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Abstract

The Dynamic Common Factor Model has been largely used in recent 
macroeconometric studies. The model represents any vector of variables 
of interest through the sum of two non-observable orthogonal compo-
nents – the common and the idiosyncratic one. One reason for the increas-
ing interest in this model follows from its fl exibility to work with large 
dimensional data set. This work makes an application of the model to a 
group of stock market indexes. Beyond presenting the model, we measure 
the dynamic integration of 24 different stock markets from Dec/1992 to 
May/2004.
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1. Introduction

Since the end of the 80´s and beginning of the 90´s, the world 
economy has experienced an ever-increasing interdependence of its stock 
markets. After the huge technology progress and expressive growth of 
capital fl ows of the last decades, worldwide stock markets have become 
much more sensitive to local events, as the fi nancial crisis from the late 
90´s have painfully proven.

After the crash of 1987 of the New York Stock Exchange, innumer-
ous articles have analyzed the pattern of co-movement between stock ex-
changes. The fi rst stream of the literature tried to analyze the dynamics of 
that co-movement by checking the correlation between the various mar-
kets, as Füerstenberg and Jeon (1989), Bertero and Mayer (1990), Hamao 
et. all. (1990), Koch and Koch (1991), and Cheung and Ng (1992). 

Another stream of the literature focused on searching for com-
mon stochastic trends and checking the transmission of shocks between 
markets, very often fi nding confl icting results. Kasa (1992) is one of the 
fi rst studies to apply Johansen (1988) methodology to test for a common 
stochastic trend between stock markets. Using monthly and quarterly 
observations from several stock exchanges, as USA, United Kingdom, 
Japan, Canada and Germany for the period of 1974 to 1990, the author 
fi nds one common stochastic trend between those markets. Blackman 
et. all. (1994), Mashi and Mashi (1997), Jochum et. all. (1999), among 
many others4, also fi nd evidence of a common stochastic trend between 
stock exchanges of developed and developing countries. Richards (1995), 
on the other hand, criticize that literature for ignoring the small sample 
properties of the estimators. Applying the small sample critical values of 
Cheung and Lai (1993), or after generating the critical values by Monte 
Carlo simulation, the author is not able to reject the null hypothesis of no 
cointegration.

Many authors have argued that the increasing integration of fi nan-
cial markets could jeopardize investors search for risk diversifi cation. As 
pointed by Garrett and Spyrou (1999), that may not be the case. Small 

 4 Among many, we can cite Eun and Shin (1989), Cheung and Mak (1992), Choundhry 
(1996), Gerrits and Yuce (1999), Kanas (1998), Pagan and Soydemir (2000), and Tabak 
and Lima (2003).
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or statistically insignifi cant long-run coeffi cients imply the unimportance 
of some countries to the maintenance of the common-trend, thus making 
long-run diversifi cation between countries possible. The measure of inte-
gration here proposed permits us to measure the integration at all phases 
of the spectrum, consequently allowing us to detach the relative impor-
tance of short and long-run co-movements. 

Sala (2001) states that the cointegration analysis, seen under the 
frequency domain, is equivalent to the study of the spectral density at 
the zero frequency. The methodology proposed in this study allows us to 
benefi t from the information of higher frequencies of the spectrum, also 
capturing short-term coincident movements.

In this sense, it is the objective of this paper to propose a methodol-
ogy to infer the pattern of dynamic integration for a set of 24 stock market 
exchanges of 21 different nations. For that purpose, we apply Forni et all 
(2000) dynamic factor model. The model represents any vector of series 
through the sum of two orthogonal non-observable components – the com-
mon and the idiosyncratic one. The idea underlying the decomposition is 
that the behavior of a relatively large set of variables is driven by a pos-
sibly small number of common factors and idiosyncratic shocks. In a spirit 
close to Forni and Reichlin (1999), the percentage of variance explained 
by the common component is our measure of dynamic integration.

Besides this short introduction, this work consist of three more sec-
tions. In the next one, the methodology and the dynamic factor model 
are described. Next, in the third section, the main results are listed and 
discussed. Finally, section four summarizes and fi nal considerations are 
presented.

2. The Dynamic Factor Model

The procedure chosen to measure the international stock markets 
integration is an application of the model fi rst developed by Forni and 
Reichlin (1999). According to the authors, any vector may be decom-
posed into the sum of two unobservable and orthogonal components:

i
t

i
t

i
tx εχ +=  (1)
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Where the sequence { i
tx ; t ∈  and i = 1,...,n} represents the series 

under study, { i
tχ ; t ∈  and i = 1,...,n} represents the common compo-

nent and { i
tε ; t ∈  and i = 1,...,n} represents the idiosyncratic shocks.

As the components i
tχ  and i

tε  are orthogonal, we take the fraction 
of the total variance explained by the common component as a measure 
of dynamic integration of i

tx . The strategy for the estimation of the latent 
components is based on an application of the Common Dynamic Factor 
Model [Forni, Hallin, Lippi and Reichlin (2000)], which we briefl y de-
scribe below.

First, we defi ne the vector of common component for the linear 
combination:

t
ii

t uLA )(=χ  (2)

Where {ut = (u1t, u2t,...,uqt); t ∈  and q<<n} is the common shocks 
vector and )(LAi  is a rational matrix function in the lag operator L. The 
idea behind the model is that “the behavior of several variables is driven 
by few common forces, the factors, plus idiosyncratic shocks” [Favero, 
Marcellino and Neglia (2002): 3]. The vector of shocks, or common fac-
tors, ut, defi nes the common dynamics. Although it is common to all vari-
ables, it has different effects on each of them, according to the loading 
coeffi cients of the )(LAi  matrix.

The model presented by Forni, Hallin, Lippi and Reichlin (2000) 
is a generalization of a large class of models introduced in the macroeco-
nomic literature by Sargent and Sims (1977) and Geweke (1977), as well 
as Chamberlain and Rotschild (1983). The framework proposed in the 
70´s also allows dynamic, though it requires fi nite cross-section dimen-
sion and orthogonal idiosyncratic components. The static model proposed 
by Chamberlain and Rotschild (1983) requires orthogonality of the idio-
syncratic components, but it allows infi nite cross-section dimension. The 
dynamic model proposed by Forni, Hallin, Lippi and Reichlin (2000) is 
more general, as it allows infi nite cross-section dimension and non-or-
thogonal idiosyncratic components.

In order to estimate the common components, Forni, Hallin, Lippi 
and Reichlin (2000) establish a set of assumptions about the variables. 
Next we describe the fi rst set of assumptions.
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Assumption 1:

1.1 The stochastic process {ut = (u1t, u2t,...,uqt); t ∈  and q<<n} is 
a Gaussian white noise with mean equals to zero and unit vari-
ance. Furthermore, ujt  ⊥ ujt-k, for all values of j, t and k ≠ 0, and 
ujt ⊥  ust-k, for all values of k and s ≠ j.

1.2 The stochastic process { i
tε ; t ∈  and i = 1,...,n} is stationary 

with mean zero and i
tε  ⊥ ujt-k, for all values of i, j, t and k.

1.3  is nxq matrix whose n column is giv-
en by   . The fi lters ∑

∞

−∞=

=
k

ki
qk

i
q LbLb )(  

are square sumable, that is 
  

< ∞.

The hypothesis assumed imply that the observable vector { i
tx ; t ∈ 

 and i = 1,...,n} is stationary with mean zero for all n. Let )()( θn∑  be 
the spectral density matrix to the vector i

tx . Another consequence of As-
sumption (1) is the possibility to write )()( θn∑  as the sum of the spectral 
density matrix of common component, )()( θχ

n∑ , and the spectral den-
sity matrix of idiosyncratic component, )()( θε

n∑ .

What makes this model different of previous factor models is the 
possibility to handle the dynamics of large cross-section units. Moreover, 
the model does not require the orthogonality between the idiosyncratic 
components. As a consequence, the model requests additional assump-
tions in order to identify the latent variables above defi ned. 

Assumption 2:

2.1 Let )(θσ ij  be the element of the ith row and jth column of the 
matrix )()( θn∑ . For all i ∈ ,, there exist one real ci > 0 such 
that )(θσ ii  ≤  ci for θ ∈ [-π, π].

2.2 The fi rst dynamic eigenvalue5 of )()( θε
n∑ , )(1 θλ ε

n , is uni-
formly bounded, that is there exist one real Δ  such that 

 5 Following the literature, we refer to the latent root and latent vector associated to the 
dynamics captured by spectral density matrix of any vector. This concept is an extension 
of well known latent root and latent vector of auto covariance matrix usually used in the 
static principal components analysis. See Brillinger (1981) for a detailed discussion.
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Δ≤)(1 θλ ε
n  for all n ∈  and θ ∈ [-π, π]. Let be assumed 

also that the fi rst q dynamic eigenvalues of )()( θχ
n∑  diverge 

almost everywhere in [-π,π].

As exposed by the authors, there is some intuition behind these 
hypotheses. For example, the assumption about the bound to the dynamic 
eigenvalues of the idiosyncratic components´ spectral density seems to 
indicate that idiosyncratic causes of variance have their effects concen-
trated on a limited number of observational units, though it is shared by 
a large number of them. These idiosyncratic causes tend to zero when 
the number of observational units tends to infi nite. On the other side, the 
divergence in the spectral density matrix of common components seems 
to imply that the common causes of variation are present in a large num-
ber of observational units with non-decreasing importance among them 
[Forni, Hallin, Lippi and Reichlin (2000): 542].

Provide the assumptions (1) and (2) are fulfi lled, the authors pro-
pose the fi rst result about the representation of model:

Result 1: The fi rst q eigenvalues of )()( θn∑  diverge when n tend 
to infi nite almost everywhere in [-π,π] while the (n-q) rest of them are 
uniformly bounded.

The proof can be checked in the original paper. It is important to 
note that the proposition above makes a link between the hypotheses as-
sumed on the set of unobservable variables and the observable properties 
of the variables under study. Forni and Lippi (1999) show that, under the 
conditions of result (1), it is possible to write the set of observable vari-
ables as the dynamic factor model (1) and (2).

After the considerations about the representation, we may now ex-
amine the estimation of the common and idiosyncratic components of 
the model. Through an application of the Law of Large Numbers, Forni, 
Hallin, Lippi and Reichlin (2000) show that is possible to estimate the 
common components projecting the variables i

tx in any q linear com-
binations “properly chosen”. The relevant question now is how one may 
determine such aggregations. In this same work, the authors suggest the 
use of the fi rst q dynamic principal components6 associated to the fi rst q 
dynamic eigenvalues of the vector i

tx .

 6 See Brillinger (1981) for a discussion about principal components.
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The dynamic principal components are an extension to the fre-
quency domain of the well-known static model. Let Pj(θ), θ ∈ [-π, π], 
be the dynamic eigenvector associated to jth eigenvalue of the spectral 
density of i

tx . The Dynamic Principal Components are the q stochastic 
processes formed by the projection:

 (3)

Where j = 1,...,q. Following the notation above, the estimator pro-
posed by Forni, Hallin, Lippi and Reichlin (2000) for the common com-
ponent vector may be represented by the following projection:

i
tqiqii

i
t xLPLpLPLpLPLp )]()(...)()()()([ ,2,21,1 =+++=χ

i
ti xLK )(  (4)

Where the kth coeffi cient of fi lter is ∫
π

π−

θ θθ
π

= dePp ik
jjk )(

2
1

. In-

dexing in n the sample equivalent to the projection above, we can present 
the important result, proved by Forni, Hallin, Lippi and Reichlin (2000).

Result 2: i
t

i
ntn

χχ =
∞→ ,lim  in mean square for all i and t.

Details about the sample properties of the estimators as well as the 
convergence rate required for the cross-section and temporal dimension 
can be found in Forni, Hallin, Lippi and Reichlin (2000) and (2004).

An aspect not still mentioned is the determination of  the number 
of common factors. The dimension of vector ut can be understood as the 
fundamental dimension for the dynamic of i

tx . Unfortunately, there is 
no well-established formal test in the literature7. Forni, Hallin, Lippi and 
Reichlin (2000) propose an heuristic procedure based on result (1). 

The spectral density matrix of i
tx  can be decomposed in terms of 

its dynamic eigenvalues and eigenvectors:

')( )()()()( θθθθ PPn Λ=∑  (5)

 7 Bai and Ng (2002) propose a procedure to determine the number of factors in the static 
model.
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Where )(θΛ  is a diagonal matrix with the dynamic eigenvalues, 
classifi ed by their magnitude, from the higher to the lower value, for each 
frequency θ ∈ [-π, π]. The )(θP  contains the eigenvectors associated 
with each eigenvalue.

The rank of )()( θn∑  and the number of common factors, q, is 
equal to the number of eigenvalues not equal to zero for each frequency. 
The dimension of the common shock vector, tu , can be determined by the 
number of dynamic eigenvalues required to explain the greatest part of 

)()( θn∑  trace, for each frequency θ. It consists in verifying the number 
of dynamic eigenvalues of the vector i

tx  that are different from zero on 
the range of the frequencies θ ∈ [-π, π].

It is clarifying to emphasize that the model above can be under-
stood within the multivariate time series theory, as shown in Brillinger 
(1981). As defi ned by expression (1) and supposing that the closest the 
common components are to the observable series the better, the problem 
can be stated as the following minimization problem:

i
t

i
t

i
t x χε −=  (6) 

Where the common components are described as in the expression 
(1). Let )(LBi  be a matrix of rational functions in the lag operator L, 
which has a reduced rank, taking the information from a n-dimensional 
initial vector to a q-dimensional vector, such that q<<n:

i
t

i
t xLBu )(=  (7)

This allows the model (1) to be written as:

i
t

i
t

iii
t xLBLAx ε+= )()(  (8)

Consequently, in order to minimize the expression (6), we have to 
properly choose the fi lters )(LAi and )(LBi  that make the linear combi-
nation i

t
ii xLBLA )()(  the nearest to i

tx . Brillinger (1981) has proved that 
the solution of this problem is obtained by the projection of the q eigen-
vectors associated to the q-fi rst spectral density’s eigenvalues of i

tx . That 
is, the estimation procedure proposed by Forni, Hallin, Lippi and Reich-
lin (2000) for the common component produces the best approximation 
for the series i

tx . Furthermore, the minimum value for the idiosyncratic 
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components is given by ∫ ∑ >

π
θθλ

2

0
)(

qj
j d . So, the closest to zero the 

last (n-q) dynamic eigenvalues are, referred in result (1), the better the 
common component is identifi ed.

3. Main Results

We use monthly observations from the Morgan Stanley Compos-
ite Index (MSCI) for the period of December 1992 to May 2004. Our 
sample is composed of the following indexes: Argentina (MSAR index), 
Brazil (MXBR Index), Mexico (MXMX Index), South Africa (MSE-
USSA Index), India (MSEUSIA Index), Indonesia (MSEUSINF Index), 
South Korea (MSEUSKO Index), Malaysia (MSDUMAF Index), Taiwan 
(MSEUSTW Index), Israel (MXIL Index), Turkey (MSEUSTK Index), 
China (MSEUSCF Index), USA (Dow Jones, INDU Index), EUA (NAS-
DAQ, CCMP Index), EUA (Standard & Poor´s, SPX Index), Germany 
(DAX Index), United Kingdom (FTSE, UKX Index), Japan (Nikei, NKY 
Index), Japan (Topix, TPX Index), Hong Kong (HSI Index), France (CAC 
Index), Australia (AS51 Index), Spain (IBEX Index) and, fi nally, Italy 
(MIB30 Index). 

The methodology makes use of the estimation of spectral densities, 
what requires stationary variables. In order to ensure stationarity, we take 
the fi rst difference from the logarithm of all series.

As a fi rst step to apply the dynamic factor model, we need to de-
termine the number of common shocks to the set of series under study. 
Forni, Hallin, Lippi amd Reichlin (2000) proposed two distinct methods 
to distinguish the number of common factors8: the graphic below shows 
the percentage of variance explained by each of the dynamic eigenval-
ues. Forni, Hallin, Lippi and Reichlin (2000) and Favero, Marcellino and 
Neglia (2002) state that there must exist a signifi cantly large gap between 
the percentage of variance of xt explained by the fi rst q dynamic eigenval-
ues and the one explained by the q-th + 1 one.

8  All estimations were performed with Matlab version 6.0 and the codes made available by 
Forni, Hallin, Lippi and Reichlin (2000) at www.dynfactors.org.
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Figure 1 – Number of Factors

As we can observe, the fi rst dynamic eigenvalue explains almost 
half of the variance of xt. The second one, on the other hand, explains 
considerably less, about 10% of the variance. From the third eigenvalue 
on, the marginal contributions are all below 5%.

The second criteria for the determination of the number of factor 
suggested by Forni, Hallin, Lippi and Reichlin (2000) is: (i) to recursively 
estimate the spectral density matrix of a sub-set of xt; (ii) to calculate the 
dynamic eigenvalues; (iii) to choose the number of common factors, q, 
on the following rule: as the number of series, and consequently, of the 
eigenvalues grow, the average of the fi rst q dynamic eigenvalues diverge, 
meanwhile the average of the q + 1 dynamic eigenvalue keeps relatively 
constant.

The graphic below shows the average of the eigenvalues as the 
series are added to the model. As we can see, the average of the fi rst ei-
genvalue diverge at a much higher velocity then the average of the other 
dynamic eigenvalues. Additionally, the average of the following two dy-
namic eigenvalues distinguish themselves from the averages of the others 
eigenvalues.
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Figure 2 – Number of Factors 

Following the evidence above, the model was estimated with only 
three factors, given the low contribution from the other factors to the 
common variance of the series. 

In the appendix, we report the peridiogram for the estimated com-
mon components and the peridiogram for all stock markets. For illus-
tration, the graphic below reports the respective peridiogram for Brazil, 
which brings some interesting information.

The peridiogram is constructed on the basis of a decomposition 
of the spectral density of the series, showing how its variance distributes 
itself between the cycles of different frequencies. The graphic has, in the 
x-axes, the frequency of the cycles normalized to π and, in the y-axes, 
the total variance. As it can be seen, the original series has its variance 
explained basically by bi-monthly cycles (frequency 0,9π) and semes-
ter cycles (frequency 0,3π). Looking for the common component of the 
Brazilian index, it can be noted that its variance is composed mostly by 
semester cycles. 
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Figure 3 – Brazil
Original Series and Common Component Estimated: Series and Spectral 

Density

The same pattern seems to repeat itself with the remaining indexes 
from developing countries. With the exception of Malaysia, in all other 
cases, the common component has its variance explained by longer cy-
cles than the original series does. In contrast, in the case of developed 
nations, the original series and their respective common components are 
explained by cycles of equivalent frequencies.

The result above helps us to understand the relative success of 
cointegration analysis to the study of the integration of developing coun-
tries stock markets. On the other hand, in the developed countries case, it 
seems necessary to consider higher frequencies of the spectrum.

The table below illustrates the variance of the series due to the 
common component.  The fi rst result that distinguishes itself is the high 
percentage of the dynamics of the series owing to the common compo-
nent. As the table shows, on average, almost 67% of the variance from 
the whole set may be attributed to the common shocks. The high share 
of the common component in the total variance of the indexes seems to 
be evidence of a high integration of the stock markets worldwide. More 
than merely providing evidence of co-movement between the markets, 
the result below supports the idea that forces that are common to their 
individual dynamics drive the world stock markets. 
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Table 1 – Estimated Common Dynamic 

Stock Market Variance
Explained

Country Variance 
Explained

Argentina 0.4241 Dow Jones 0.7452
Brazil 0.5300 NASDAQ 0.7165
México 0.5789 S&P 500 0.8113

South Africa 0.6191 Frankfurt Dax 0.7630
India 0.3539 London FTSE 0.7085

Indonesia 0.5357 Tokyo Nikkey 0.9742
South Korea 0.6358 Tokyo Topix 0.9677

Malaysia 0.6773 Hong Kong 0.7686
Taiwan 0.6058 Paris CAC 0.7736
Israel 0.5941 Australia 0.7620

Turkey 0.4392 Madrid 0.7260
China 0.6952 Milan 0.6435

It is important to highlight that the fraction of the total variance 
caused by the common component varies signifi cantly between countries. 
However, some patterns can be recognized. The percentage of the vari-
ance explained by the common component seems to be higher between 
the stock exchanges from developed nations, as in the case of the Dow 
Jones, Nasdaq, S&P, FTSE, Dax, CAC, Nikkey, Topix and Madrid. In all 
those cases, that percentage is higher than 70%. Alternatively, in devel-
oping nations as Brazil, Mexico, South Korea, South Africa, Hong Kong 
and China, this stake is slightly lower, between 50% and 60%. Finally, 
we have the stock exchanges whose variance is determined primarily by 
idiosyncratic shocks, as Argentina, India and Turkey. 

These results imply that risk diversifi cation is indeed an option to 
international investors. Distributing a portfolio between the three groups 
above may indeed decrease the investors’ exposure to global common 
shocks, since the groups have their dynamics driven by signifi cantly dif-
ferent proportions of common shocks.
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4. Conclusions

Making use of a dynamic factor model, the present paper has the 
objective of proposing a methodology to infer the level of dynamic inte-
gration for a set of stock markets. The model permits the estimation of the 
common component, itself the result from common shocks affecting all 
markets, from each of the stock exchange under study. 

Two conclusions emerge: fi rst, the results reveal that the variance 
caused by the common component varies signifi cantly between countries. 
Notwithstanding, we are able to infer from the data that the level of dy-
namic integration has a positive correlation with the country’s overall 
development, with developed nations experiencing a higher level of in-
tegration than developing nations. Consequently, international portfolio 
diversifi cation is indeed possible between stocks of developed and devel-
oping countries stock markets. 

Second, it is also very interesting to note that the peridiogram of 
developing countries´ stock exchanges indicate that the common com-
ponent of their respective markets are driven, predominantly, by shocks 
of lower frequency. In contrast, the peridiogram of developed countries´ 
stock exchanges are considerably infl uenced by fl uctuations of higher 
frequencies. That pattern may be responsible for the diffi culty in fi nding 
common stochastic trends between developed and developing markets. 
The Dynamic Factor Model proposed makes clear distinction between 
co-movement at all phases of the spectrum, what allows us a better iden-
tifi cation of the integration of international stock markets.
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Appendix

Original Series and Common Components Estimated: Series and 
Spectral Density
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Figure B.1 – Argentina
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Figure B.2 – Mexico 
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Figure B.3 – South Africa
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Figure B.4 – India
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Figure B.5 – Indonesia 
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Figure B.6 – South Korea 
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Figure B.7 – Malaysia
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Figure B.8 –Taiwan
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Figure B.9 – Israel 
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Figure B.10 – Turkey 
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Figure B.11 – China 
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Figure B.12 – Dow Jones
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Figure B.13 – NASDAQ 
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Figure B.14 – S&P 500
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Figure B.15 – Frankfurt Dax 
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Figure B.16 – London FTSE 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

-2

-1

0

1

2

3 Original Comp.Comum

0 .5 1

.05

.1

.15

.2

0 .5 1

.05

.1

.15

.2

Figure B.17 – Tokyo Nikkey 
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Figure A.18 – Tokyo Topix 
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Figure B.19 – Hong Kong 
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Figure B.20 – Paris CAC
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Figure B.21 – Australia 
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Figure B.22 – Madrid 
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Figure B.23 – Milan




