy) + β [d(x, Sx) + d(Sy, TSy)] + γ[d(x, TSy) +

d(Sx, Sy)], for every x, y ∈ M, where α, β, γ ≥ 0 are such that α+2β +
2γ < 1.

Then S and T have a unique common fixed point.

In this note, we shall prove that the assumption of continuity made on S,
in Theorem 1.1, is superfluous and can be removed. In the paper [2], L. Nova
has tried to remove the assumption (i) of continuity on S but she replaced it
by another condition. More precisely the main result of [2] was the following:
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Theorem 1.2. [L. Nova]: Let (M, d) be a complete metric space. Let a, b ≥ 0
such that a + 2b < 1 and let α, β ≥ 0, such that β < 1. Let S, T be two
self-mappings of M such that

(i) d(Sx, Sy) ≤ ad(x, y) + b [d(x, Sx) + d(y, Sy)] , for all x, y ∈ M,
(ii) d(Sx, TSy) ≤ αd(x, Sy) + β [d(x, Sx) + d(Sy, TSy)] , for all x, y ∈ M.

Then the following assertions are true:

(i) there exists a unique point z ∈ M such that z = Tz = Sz.
(ii) limn→∞ Snx = z, for all x ∈ M.
(iii) limn→∞ TSnx = z, for all x ∈ M.

The aim of this note is to establish a theorem which refines and completes
the result of B. Fisher. In a precise manner, we want to prove:

Theorem 1.3. Let (M, d) be a complete metric space, let S, T be two self-
mappings of M satisfying for all x, y ∈ M,

d(Sx, TSy) ≤ αd(x, Sy)+β [d(x, Sx) + d(Sy, TSy)]+γ [d(x, TSy) + d(Sx, Sy)] ,
(F )

where α, β, γ ≥ 0 are such that α + 2β + 2γ < 1. Then the following assertions
are true:

(A) There exists a unique point z ∈ M such that Fix(S) = Fix({S, T }) =
{z}.

(B) For every x0 ∈ M the Picard sequence {Sn(x0)} converges to z.
(C) S and TS are continuous at the point z.
(D) For each sequence {xn} of elements in M , we have: limn→∞ xn = z

if, and only if, limn→∞ FS(xn) = 0, where FS(x) := d(x, Sx) for all
x ∈ M.

(E) For each sequence {yn} of elements in Im(S) (the range of S), we have
limn→∞ yn = z, if, and only if, limn→∞ FT (yn) = 0.

Moreover, if Im(T ) ⊂ Im(S) then we have Fix(S) = Fix(T ) = Fix({S, T }) =
{z}.

§ 2 Proof of the main result

2.1 (a) Let x0 be some point in M, and define

x2n = Sx2n−1, n = 1, 2, ...

x2n+1 = Tx2n, n = 0, 1, 2, ...

We put tn := d(xn, xn+1) for all integer n. Suppose that n = 2m for some
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integer m. Then

tn = d(x2m, x2m+1) = d(Sx2m−1, Tx2m) = d(Sx2m−1, TSx2m−1)

≤ αd(x2m−1, x2m) + β [d(x2m−1, x2m) + d(x2m, x2m+1)]

+ γ [d(x2m−1, x2m+1) + d(x2m, x2m)]

≤ αtn−1 + β[tn−1 + tn] + γ [d(x2m−1, x2m) + d(x2m, x2m+1)]

≤ [α + β + γ]tn−1 + [β + γ]tn.

From these inequalities, we deduce that

tn ≤
(

α + β + γ

1 − β − γ

)
tn−1, (1)

By similar arguments, it is easy to see that the inequality (1) remains valid for
odd integers. We set q := α+β+γ

1−β−γ . Then the sequence {tn} verifies 0 ≤ tn ≤
qtn−1 for every positive integer n. Therefore 0 ≤ tn ≤ qnt0 for every integer
n. Since 0 ≤ q < 1, the sequence {tn} is a strongly Cauchy sequence (i.e.,
Σtn converges) and consequently {xn} is a Cauchy sequence. Since (M, d) is
complete, this sequence must converge in M. Let z be its limit. Next, we shall
prove that z is a common fixed point for S and T.

(b) Suppose that Sz 	= z. Then for all positive integer n, we have

d(Sz, x2n+1) = d(Sz, Tx2n) = d(Sz, TSx2n−1)

≤ αd(z, x2n) + β[d(z, Sz) + d(x2n, x2n+1)] + γ[d(z, x2n+1) + d(Sz, x2n)].
(2)

By taking the limits in both sides of (2), we obtain

d(Sz, z) ≤ [β + γ]d(Sz, z) < d(Sz, z),

which is a contradiction. Thus z is fixed by S. Let us show that Tz = z. By
use of the property (F), we have

d(z, T z) = d(Sz, TSz)

≤ αd(z, z) + β[d(z, z) + d(z, T z)] + γ[d(z, T z) + d(Sz, Sz)].
(3)

(3) implies that (1 − β − γ)d(z, T z) = 0. Since β + γ < 1, we conclude that
d(z, T z) = 0 and then z ∈ Fix({S, T }). We deduce also that Fix(S) ⊂ Fix(T ).
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(c) Suppose that there exists another point w 	= z fixed by S. Then by using
the property (F), we have

d(w, z)) = d(Sw, TSz))

≤ αd(w, z) + β[d(w, w) + d(z, z)] + γ[d(w, z) + d(w, z)]

≤ [α + 2γ]d(w, z). (4)

(4) implies that (1 − α − 2γ) d(w, z) = 0. Since α + 2γ < 1, we deduce that
w = z. We conclude that Fix(S) = Fix({S, T }) = {z}.
2.2 Let x0 be some point in M. We consider the Picard sequence defined for
every integer n, by xn := Snx0, where Sn is the n−th iterate of S. We shall
prove that {xn} converges to z. For each integer n, we set un := d(xn, z). Then
by using the property (F), we have

un+1 = d(xn+1, z) = d(Sxn, TSz))

≤ αd(xn, z) + βd(xn, xn+1) + γ[d(xn, z) + d(xn+1, z)]

≤ αun + β[un + un+1] + γ[un + un+1]. (5)

(5) implies that un+1 ≤ qun. Therefore, un ≤ qn+1u0, for all integer n. Since
q ∈ [0, 1[, we deduce that limn→∞ un = 0.

2.3 Let x ∈ M. Then by using the property (F) and the triangular property,
we have

d(Sx, z) = d(Sx, TSz)

≤ αd(x, z) + βd(x, Sx) + γ[d(x, z) + d(Sx, z)]

≤ [α + γ]d(x, z) + β[d(x, z) + d(Sx, z)] + γd(Sx, z). (6)

(6) implies that d(Sx, z) ≤ q d(x, z). Therefore, S is continuous at z. Again, by
using the property (F) and the triangular property, for every point x in M , we
have

d(z, TSx) = d(Sz, TSx)

≤ αd(z, Sx) + βd(Sx, TSx) + γ[d(z, TSx) + d(z, Sx)]

≤ [α + γ]d(Sx, z) + β[d(Sx, z) + d(z, TSx)] + γd(z, TSx).
(7)

(7) implies that d(z, TSx) ≤ q d(Sx, z). According to (6), the last inequality
yields to d(z, TSx) ≤ q2 d(x, z). Therefore, TS is continuous at z.

2.4 According to (6), for every x ∈ M, we have

d(x, Sx) ≤ d(x, z) + d(z, Sx) ≤ (1 + q)d(x, z).
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Thus, if limn→∞ xn = z then limn→∞ FS(xn) = 0. Conversely, by using (6),
for every x ∈ M, we get

d(x, z) ≤ d(x, Sx) + d(Sx, z) ≤ d(x, Sx) + qd(x, z). (8)

From (8), we obtain d(x, z) ≤ 1
1−qd(x, Sx). This completes the proof of (D).

2.5 Let w = Sx be an element of the range Im(S). Then according to the
triangular inequality and (9), we have

FT (w) = d(Sx, TSx) ≤ d(Sx, z)+d(z, TSx) ≤ (1+q)d(Sx, z) = (1+q)d(w, z).
(9)

From (9) we obtain the first implication in (E). To prove the converse, let again
w = Sx be an element of Im(S). According to (7), we have

d(w, z) = d(Sx, z) ≤ d(Sx, TSx) + d(TSx, z)

≤ d(Sx, TSx) + qd(Sx, z) = FT (w) + qd(w, z). (10)

From (10), we obtain d(w, z) ≤ 1
1−qFT (w). Thus, for every sequence {wn} of

points in Im(S), if limn→∞ FT (wn) = 0, then we must have limn→∞ wn = z.

2.6 Suppose in addition that Im(T ) ⊂ Im(S). From the subsection (b) of
2.1, we already know that Fix(S) ⊂ Fix(T ). It remains to prove the inverse
inclusion. Let w ∈ Fix(T ). Then w ∈ Im(S) and we can find an u ∈ M, such
that w = Tw = Su. By using the property (F), we obtain

d(Sw, w) = d(Sw, Tw) = d(Sw, TSu)

≤ αd(w, w) + β[d(w, Sw) + d(w, w)] + γ[d(w, w) + d(Sw, w)].
(11)

(11) implies that [1 − β − γ]d(Sw, w) = 0, which implies that Sw = w. This
completes the proof of Theorem 1.3. �
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