APPROXIMATIONS TO THE AREA OF THE
ELLIPSOID

By ¢. POLYA
Stanford University, California (U. 8. A.)

When, teaching the Calculus, I had to discuss the applica-
tions of Taylor’s series, I often chose some approximation to
the area of the ellipsoid as an instructive illustration, restric-
ting myself to ellipsoids of revolution in more elementary
classes. Little by little, I gathered various results of which I
present a survey in the following, reserving the proofs for a
more detailed publication. The excellent pedagogue to whom
these pages are dedicated might be interested by some of these
remarks which, as I said, originated in my classroom activity.

1. The form of the approzimations. Let E=E (a,b,¢) de-
note the area of the surface of the ellipsoid with semiaxes
a,b,c. Evidently, the function E (a,b, ¢) has the following
properties.

(I) It is defined, continuous, and non-negative for a=0,
b =0, ¢=0, positive for a>0, >0, ¢>0.

(11) It is homogeneous of degree 2 in a,b,¢.

(III) Tt is symmetric in a, b, c.

(IV) For a=b=c, its value is 4 a2

It is reasonable to approximate E by functions of a,b.¢,
which share with E these properties. Such a function is

(1.1) Pyv= PMV (a,b,¢)=
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if the real numbers ), p, v are supposed to satisfy the conditions
(1.2) A ptv=2,
(1.8) A= p=v=0.

Three functions P,,,(a,b,c) deserve particular attention
and ‘special notation. They are the following

a2 b2+c2
(1.4) Pyo=4m —+3—‘ =4,
. bet-ca--ab
(1.5) Pigp=dn =TS —F,
. (1° 6) P2/3' 913, 93 =47 (a 60)2/3 =Q.

: ‘A is the arithmetic mean of the areas of three spherical
. surfaces; .the spheres have as radii the semiaxes a,b,c of the
-ellipsoid. E is also. the arithmetic mean of three spherical sur-
faces; .any great circle of the first sphere has the same area nbc
- a3"the: intersection of the ellipsoid with the plane that passes
through . its center and is perpendicular to its axis of length
2a; the two other spheres are similarly related to the two
other axes' of ‘the ellipsoid. Finally, G is the geometric mean
of the three spherical areas whose arithmetic mean is A; it
is also, the geometric mean of the three other spherical areas
whose arithmetic mean is F; and it is also the area of the
surface . of the sphere whose volume is equal to the volume
of the ellipsoid.

We may consider linear combinations of a finite number
of Py,, as

(1. 7)' ' .k‘P)\uv—-}— k’P)\r“rvl + k”P)\”p‘”v” B

It is understood that if we replace \,p,v in (1.2) (1.8)
by N,w,v these conditions remain satisfied, and the same is
true of: M, p’;¥", ... . If this is so, and the coefficients F,
E,E", ... satisfy the conditions
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(1.8) kel k=1,
(1.9) k>0, k>0, >0, ...,

the linear combination (1.7) has the same properties (I) (II)
(II1) (1V) as E. We may and shall consider (1.1) as a special
case of (1.7), admitting that the latter may consist of just
one term.

Particular approximations of this kind have been consi-
dered before. Boussinesq(t) proposed as approximations to E

at+b+cy e _ 1 2
(1.10) ax (O =LA+ S F,
(1.11) 4= (‘é"_‘g_.ﬁ + %—(abc)1/3)2 -
16, 32, 8.,2%
T 5 A+ s Fo-e G472 P, 1p. 18 -

Peano (2) considered F, see (1.5), and

(1.12) 4= (b"""cg’wb + <l’_c)2’§"("é’(‘)“>2+<'“_b>2 )=t A+%F.

Let us introduce the following terminology. The expres-
sion (1.7) will be termed a regular approximation if the
conditions (1.2) (1.8) (1.8) (1.9) are satisfied. If only the
conditions (1.2) and (1.8) are supposed to be satisfied and
(1.8) and (1.9) are dropped (so that some of the numbers
v, N, v, ... kyk, ... may be negative), the expression
(1.7) is called a semi-reqular approximation. Semi-regular ap-
proximations have the properties (II), (IIf), (IV), but not
necessarily (I), whereas regular approximations have all pro-
perties (I) to (IV). An approximation which has not the
form (1.7) is neither regular nor semi-regular, and may be
called irregular.

() J. BoussiNgsq, Cours d’analyse infinitésimale, Paris, 1890, vol. 2,
T4*-TT*.

(*) G. Peawo, Valori approssimati dell’ area dell? ellissoide. Atti della R.
Aceademia dei Lincei, Rendiconti, 4 series, vol. 6, 2nd semester (1890) p. 317-321.



Let P be any approximation to E. If E=P for a>0,
b=>0, ¢=0, P is called a lower approximation to E, if E<P
for =0, b=0, ¢=0, P is called an upper approximation.
Lower and upper approximations are called unilateral approxi-
mations. P—FE is called the error of the approximation,
(P—E)/E is called the relative error. If an approximation is
not unilateral, its error is positive for certain values of a,b,¢,
and negative for certain other values.

2. Inequalities. I list here the most important unilateral
approximations to E; they stand on the right hand side of the
following inequalities.

(2.1) E>F,
(2.2) E<A,
(2.8) E<i A+ 3F.

(2.1) is valid unless a=b=c or two semiaxes vanish; (2.2)
is valid unless a=b=¢; (2.8) is valid unless a=b=c¢, or
two semiaxes are equal and the third vanishes (as a=5, ¢=0),
In the cases excluded, the inequality concerned is turned into
equality. f

The right hand sides of the foregoing inequalities are
regular approximations; the right hand side of the next one
is a semi-regular approximation.

4m @27 (b—c)2-b12/1 (c—a)24-¢227 (a—b)?
(2.4)E<F+3q (@b =

1 1
=D, .+ z Pyt st —ar = Dynaman

holds unless a=b=c.
The following inequalities (2. 6) to (2.10) suppose that

(2.5) a=b=>c>0.
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We consider various irregular approximations.

(2.6) E>2n‘«ab(1—{—%>,

@.7) E<F+Tab (1-2)".

These two inequalities are valid unless a=b=c¢, or ¢=0, in
which cases the right hand side gives the exact value of E.

The following inequalities compare the area of the surface
of a general ellipsoid with the areas of oblate spheroids.

(2.8) 2E (a,b,c)>ablE (1,1, ¢/a)+E (1,1,¢/b)],
(2.9) E(a,b,c)<abB (1,1,[1—(1—c?/a?)f?(1— c2/b?)12]F%)

are valid unless a=25, in which case the equality is obvious.
The following inequality supposes ¢<1, ¢’<1 and is
valid unless c=¢. '

(2.10)  E(1Le)+ELLe)>2E (1,1 (cd)H).

The proofs for the foregoing inequalities cannot be pre-
sented here; some are based on the representation of E by an
integral, others on its representation by a series. Geometric
considerations may also lead to inequalities for E. If the vo-
lume of any solid which is not a sphere is equal to the volume of
a sphere then the area of the surface of thie solid is larger
than that of the sphere. Applying this to the ellipsoid, we
obtain that

(2.11) E>G

unless a=b=c. A related theorem, discovered by H. A.
Schwarz (3) leads to the inequality

(2.12) E (a,b,¢)>E ((ab)t/2. (ab)12,¢)

——

(*) H. A. ScEWARZ, Werke, vol. 2, p. 327-340.
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valid unless a=>b. Inequalities (2.11) (2.12) do not need the
assumption (2.5).

(2.11) is an easy consequence of (2.1) (since the geo-
metric mean is less than the arithmetic mean). We can deduce
(2.12) from (2.8) and (2.10) under the resiriction (2.5)
but not without restriction.

I add the following inequality which is valid unless
a=b=c, or two semiaxes vanish

b2c2+c2a2+a2bz ) /2

(2.13) E<4x 3

Inequalities (2.1) and (2.11) are due to Peano, the others
are new so far as I know. For the first complete proof of
(2.8) I am indebted to Professor G. Szegd.

3. Unilateral reqular approzimations. In this section, we
restrict ourselves to the consideration of regular approximations.
Let P denote such an approximation; then P is represented
by (1.7) (which contains (1.1) as a special case), the condi-
tions (1.2) (1.8) (1.8) (1.9) are fulfilled, and P=P(a,b,¢)
has the properties (I) (II) (III) (IV) stated at the beginning
of section 1. Our problem is to characterize those regular appro-
ximations which are unilateral. This problem can be completely
solved and its solution is stated in the following two theorems
of which the first deals with lower approximations and the
second with upper approximations.

L P being a reqular approximation, the inequality

Ex=P

18 valid for a=0, =0, ¢=0 if and only if

(3.1) A=SL VM=, =, ..

If this condition is fulfilled then, for a>0, 5>0, ¢>0,
F>p

unless P happens to be F, or a=b =,
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II. Let P be a reqular approzimation, and let h, denote
the sum of the coefficients of the Py, with v==0, h, the sum
of the coefficients of the P, with v=0, p>0, and h, the
coefficient of Py 4= A. The inequality

E=xP
is valid for az0, b=0, ¢=0 if and only if

(3.2) 4hy 42k, =3.

If this condition is fulfilled then, for a>0, b>0. ¢>0,

bo|

1
A+§F<P

unless P happens to be (A+F)/2 or a=b=c.

In order to understand clearly Theorem II, let us observe
that A, is the sum of certain of the coefficients &, k", %", ...
arising in (1.7) and so is hy, whereas h, is either =0, namely
in the case in which P;o,=A does not arise in (1.7),
or it is the coefficient of this particular P,,, so that all we
can say a priori about hy, hy, h, is

<3.8) hozo, hlzo, hzgo, h0+hl+h2=1-

The subscript in hg, hy, h, exhibits the numbers of the vani-
shing among X\, u,v. If P is (A+F)/2, then hy=0, hy=h,=1/2,
and the condition (8.2) is fulfilled; this agrees with the
existence of the inequality (2.3). If P=(3+G)/4, then
ho=1/4, hy=0, hy,=38/4; the condition (3.2) is again ful-
filled, and so we have, by Theorem II,

1 1 8,,1
§A+§F<ZA,—Q

i
(3.4)
F<ia+la

for a>0, >0, ¢>0, unless a=b=c. If P is given by (1.11)



then h,=27/75, hy=2382/T5, h,=16/75, the condition (3. 2)
is not fulfilled and so (1.11) is not an upper approximation,
With just as little trouble we may see that none of the formu-
las (1.10) (1.11) (1.12) represents an upper approximation

or a lower approximation (see Theorem I).

It follows easily from (3.2) and (3.3) that hy=1/2 and
so A must be a constituent of all upper approximations. Con-
sider the particular case in which the approximation has but
one constituent, being of the form (1.1). We obtain that the
only Py, that gives an upper approximation of E'is Py, =A4;
the inequality (2.2) is the only one of its kind. We can ex-
press an essential part of the Theorems I and II by saying that
the incqualities (2.1) and (2.3) are the best of their kind.

4. Nearly spherical ellipsoids. If P is an approximation
that is homogeneous of degree 2 in a,b,c¢ (has the property
(I)) its relative error (P—E)/E is a homogeneous function
of degree 0 of the semiaxes a,b,¢, and so it depends only on
the ratios of these semiaxes. That is, the relative ‘error de-
pends only of the shape of the ellipsoid and not on its size;
it can be conceived, under condition (2.5), as a function of
o2 and B2, where

a?—e? b2—c?

(4' 1) (X«2=, 22 ’ BZ__:_. 62 H

o and B are the numerical excentricities of two ellipses, inter-
sections of the ellipsoid with two planes, each of which con-
tains the shortest axis and another axis of the ellipsoid.
We assume that the relative error can be expanded inlo
powers of «f and B2 and we write the expansion as follows

(4.2) (P—E)/E=Qy+0Qs+...4Qp ...,

Or being a homogeneous polynomial of degree n in a2 and B2
It all coefficients of Q,, O, ..., Q-1 vanish, but Q,

has a non-vanishing coefficient, we shall call Q,. the initial

polynomial, m the order of approzimation, and the maximum
of |Q,| for



(4.3) 0=p=se=1

the modulus of the approzinmation. (It (2.5) holds, a=B).

If we consider small (infinitesimal) values of a, 8, that is,
nearly spherical ellipsoids, and we wish to judge the efficiency
of the approximation, we must know its order, its modulus,
and the initial polynomial. Comparing two approximations
whose orders are different, we consider that with the higher
order as better. Comparing two approximations of the same
order, we consider that with the smaller modulus as better.

If we are given the numbers X, p,v; N,/ v'; N, p1",v";. ..
and we have to decide whether there exists or not a semiregular
approximation to E of the form (1.7) and of order m, we
can solve our problem discussing a system of 1+24...+m
linear equations for the unknowns EELE", ... Such problems
provide an instructive illustration of the chapter of the Calcu-
lus that deals with Taylor’s series.

For instance, the expansion

Py

w—E _ 5 (A2-fp24ve)—12

(4.4) E 120

(a‘i—a?B?-}—B‘-’c)—{—...

starts as written, the following terms being of degree 3 in «?
and p2. Therefore, unless

5 (A2 4 p2+v2) —12=0

(which never happens for rational X, u,v) the order of appro-
ximation is 2 and the modulus of approximation is the factor
of (ut—a2B24p4). To derive (4.4) in some interesting spe-
cial case, as (1.4), (1,5), or (L 6), may be proposed as a
useful exercise in the classroom. '

The best approximating linear combination of A,F,G for
nearly spherical ellipsoids is

(4.5) (—2 A +64F—21G)/35.

The order of the approximation is 5, the modulus of the
approximation 1720790, and the initial polynomial
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— (a2—27) (2 — "12‘ 82) (af 4 B¢) /20790.

The approximation (4.5) gives remarkably good nume-
rical results. For a=5, b=4, ¢=3 the relative error is in
absolute value very nearly 3.1076. For a=28, b=27, ¢=28
the tables at disposal were insufficient to find a difference
between the approximate value supplied by (4.5) and the true
value given by elliptic integrals; the first 7 figures are same.

For the not too easy numerical computation of the inter-
vening elliptic integrals I am indebted to Profesor J. V.
Uspensky. ‘

5. Spheroids. Let P denote an approximation of the form
(1.7). It does not seem quite easy to formulate necessary and
sufficient conditions under which P is a unilateral approxima-
tion to E, not necessarily for all ellipsoids, but just for sphe-
roids (ellipsoids of revolution) of a certain kind. But I found
various sufficient conditions, and I state here a relatively simple
condition of this kind.

Assume that a>¢>0. It is easy to see that there is an
identity in o of the form

d aP(a,a,
(5‘ 1) de ( 4?; C)) - (1_1a2)2

=co(l—e®ote (1—a)t .. g (l—a2)ls

where ¢g,...¢;, Yp,...7; are independent of a, vy, Yy,... Y are
different from each other, and ¢y, ¢y,.. .,¢; are different
from 0. Let us call, as in the preceding section, m the order
with which P approximates E for nearly spherical ellipsoids.
If l=m, then P (a,0,¢)—E (a,a,¢) can not vanish for 0<ec<<a
and so P is a unilateral approximation for oblate spheroids.
For prolate spheroids, we consider

d (aP (a,a,c)

da\ 4mqce ) —(1—a?)i
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instead of the left hand side of (5.1) and the condition is
similar.

These conditions can be applied, for instance, to the appro-
ximation (1.2) due to Peano and to the new approximation
(4.5). These two approximations have errors with opposite
signs for spheroids, so that the true value is always contained
between (1.12) and (4.5)). The approximation (1.12) gives
consistently too high values for prolate spheroids and too low
values for oblate spheroids, and just the opposite is true of
(4.5). :



