
Revista de Economía - Segunda Epoca Vol. XIV N° 1 - Banco Central del Uruguay - Mayo 2007

A RANDOMNESS TEST
FOR FINANCIAL TIME SERIES*

WISTON ADRIÁN RISSO∗∗

ABSTRACT

A randomness test is generated using tools from symbolic dynamics, and 
the theory of communication. The new thing is that neither normal dis-
tribution nor symmetric probability distribution, nor variance process is 
necessary to be assumed. Even more, traditional independent identically 
normal white noise is nested. It also could be useful when signs of time 
series are more accurate than magnitude. The statistic is tested in stock 
asset returns rejecting randomness more times than Runs Test, Variance-
Ratio Test and ADF.

Keywords: Random Walk Model, Finance, Shannon Entropy, Unit Root 
Test.
JEL classifi cation: C12, C15, G12

 * I would like to acknowledge J. Doyne Farmer, J. Gabriel Brida, Lionello Punzo, and 
Roberto Renò, and for their very helpful comments, and suggestions.

 ** Department of Economics - University of Siena, Italy. E-mail adress: risso@unisi.it,
Tel.: +39 0577 235058, Fax: +39 0577 232661

bcu.indb   155bcu.indb   155 14/06/2007   16:46:5914/06/2007   16:46:59



REVISTA DE ECONOMÍA 157

INTRODUCTION

Based on Symbolic Dynamics and Information Theory, present work 
will introduce a manner of testing independence in time series trying to 
show its advantages. Such a test will be applied to fi nancial time series. 
As it is well known Bachelier (1900) was the fi rst proposing stock prices 
follow a Brownian motion. This conception presupposes that stock prices 
refl ect all available information. In fact according to the effi cient market 
hypothesis suggested by Fama (1965) the present prices are the best pre-
diction about future prices. Since then, difference in stock prices has been 
modeled as white noise process, implying that stock prices are random 
walk processes. This assumption was criticized due to the existence of 
some well known stylized facts, Mandelbrot (1963) considers that fi nancial 
returns have a long memory, then stock prices should be modeled using a 
fractal Brownian motion. Peters (1994) (1996) gives evidence of fractabil-
ity in fi nancial markets using Hurst exponent as a measure of persistence. 
Moreover, it seems that constant variance hypothesis in fi nancial returns is 
not supported by empirical evidence. In fact Mandelbrot (1963) proposes 
an stable paretian distribution in order to model the asset returns which im-
plies an infi nite variance. Since then, different models have been proposed 
permitting the variance to change, an example is the ARCH model (see 
Engle (1982)), and the Markov switching models (see Hamilton (1989)). 
Lo and McKinlay (1988), using the variance ratio test, found that fi nancial 
returns behavior would not be random. Singal (2004) suggests the existence 
of different anomalies, reviewing all the anomalies found until now. In this 
context, the present work has two principal objectives. At fi rst, it will be 
shown that daily asset returns do not behave as any type of white noise 
process, and then random walk is a bad model for stock prices. The latter 
is done, taking the daily decreases and increases and seeing the behavior 
of the combination for 2, 3, 4, and 5 day decreases and increases. Since 
theory says that returns are completely random, combinations of different 
day decreases and increases in prices should have the same probability 
among them. It means it would not be expected to fi nd combinations of 
decreases and increases more probable than others. For instance imagine 
that 0 means decrease in one day (negative returns) and 1 means increase 
in stock prices (positive returns). Imagine also that we have the following 
daily time series of codifi ed returns:

01001101000101101010011000111011
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158 A RANDOMNESS TEST FOR FINANCIAL TIME SERIES

There are 32 days of decreases and increases, if the process in com-
pletely random in 1 day the probability of decreases should be 1/2 =16/32 
and the same for increasing. Moreover if the process is random, in 2 days 
we have 4 possibilities and the probability should be 1/4 for each possible 
case. Reasoning in this manner, the probability of an event composed by 
combination of n days should be 2-ⁿ, in case of having a random process. 
In order to do this a test of randomness is developed based in the symbolic 
dynamic and the concept of entropy. The developing of a test of random-
ness not only for asset returns but also a general test of randomness will 
be the second objective. In fact the test of randomness does not need the 
assumption of normality, and it permits the variance to follow different 
processes, like a GARCH process, or even an infi nite variance like in the 
case of the paretian distributions suggested by Mandelbrot (1963). Even 
more, since introduced test is similar to Run-test (when using 2 symbols) 
advantages suggested by Moore and Wallis (1943) are applied. They 
highlight that test based only on signs could be useful when time series 
magnitude is not such accurate as the time series sign. Section 2 explains 
what symbolic time series analysis and symbolic dynamic are, in section 
3 the random walk model will be expressed in a 2 symbol dynamical 
model. Section 4 explains Shannon Entropy as a measure of uncertainty, 
section 5 proceeds to construct the randomness test using 2 symbols. As 
a further results, in section 6 introduced test is compared with others, and 
an AR(1) process is applied to the daily returns to check if residuals are 
random, and fi nally section 7 draws the conclusions and presents some 
future lines of studying.

SYMBOLIC DYNAMICS AND SYMBOLIC ANALYSIS

Models such as ARMA(p,q) do not have problems detecting linear 
dependence. When the observed dynamics are relatively simple, such as 
sinusoidal periodicities, traditional analytical tools such as Fourier trans-
forms are easily used to characterize the patterns. More complex dynamics, 
such as bifurcation and chaotic oscillation, can require more sophisticated 
approaches.

Symbolic Dynamics as remarked by Williams (2004) have evolved 
as a tool for analyzing dynamical systems by discretizing spaces. In fact, 
Symbolic Dynamics is a method for studying nonlinear discrete-time sys-
tems by taking a previously codifi ed trajectory using sequence of symbols 
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from a fi nite set (alphabet). Consider {x1,x2,…,x∞} is an infi nite sequence 
of continuous variables belonging to R, selecting a partition in the continu-
ous space and so an alphabet A≡{a1,a2,...,an} we can analyze the process 
in a discrete space S where {s1,s2,…,s∞} is an infi nite discrete sequence. 
If the alphabet is well defi ned we can obtain rich dynamical information 
(qualitative) analyzing in the discrete space. Such analysis could be very 
diffi cult or even impossible in a continuous space.

Piccardi (2004) highlights that symbolic dynamics should be dif-
ferentiated from symbolic analysis. The former denotes theoretical in-
vestigation on dynamical systems. The latter is suggested when data are 
characterized by low degree of precision. The idea in Symbolic Analysis 
is that discretizing the data with the right partition we obtain a symbolic 
sequence. This sequence is able to detect the very dynamic of the process 
when data are highly affected by noise. Again here the idea is to obtain 
rich qualitative information from data using statistical tools.

SYMBOLIZATION OF THE RANDOM WALK

In order to clarify how Symbolic Dynamics works and to apply 
the theory to Financial Analysis we shall try to express wellknown stock 
price model in terms of symbolic dynamic models. As it was mentioned, 
Bachelier (1900) and others proposed that stock market prices behaved as 
a random walk process. It means that prices follow equation (1)

Pt = Pt-1 + εt where εt dist. i.i.d N(0,1)  (1)

This is a famous model which tries to capture the Effi cient Mar-
ket Hypothesis (EMH) in the weakly form proposed by Fama (1965). It 
means that in a perfect informed stock market it is impossible to predict 
future returns using past price information and the returns are independent 
random variables.

rt dist. i.i.d(0,σ²) (2)

Assuming that asset returns follows (2) and that f(rt) is the density 
function we obtain a stochastic model for fi nancial returns. Using Symbolic 
Dynamics approach we can capture the qualitative essence of the process it 
means the independence. Let us take an alphabet A≡{0,1} with 2 symbols 
we can discretized the continuous space in the following way:
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 (3)

Now the process is Bernoulli and the following is the probability 
function:

 (4)

Hence P(0)=P(1)=1/2, no symbol is the most probable, and 
the process is completely random. In fact, since the process is inde-
pendent history does not matter. In order to explain the latter let us 
consider a symbolic sequence Sℓ≡{s1s2s3...sℓ}  Aℓ and define (for 
simplicity) a history hℓ-1≡ {s1s2...sℓ-1}  Aℓ-1, then consider the set of 

all the possible histories . Since the process is independent 

llllll sjisPhsPhsP ji ,,2/1)()/()/( 11 ∀=== −−
.  No matter what 

happened in the past probability of event remain the same. No word, no 

subsequence commands the dynamics. Taking all possible subsequence of 

length ℓ, 
l
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ll . Computing Normalized 

Shannon Entropy (H) as a measure of randomness (as we shall explain 
later) this process will produce the maximum, 1))(( =isPH l .

Note that we could modify the model in order to consider certain 
cycles or particular sequences appearing more frequently. For instance 
consider that we try to model daily dynamics of stock returns and the 
weekend effect is true. As remarked by Singal (2004) weekend effect re-
fers to relatively large returns on Fridays compared to those on Mondays. 
Therefore 2 days sequences (1,0) should have a frequency larger than 
P(1)P(0)=1/4 because de effect (Friday, Monday)=(1,0). More precisely 
when ℓ=2 we have P(1,0)>P(0,0)=P(1,0)=P(1,1). In fact the test we shall 
develop is able to tell us which patterns are causing the anomaly if the 
event is not random. Suppose that monthly data are used and the January 
effect is true as asserted by Singal (2004) then 2 month sequences (0,1) 
should be more frequent that the other sequences. It means since January 
returns are larger than December returns one should expect that sequence 
(December, January)=(0,1) will happen more frequently.
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SHANNON ENTROPY AS A MEASURE OF UNCERTAINTY

Clausius (1865) introduces the concept of entropy as a measure of the 
amount of energy in a thermodynamic system. Shannon (1948) considers 
entropy as a useful measure of uncertainty in the context of communication 
theory where a completely random process takes the maximum value. For 
instance, let us consider the English language as a nonlinear process. Some 
combination of letters appears more frequently than others. In fact English 
is not random but a complex process. Taking a page from an English Books 
combinations of letters such as “THE” shall appear more frequently than 
“XCV”1. Note that a random language should produce “THE” and “XCV” 
with the same probability. Hence Shannon Entropy will compute a value 
for English language less than the maximum. This idea is fundamental in 
the present work because if symbolized time series are random process 
should produce also the maximum entropy otherwise time series are not 
random.

Let us introduce the required properties of an entropy measure:

It should be a function of P=(p1,p2,...,pn) in this manner it is pos-
sible to write H=H(p1,p2,...,pn)=H(P), where P is probability distribution 
of the events.

It should be a continuous function of p1,p2,...,pn. Small changes in 
p1,p2,...,pn should cause small change in Hn.

It should not change when the outcomes are rearranged among 
themselves.

It should not change if an impossible outcome is added to the prob-
ability scheme.

It should be minimum and possibly zero when there is no uncer-
tainty.

It should be maximum when there is maximum uncertainty which 
arises when the outcomes are equally likely so that Hn should be maximum 
when p1=p2=...=Pn=1/n.

 1 According to Shannon (1951) the English word “THE” has a probability of 0.071, 
the next more frequent word “OF” has a probability of 0.034.
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162 A RANDOMNESS TEST FOR FINANCIAL TIME SERIES

The maximum value of Hn should increase as n increases.

Shannon (1948) suggested the following measure:

Hn(p1,p2,...,pn) = -∑pi.log2(pi) (5)

Logarithms to base 2 are used then entropy is measured in bits. This 
measure satisfi es all properties mentioned above and takes the maximum 
when all events are equally likely. The latter is easily to confi rm by solving 
the Lagrange equation (6).

-∑pi.log2pi-λ(∑pi=1) (6)

Since the function is concave its local maximum is also a global 
maximum, this is consistent with Laplace’s principle of insuffi cient rea-
son that unless there is information to the contrary, all outcomes should 
be considered equally probably. Note also that when pi=0 then 0.log0=0 
which is proved by continuity since x.logx→0 as x→0. Thus adding zero 
probability terms does not change the entropy value.

In order to clarify the concept of Shannon, let’s take an event with 
two possibilities and their respective probabilities p and q=1-p. The Shan-
non Entropy will be defi ned by (7)

H=-(p.log(p)+q.log(q)) (7)

Figure (1) shows graphically the function shape, note that the 
maximum is obtained when the probability is 0.5 for each event. This case 
corresponds to a random event (like fl ipping a coin), on the other hand, 
note that a certain event (when probability of one event is 1) will produce 
entropy equal to 1.
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Figure 1. Shape of the Shannon entropy Function. Note that maximum 
happens when the process is random (p=0.5)

In general, Khinchin (1957) showed that any measure satisfying all 
the properties must take the following form:

-k∑pi.log2 pi (8)

Where k is an arbitrary constant. In particular it is possible to take 
k=1/log2(n), which will be useful comparing events of different lengths. 
This is also known as the Normalized Shannon Entropy.

CONSTRUCTION OF THE RANDOMNESS TEST (R ) USING 2 
SYMBOLS

Using 2 symbols a random process should be Bernoulli with prob-
ability 1/2 for each result as it was shown in section 3. Therefore Normal-
ized Shannon Entropy (H) will be compute for small samples using Monte 
Carlo simulations.

In theory a completely random process should produce H=1, how-
ever since the sample is fi nite of size T, H will follow a distribution depend-
ing on T with most of the probability concentrated on 1 (the maximum H 
value). In the present study 10,000 time series (taking values 0 or 1 with 
the same probability) of size T are simulated. After the 10,000 H of size T 
are computed, it is defi ned variable R=1-H and the simulated distribution 
of R is obtained. The reason of defi ning R is to obtain most of the prob-
ability in value 0 instead of 1.
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164 A RANDOMNESS TEST FOR FINANCIAL TIME SERIES

Note that no probability distribution is assumed, and no assump-
tion about variance are considered. This is a general test for completely 
random events.

OBTAINING THE R-STATISTIC FROM THE DATA

This is the most important part because Symbolic Analysis matters. 
Consider a time series of size T is obtained for the continuous random vari-
able r(t). Let us consider that μ is the mean, then values above and below 
this threshold should have the same probability. It is possible to defi ne 
symbolic time series as in (9).

μr(t)if1
μr(t)if0

s(t)  (9)

Once the symbolic sequence is obtained, different subsequences are 
defi ned and H and respective R-statistics are computed. Finally under null 
hypothesis of randomness, H0)R=0 the R-statistic is compared with critical 
value at 95%, if R-statistic is larger than critical value from the Simulated 
Distribution, null hypothesis is rejected.

TESTING INDEPENDENCE IN ASSET RETURNS

Daily Data

Different data series from NYSE were obtained for more than 10,500 
days of asset returns starting on January 19622, symbolization is made as in 
(9). Then we have two possibilities in one day, returns above or bellow the 
mean. If random walk hypothesis is true, probability of each event should 
be near 0.5 obtaining a maximum entropy or R-statistic=0. Of course is the 
process is independent combinations of 2, 3 or more days should produce 
maximum entropy as well since all combinations are equally probable3. In 
this manner 10,000 H were obtained for 1 day, 2, 3, 4, and 5 consecutive 

 2 Data were obtained from fi nance.yahoo.com
 3 In general, taking n consecutive days of independent events the possibilities increase 

at the rate of 2ⁿ and probability for each possibility is 2-ⁿ always producing a maximum 
entropy.
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days (where T=10,500) and then 10,000 R=1-H were computed. Figure 
2) shows the simulated distribution for combinations of 2 days. Note that 
most of the probability is accumulated near 0 which correspond to H=1 (a 
completely random process).

Figure 2. Empirical density function for 2 consecutive moments when 
T=10,500

Data series from the S&P 500, Dow Jones, and the 10 year treasure 
notes interest rate were obtained. Taking 10,500 daily data for 11 asset re-
turns, the 10 years treasure note interest rate difference, the Dow Jones, and 
the S&P 500 index differences, and codifying the series are obtained.

Table 1 shows the critical value a 95% of the Monte Carlo Simula-
tions and Table 2 present the R-statistic for the different asset returns. Note 
that all the R-statistic values are greater than critical values rejecting the 
null hypothesis that fi nancial returns are completely random, for instance 
after discounting the mean the process is still no random.

 

R-1 day R-2 days R-3 days R-4 days R-5 days

0.00026 0.00032 0.00040 0.00054 0.00075

TABLE 1: Critical Value at 95% for R-Statistic (T=10,500)

Source: Based on the obtained results
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Financial Returns R-1 day R-2 days R-3 days R-4 days R-5 days

Alcoa Inc. 0.0047 0.0064 0.0070 0.0074 0.0079
Boeing Co. 0.0063 0.0076 0.0086 0.0092 0.0099
Caterpillar Inc. 0.0039 0.0058 0.0066 0.0070 0.0073
Coca Cola Co. 0.0025 0.0029 0.0031 0.0032 0.0033
Du Pont EI 0.0044 0.0045 0.0046 0.0047 0.0048
Eastman Kodak Co. 0.0036 0.0038 0.0040 0.0042 0.0045
General Electric Co. 0.0021 0.0022 0.0025 0.0028 0.0030
General Motors Co. 0.0051 0.0054 0.0059 0.0063 0.0068
Hewlett Packard Co. 0.0017 0.0022 0.0027 0.0030 0.0035
IBM 0.0010 0.0010 0.0011 0.0012 0.0014
Walt Disney Co. 0.0027 0.0044 0.0053 0.0061 0.0067
S&P 500 0.0001 0.0021 0.0030 0.0036 0.0041
Dow Jones 0.0000 0.0008 0.0012 0.0016 0.0020
10 years treasure notes 0.0133 0.0182 0.0200 0.0208 0.0215

TABLE 2: Test of Randomness (R=1-H) Using the Mean as Partition (10,500 days)

Source: Based on the obtained results. Asset prices adjusted by splits were considered

Results disagree with Coulliard and Davison (2005) who do not 
reject randomness for IBM, General Electric Co., and S&P 500 using 
daily data. The most frequent sequences are [0,0], [0,0,0], [0,0,0,0], and 
[0,0,0,0,0] in almost all the cases (S&P 500 is the exception presenting 
[1,1], [1,1,1], [1,1,1,1], and [0,0,1,1,1] as the most frequent patterns). This 
refl ects persistence in remaining at the same regime or it could suggest the 
existence of autocorrelation.

Weekly Data

Weekly data is also considered for T=2,000 weeks. Hence 10,000 
Monte Carlo simulations were made in order to obtain the critical values 
at 95% as presented in Table 3.

 
R-1 week R-2 weeks R-3 weeks R-4 weeks R-5 weeks

0.00133 0.00167 0.00214 0.00283 0.00397

TABLE 3: Critical Value at 95% for R-Statistic (T=2,000)

Source: Based on the obtained results

Symbolizing and computing R-statistic for the asset returns ran-
domness null hypothesis is tested. Table 4 shows the R-statistics for the 
weekly data.
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Financial Returns R-1 week R-2 weeks R-3 weeks R-4 weeks R-5 weeks

Alcoa Inc. 0.0012 0.0013 0.0015 0.0021 0.0028
Boeing Co. 0.0025* 0.0027* 0.0031* 0.0035* 0.0039*
Caterpillar Inc. 0.0027* 0.0036* 0.0041* 0.0046* 0.0053*
Coca Cola Co. 0.0042* 0.0062* 0.0070* 0.0075* 0.0080*
Du Pont EI 0.0008 0.0010 0.0011 0.0013 0.0020
Eastman Kodak Co. 0.0008 0.0011 0.0017 0.0024 0.0033*
General Electric Co. 0.0001 0.0006 0.0011 0.0027 0.0042*
General Motors Co. 0.0004 0.0006 0.0010 0.0016 0.0025
Hewlett Packard Co. 0.0003 0.0005 0.0007 0.0015 0.0023
IBM 0.0023* 0.0028* 0.0047* 0.0060* 0.0074*
Walt Disney Co. 0.0005 0.0006 0.0016 0.0026 0.0035
S&P 500 0.0038* 0.0039* 0.0039* 0.0041* 0.0047*
Dow Jones 0.0010 0.0010 0.0013 0.0016 0.0022
10 years treasure notes 0.0004 0.0024* 0.0041* 0.0055* 0.0069*

TABLE 4: Test of Randomness (R=1-H) Using the Mean as Partition (2,000 weeks)

Source: Based on the obtained results. Asset prices adjusted by splits were considered

Note that independence is rejected for index S&P 500 and 10 years 
treasure notes, but Dow Jones. Boeing Co., Caterpillar Inc., Coca Cola 
Co., General Electric Co., and IBM also reject null hypothesis. These as-
sets are independent according to test developed by Coulliard and Davison 
(2005). In this case persistence also seems to be the cause of not being 
independent. Here the most frequent patterns are [1,1], [1,1,1], [1,1,1,1], 
and [1,1,1,1,1].

Monthly Data

Obtaining data of 500 months the same procedure is applied. Critical 
values and R-statistics are computed as shown in Tables 5 and 6.

 
R-1 month R-2 months R-3 months R-4 months R-5 months

0.0051 0.00674 0.00859 0.01148 0.01623

TABLE 5: Critical Value at 95% for R-Statistic (T=500)

Source: Based on the obtained results
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Financial Returns R-1 month R-2 months R-3 months R-4 months R-5 months

Alcoa Inc. 0.0046 0.0044 0.0045 0.0061 0.0085
Boeing Co. 0.0033 0.0032 0.0041 0.0084 0.0156
Caterpillar Inc. 0.0037 0.0038 0.0039 0.0062 0.0089
Coca Cola Co. 0.0195* 0.0199* 0.0207* 0.0244* 0.0293*
Du Pont EI 0.0014 0.0017 0.0020 0.0026 0.0049
Eastman Kodak Co. 0.0056* 0.0056 0.0058 0.0071 0.0114
General Electric Co. 0.0014 0.0013 0.0015 0.0037 0.0064
General Motors Co. 0.0004 0.0015 0.0024 0.0046 0.0090
Hewlett Packard Co. 0.0017 0.0017 0.0026 0.0036 0.0063
IBM 0.0014 0.0013 0.0017 0.0021 0.0033
Walt Disney Co. 0.0176* 0.0181* 0.0187* 0.0202* 0.0226*
S&P 500 0.0026 0.0031 0.0038 0.0058 0.0088
Dow Jones 0.0012 0.0013 0.0016 0.0038 0.0094
10 years treasure notes 0.0006 0.0020 0.0035 0.0045 0.0077

TABLE 6: Test of Randomness (R=1-H) Using the Mean as Partition (500 days)

Source: Based on the obtained results. Asset prices adjusted by splits were considered

Note that only Coca Cola Co. and Walt Disney Co. reject inde-
pendence hypothesis, Eastman Kodak would be not independent when 
considering 1 month sequences. Also here, persistence is the cause of 
determinism, the sequences [1,1], [1,1,1], [1,1,1,1], and [1,1,1,1,1] are 
the most frequents in Coca Cola Co. and Walt Disney Co. Even if expected 
value of sequence [1,1,1,1,1] is 1/32=0.03125 their frequencies are 0.09 
and 0.06 respectively.

FURTHER RESULTS

Comparison With Other Tests

Performance of the test for 2 symbols is compared with other unit 
root test (ADF, Variance Ratio Test, and Runs Test). Considering daily 
data introduced R-statistic test is able to reject independence in all cases. 
However Runs test which could be similar to the present test when tak-
ing 2 symbols, only rejects the hypothesis for 2 cases, IBM and Kodak. 
Variance Ratio Test by Lo and MacKinlay (1988) rejects hypothesis for 
11 confi rming its great performance, while ADF does not reject stationar-
ity in the series. Then Shannon Entropy seems to be powerful detecting 
nonlinearities and complexities in time series that are not detected by 
other statistics.
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Asset Returns

t5% p-value VRq=16 Sign-Level Z Asymp. Sign R3 CV at 5%

Alcoa Inc. -96.7085 0.0001 -2079.0615 0.00000 -7.3258 0.0000 0.0070 0.0004*

Boeing Co. -98.8113 0.0001 0.3657 0.71459* -5.4980 0.0000 0.0086 0.0004*

Caterpillar Inc. -97.6613 0.0001 -0.6664 0.50513* -6.5561 0.0000 0.0066 0.0004*

Coca Cola Co. -103.3078 0.0001 -1.8321 0.06693* -2.4787 0.0132 0.0031 0.0004*

Du Pont EI -101.9246 0.0001 0.3787 0.70491* -5.4873 0.0000 0.0046 0.0004*

Eastman Kodak Co. -101.8526 0.0001 -1.7386 0.08210* -2.4732 0.0134 0.0040 0.0004*

General Electric Co. -102.2102 0.0001 -2.0753 0.03795* -2.2889 0.0221 0.0025 0.0004*

General Motors Co. -74.7423 0.0001 -1.3572 0.17471* -2.2387 0.0252 0.0059 0.0004*

Hewlett Packard Co. -102.1406 0.0001 -1.6939 0.09028* -3.1500 0.0016 0.0027 0.0004*

IBM -104.0243 0.0001 -0.4748 0.63496* -0.2907 0.77131* 0.0011 0.0004*

Walt Disney Co. -100.6847 0.0001 -1.2775 0.20142* -1.14584 0.14472* 0.0053 0.0004*

S&P 500 -71.8586 0.0001 0.3900 0.69655* -12.1798 0.0000 0.0030 0.0004*

Dow Jones -100.9704 0.0001 0.2311 0.81723* -7.7490 0.0000 0.0012 0.0004*

10 years treasure notes -93.5496 0.0001 -3.9651 0.00007 -12.5589 0.0000 0.0200 0.0004*
(a) Augmented Dickey Fuller test using Eviews 4.0.

(b) Adjusted for the possible effect of heteroscedasticity. Eviews 4.0

(c ) Using SPSS 13.0

(d) Based on obtained results using MatLab 6.0

Run Test (c ) R-statistic (d)

TABLE 7: Different Tests applied to daily data

ADF(a) Variance Ratio Test (b)

RESIDUAL OF AN AR(1)

In subsection 5.2 randomness was rejected when taking daily data. 
Persistence in a regime or autocorrelations could be the cause. In this part 
an autoregressive process of order 1 is applied to the daily returns. Equa-
tion (10) shows specifi cation of an AR(1).

rt = α0 + α1rt-1 + εt (10)

Where α1 is expected to be less than 1 (in the case of asset returns, 
it should be almost 0) and εt dist. i.i.d(0,σ²).Residuals of these models are 
tested in order to see if they are random. Table 8 shows R-statistics for 
the residuals of the AR(1) models, note that the values are smaller than 
correspondent in Table 2. Comparing these values with critical values in 
Table 1, note that only Dow Jones residuals seems to be random, and S&P 
500 for sequences smaller than 4 days. This suggests that behavior of stock 
prices are less random than an index (it means a combination or mix of 
different stock prices). Note that, even when autocorrelation is considered 
daily stock returns seems to have still a deterministic component.
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Financial Returns R-1 day R-2 days R-3 days R-4 days R-5 days

Alcoa Inc. 0.00060 0.00060 0.00070 0.00080 0.00110
Boeing Co. 0.00240 0.00260 0.00320 0.00360 0.00410
Caterpillar Inc. 0.00028 0.00032 0.00053 0.00065 0.00086
Coca Cola Co. 0.00090 0.00090 0.00090 0.00100 0.00110
Du Pont EI 0.00170 0.00170 0.00170 0.00180 0.00190
Eastman Kodak Co. 0.00320 0.00330 0.00350 0.00370 0.00400
General Electric Co. 0.00120 0.00130 0.00150 0.00170 0.00200
General Motors Co. 0.00500 0.00530 0.00580 0.00620 0.00670
Hewlett Packard Co. 0.00130 0.00160 0.00210 0.00240 0.00280
IBM 0.00070 0.00070 0.00080 0.00100 0.00120
Walt Disney Co. 0.00060 0.00080 0.00120 0.00170 0.00210
S&P 500 0.00000 0.00007 0.00037 0.00064 0.00090
Dow Jones 0.00001 0.00004 0.00015 0.00034 0.00052
10 years treasure notes 0.00090 0.00090 0.00100 0.00100 0.00120

TABLE 8: Test of Randomness (R=1-H) on AR(1)-residuals (T=10,499)

Source: Based on the obtained results. Asset prices adjusted by splits were considered

CONCLUSIONS

The present work developed a methodology to test independence 
in fi nite sample time series. The test is based on symbolic dynamics and 
information theory. When taking 2 symbols (negative and positive returns) 
the test seems to be similar to an old idea of taking signs of a time series 
an looking at the runs (sequence of price changes of the same sign), if they 
are not far from a random process it will not be possible to reject random-
ness hypothesis. However section 5.3 showed that Runs test are different 
from the one presented here.

There are some advantages of using signs instead of the time series. 
First, it is not necessary to assume a probability distribution of the variable 
as it is common in other unit root test as Dickey-Fuller or Variance-Ratio 
Test. Second, it is not necessary to assume a variance process in the series 
which is important in some economic data such as asset returns where it 
have been discussed if they are constant as in Fama (1965), autoregres-
sive as deduced by Engle (1982) or infi nite as suggested by Mandelbrot 
(1963). More importantly, as it is suggested by Moore and Wallis (1943), 
tests based only on signs could be useful when time series magnitude is 
not such accurate as time series sign. They remark that problem with runs 
test is that ideal distribution function is not known using an asymptotic 
approach based on normality distribution when the sample increases. A 
different approach is considered in the present work. As it is well known 
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Normalized Shannon Entropy is interpreted as a measure of randomness 
in Information Theory. Then using Monte Carlo Simulations it is possible 
to fi nd simulated distribution in small samples when a process is random 
and different critical values for different samples can be obtained (see 
Appendix).

The R-statistic was tested for stock asset returns because as it is 
known they were assumed white noise process. This idea was present in 
Bachelier (1900) and is connected with the Effi cient Market Hypothesis, 
if the market is effi cient there is not place for forecasting. Despite Fama 
(1965) using Runs test is not able to reject the randomness hypothesis, 
Fama and French (1988) marked that there is evidence of predictability in 
returns. Introduced test rejects randomness in all cases when considering 
daily data showing a better performance than other tests. Randomness is 
even rejected when considering autocorrelation of fi rst order.

Next step in developing the test will be to assume a different sym-
bolization. In the case of asset returns a 4 symbols test could consider 
stylized facts such as volatility clustering.
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APPENDIX: Critical Values for different samples

 

Sample Size R1 R2 R3 R4 R5

30 0.16340 0.17650 0.14640 0.28170 0.33680
60 0.08170 0.08910 0.09890 0.14130 0.18520
90 0.05190 0.05970 0.06980 0.08920 0.12270
100 0.04930 0.05240 0.06200 0.08040 0.11030

200 0.02350 0.02620 0.03100 0.03940 0.05270

300 0.01560 0.01800 0.02140 0.02660 0.03440
500 0.00910 0.01060 0.01270 0.01580 0.02090
600 0.00770 0.00890 0.01070 0.01330 0.01740
900 0.00510 0.00600 0.00700 0.00870 0.01150

1,000 0.00490 0.00550 0.00630 0.00780 0.01040

2,000 0.00240 0.00260 0.00310 0.00380 0.00510
3,000 0.00160 0.00180 0.00210 0.00260 0.00350
5,000 0.00100 0.00110 0.00130 0.00160 0.00200
6,000 0.00080 0.00090 0.00100 0.00130 0.00170
9,000 0.00060 0.00060 0.00070 0.00090 0.00110
10,500 0.00045 0.00050 0.00059 0.00073 0.00095

TABLE I: Critical Values at 1%

 
Sample Size R1 R2 R3 R4 R5

30 0.08170 0.11970 0.10620 0.21340 0.28110
60 0.05190 0.05650 0.06960 0.10380 0.14980
90 0.02900 0.03710 0.04820 0.06680 0.09860

100 0.02900 0.03440 0.04360 0.05950 0.08740

200 0.01420 0.01670 0.02120 0.02910 0.04210
300 0.00930 0.01140 0.01470 0.01930 0.02740
500 0.00560 0.00680 0.00860 0.01150 0.01630
600 0.00460 0.00550 0.00720 0.00970 0.01360
900 0.00300 0.00370 0.00470 0.00640 0.00890

1,000 0.00280 0.00330 0.00420 0.00560 0.00800
2,000 0.00140 0.00170 0.00210 0.00280 0.00400
3,000 0.00090 0.00110 0.00140 0.00190 0.00270
5,000 0.00050 0.00070 0.00090 0.00110 0.00160
6,000 0.00050 0.00060 0.00070 0.00090 0.00130
9,000 0.00031 0.00037 0.00047 0.00063 0.00088
10,500 0.00026 0.00032 0.00040 0.00054 0.00076

TABLE II: Critical Values at 5%
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Sample Size R1 R2 R3 R4 R5

30 0.05190 0.08920 0.08800 0.18500 0.25610
60 0.02900 0.04250 0.05710 0.08820 0.13310
90 0.02290 0.02840 0.03880 0.05690 0.08680
100 0.01850 0.02600 0.03490 0.05050 0.07670
200 0.01040 0.01240 0.01720 0.02430 0.03660
300 0.00630 0.00860 0.01150 0.01620 0.02400
500 0.00420 0.00520 0.00690 0.00960 0.01410
600 0.00320 0.00410 0.00570 0.00790 0.01170
900 0.00220 0.00280 0.00380 0.00530 0.00780

1,000 0.00200 0.00260 0.00340 0.00480 0.00700
2,000 0.00100 0.00130 0.00170 0.00240 0.00350
3,000 0.00060 0.00080 0.00110 0.00160 0.00230
5,000 0.00040 0.00050 0.00070 0.00090 0.00140
6,000 0.00030 0.00040 0.00060 0.00080 0.00120
9,000 0.00022 0.00028 0.00037 0.00052 0.00076
10,500 0.00018 0.00024 0.00032 0.00045 0.00066

TABLE III: Critical Values at 10%
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