
CONTRIBUCIONES CIENTÍFICAS
EN HONOR DE MIRIAN ANDRÉS GÓMEZ
(Laureano Lambán, Ana Romero y Julio Rubio, editores),
Servicio de Publicaciones, Universidad de La Rioja,
Logroño, Spain, 2010.

FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL
AND COQ

JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

A nuestra compañera y amiga Mirian

Resumen. En este trabajo estudiamos uno de los últimos trabajos de Mirian,

de t́ıtulo Formalizing Simplicial Topology in ACL2 [2], que fue presentado
por ella en el congreso anual más relevante sobre ACL2, celebrado en Austin

(Texas) en 2007. Aqúı explicamos los principales resultados incluidos en ese
trabajo, que fueron formalizados por medio de ACL2. También realizamos

una formalización de dichos resultados en dos asistentes de demostración

diferentes, Isabelle/HOL y Coq. El art́ıculo ha sido escrito de tal forma que
debeŕıa servir también como introducción a algunas de las caracteŕısticas

básicas de dichos sistemas.

Abstract. In this paper we study one of Mirian’s last works entitled For-
malizing Simplicial Topology in ACL2 [2] which was presented and defended

by her in the main meeting about ACL2 held in Austin (Texas) in 2007. We

explain the main results included in that work which were formalized using
the ACL2 theorem prover. A formalization of these results in two different

proof assistants, namely Isabelle/HOL and Coq, is presented. The paper is
written in such a way that it could serve also as an introduction to some of

the basic features of these systems.

1. Introduction

One of the objectives of our research group consists in using formal methods
to analyze the Kenzo system [5]. This is a Common Lisp program designed by
F. Sergeraert, implementing his ideas on Constructive Algebraic Topology [11].
One of these formal methods consists in using theorem provers in order to increase
the reliability of the system. This was the main topic of Mirian. In particular she
was specialized in the use of the ACL2 theorem prover [6]. ACL2 is an extension
of a sub-language of Common Lisp and also an environment to produce proofs
of properties of programs. As Kenzo has been implemented in Common Lisp,
the idea of using ACL2 to verify the actual Kenzo programs is quite appealing.
However, some of the features erased from Common Lisp in ACL2 are widely used
in the implementation of Kenzo. From a programming point of view, Kenzo is
essentially based on two matters [11]: higher-order functional programming and

2000 Mathematics Subject Classification. 68N30, 57T99.
Key words and phrases. Formalized mathematics, Simplicial Topology, Isabelle/HOL, Coq.

Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01.

21



22 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

symbolic manipulation of data structures as lists or trees of numbers or symbols.
The logic of ACL2 is first-order and does not allow using higher-order functionals.
Nevertheless, it is very well suited to work with data structures as lists. Thus, it is
possible to look for essential first-order fragments of Kenzo and to reprogram and
verify them in ACL2. This was one of Mirian’s goals which originated different
works (as for instance [1, 2]).

There exist other proof assistants which can be taken into account to this aim.
Two of them used in our group are Isabelle [10] and Coq [4]. Both tools admit
higher-order constructs but, since they have not direct relation with Common
Lisp, the theories and proofs that can be built in these tools are quite distant
from the Kenzo code. Then, although it is not possible to work with the real
code, these assistants can be used to model and verify the algorithms programmed
in it. For instance, Isabelle has been useful to implement a formal proof of one
of the fundamental algorithms included in Kenzo, as is the Basic Perturbation
Lemma [3].

It is clear then that these different tools can collaborate in order to reach the
objective of increasing the reliability of Kenzo tackling the problem from different
points of view. Besides, a comparison of the possibilities and styles of the systems
in this particular area could be possible.

In this paper we study one of Mirian’s last works. This work was entitled
Formalizing Simplicial Topology in ACL2 [2] and was presented and defended by
Mirian in the main meeting about ACL2 held in Austin (Texas) in 2007. Simplicial
Topology is an essential mathematical tool in Kenzo and the paper presents an
approach to formally analyze concepts and algorithms in this area using ACL2.
This work is summarized in the next section. We also include a manuscript which
details the proof of the main lemma being formalized. Taking her work as a
guideline, we verify the results in [2] using Isabelle, in Section 3, and Coq, in
Section 4. Both formalizations point out essential features of the systems and
illustrate a comparison between them. The paper ends with a section of conclusions
and further work.

2. Simplicial Topology in ACL2

Simplicial Topology [9] is a theory where abstract topological spaces are replaced
by combinatorial artifacts, such as simplicial sets or simplicial complexes. Then,
topological spaces are recovered by means of a notion of (geometrical) realization
of simplicial structures. The idea behind Simplicial Topology is that algebraic
invariants associated to topological spaces are read (i.e., computed) in an easier
way from that combinatorial objects. In the following we will focus on the notion
of simplicial set, since it is the one usually employed in Kenzo.

Definition 1. A simplicial set K consists of a graded set {Kq}q∈N and, for each
pair of integers (i, q) with 0 ≤ i ≤ q, face and degeneracy maps, ∂i : Kq → Kq−1



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 23

and ηi : Kq → Kq+1 satisfying the following identities:

∂i∂j = ∂j−1∂i if i < j(1)

ηiηj = ηj+1ηi if i ≤ j(2)

∂iηj = ηj−1∂i if i < j(3)

∂iηj = id if i = j or i = j + 1(4)

∂iηj = ηj∂i−1 if i > j + 1(5)

The elements of Kq are called q-simplices. A q-simplex x is degenerated if
x = ηiy with y ∈ Kq−1, 0 ≤ i < q; otherwise x is called non-degenerated.

The following result states that every degenerated simplex admits a represen-
tation in the form of a non-degenerated simplex together with a collection of
degeneracies. This is the main theorem that Mirian deals with in [2].

Theorem 1. Let K be a simplicial set. Any degenerated n-simplex x ∈ Kn can be
expressed in a unique way as a (possibly) iterated degeneracy of a non-degenerated
simplex y in the following way:

x = ηjk
. . . ηj1y

with y ∈ Kr, k = n− r > 0, 0 ≤ j1 < . . . < jk < n.

There exists an important example of simplicial set called universal simplicial
set ∆ [9]. This simplicial set contains the minimal number of identifications from
the equalities in Definition 1. That is to say, any theorem proved on ∆, by using
only these identities, will be also true for any other simplicial set K. The simplicial
set ∆ admits a representation in the form of lists with suitable face and degeneracy
operations. Thus, it is possible to formalize fragments of the theory of Simplicial
Topology in ACL2, which is specially well suited for working with these type
of structures. This representation was the one used in [2] (that we resemble in
Sections 3 and 4 for our development).

Following the previous idea, a q-simplex of ∆ is formalized in ACL2 as a list of
length q+ 1. Then, a non-degenerated simplex is a list where any two consecutive
elements are different (for instance, (0, 3, 6)). The face operator ∂i ((del-nth i)
in ACL2 notation) deletes the i-th element of a given list, and the degeneracy
operator ηi ((deg i l) in ACL2) repeats the i-th element of a given list.

From the previous definitions over ∆, Theorem 1 can be now seen in the follow-
ing light: every list (i.e., any simplex in ∆) admits a unique representation as a pair
of lists, the first one being a (strictly increasing) list of natural numbers (called de-
generacy list, which represents the set of degenerations ηj1 , . . . , ηjk

in Theorem 1)
and the second one a list (called non-degenerated simplex ) which does not contain
two consecutive equal elements (y in Theorem 1). Such a pair is representing the
simplex obtained by repeatedly applying the degeneracy operators deg using as
indexes those of the degeneracy list. For instance, a given list (k, t, r, r, t, t, t, l,m)
admits a representation by a pair of lists (3, 5, 6), (k, t, r, t, l,m), where the first list
contains the indexes of the positions of the second list that must be duplicated.
The ACL2 function which obtains from a degeneracy list dl and a non-degenerated



24 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

simplex l the corresponding simplex is named (degenerate dl l). With this no-
tations and definitions, the previous theorem can be stated, in the case of ∆, in
the following way:

Theorem 2. Any simplex l in ∆ admits a unique representation as a pair of lists
(dl, l′) with

l = degenerate(dl, l′)
where l′ is a list without two equal consecutive elements and dl a strictly increasing
degeneracy list.

The proof of this theorem was divided in [2] in two parts: existence and unique-
ness of the pair of lists. Proving the existence requires the definition of a witnesses
(dl, l′) from l. It is obtained in a natural way using a function generate(l) which
builds the degeneracy list and the non-degenerated simplex associated to l. Then,
the existence theorem was stated in ACL2 in the following way:

(defthm existence
(let ((gen (generate l)))
(and (canonical gen)

(equal (degenerate (car gen)(cdr gen)) l))))

where canonical encodes the required properties in Theorem 2. This theorem
was proved using standard interaction with ACL2 by providing proper lemmas
and suitable induction schemes.

The uniqueness was enunciated in the following way:
(defthm uniqueness
(implies

(and (canonical p1) (canonical p2)
(equal (degenerate (car p1)(cdr p1)) l)
(equal (degenerate (car p2)(cdr p2)) l))

(equal p1 p2)))

This theorem is easy to achieve using the following lemma:
(defthm uniqueness-main-lemma
(implies (canonical (cons l1 l2))

(equal (generate (degenerate l1 l2))
(cons l1 l2))))

A sketch of the proof of this lemma can be found in Mirian’s manuscript in
Figure 1. Her proof is by induction over the length of the first list and uses three
auxiliary lemmas.

In the following sections it is explained how the previous definitions and results
can be implemented in other different proof assistants as Isabelle/HOL and Coq.

3. Formalization in Isabelle

Isabelle [10] is a generic theorem prover designed for interactive reasoning in
a variety of formal theories. It provides currently useful proof procedures for
Constructive Type Theory, various first-order logics, Zermelo-Fraenkel set theory
and higher-order logic (the latter, usually known as Isabelle/HOL).



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 25

Figure 1. Mirian’s manuscript.



26 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

Since its first releases (e.g., Isabelle-86) it has been widely used in the for-
malization of various topics. For instance, in Mathematics, it has been used to
formalize the proof of the prime number theorem and the formalization of the
Fundamental Theorem of Algebra is now work in progress. The features of the
system convert it also in a rather convenient tool for the verification of properties
of programming languages (simplified versions of Java and C++ have been fully
specified and properties of them verified), hardware specification and testing, or
verification of security protocols.

The system has evolved along the years with some remarkable improvements.
One of that is Isar, a human-like language on top of Isabelle. In Isar, theorems are
stated in an almost natural language (as terms of a type called prop, which stands
for “propositions”); the proof of that theorem becomes then a proof state (with
one or more subgoals). Then the user makes use of proof methods that act over
the proof state, trying to solve each single subgoal. The variety of proof methods
ranges from decision procedures to methods that are parameterized by rules (or
previously proved theorems) and that are resolved against any subgoal. When
every subgoal emerging from the original theorem has been proved, the result is
accepted by the system. Actually, the system accepts proofs that, starting from
the statement, split it into simpler subgoals, but also proofs that, starting from
basic facts, successively build up the theorem (in a manner that closely resembles
proofs carried out by hand). Therefore, the system cannot be considered as an
automatic theorem prover, since it requires human interaction to carry out proofs
(but supposedly several tedious steps are automatically completed).

In our formalization we have used Isabelle/HOL because of its expressive power
and the high degree of automation that it offers in the Isabelle system. Higher-
order logic is an implementation of the Simple Theory of Types introduced by
Church (also known as simply typed lambda calculus, where neither polymorphism
nor dependent types occur).

This section pretends to present a complete development in Isabelle, based on
the results presented in Section 2, but is also intended to be a tutorial to a small
part of the syntax and style of the system. Let us start by introducing some of
the definitions that are required in our formalization.

We first introduce the following type abbreviation that will be used in our
development:

types ’a deg_pair = "nat list × ’a list"

In the previous expression, ′a represents a type variable (which can be later
replaced by any possible Isabelle type, including basic types, nat, int or also
functional types themselves). Then, deg pair will work as a type abbreviation,
representing a product type, where the first component contains a list of natural
numbers and the second one a list of elements of identical type ′a.

The previous expression also serves us for the purpose of illustrating that the
Isabelle implementation of higher-order logic also admits, among others, product



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 27

types. The system is also specially well-equipped to admit data types defined by
induction, such as nat or list.

Let us now introduce a function generate over the previous type ’a deg pair :1

fun generate :: "’a list => ’a deg_pair"

where
generate_Nil: "generate [] = ([], [])"

| generate_Cons_1: "generate (a # []) = ([], (a # []))"

| generate_Cons_2:

"generate (a # b # l) = (if a = b

then (0 # add_one(fst (generate (b # l))),

snd (generate (b # l)))

else (add_one(fst (generate (b # l))),

a # snd (generate (b # l))))"

Let us explain some details concerning the previous function definition.
The function has been defined by means of the fun command, which makes
internal use of a fun package [7] facilitating the definition of functions. Es-
sentially, this facility will be in charge of proving that the previous function
generate is total and terminating. A function is total if it is defined for
every possible input. This is specially relevant in our logical setting, since
HOL is a logic of total functions. We can observe that the previous function
generate is total, since it has been defined for lists of length 0 (the empty
list, in the case generate Nil), lists of length 1 (in the case generate Cons 1 )
and lists of length greater than 1 (in the case generate Cons 2 ).2 Thus, it
is defined for every list.
A second concern that is also solved by means of the fun package is function
termination. A function is terminating iff the evaluation of every possible
input will finish after a finite number of steps. An example of a non-
terminating function is f : N→ N where f(n) = f(n) + 1. Accepting the
definition of f would guide us to inconsistencies, since from its definition
it follows that 0 = 1. In the case of function generate, the proof of its
termination could be expressed as follows (this proof is internally carried
out by the system, prior to accepting the function definition). If the list is
empty, the result of applying generate to that list (see the case generate Nil
above) will be a pair of empty lists (and thus it terminates). If the list
contains a single element a, the result of applying generate (see the case
generate Cons 1 ) will be an empty list of degeneracies, and the same list of
simplices (and again in this case, it terminates). If the list has two or more
elements, the result of applying generate to that list (see generate Cons 2 )
will be the conditional expression shown above. If the two first elements are
equal, a degeneracy has been found and is moved to the first list. Otherwise,

1The function add one is an auxiliary function that, given a list of natural numbers, increases

each of them in one unit. We will present it later.
2In Isabelle syntax, [] stands for the empty list, and # for the append operation.



28 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

the element is appended to the list of simplices. The function recursively
calls itself, but always with a shorter list, and thus it terminates (after a
finite number of steps, in this case equal to the length of the list).
The two previous steps have been related to proving that the function gen-
erate satisfies the minimal requirements to be accepted by the system. Ac-
tually, the goal of introducing the function generate in the system is to
prove some properties of it (in our case, the kind of properties that we
presented in Section 2). It can be observed that the function has been re-
cursively defined (the case generate Cons 2 ) over the inductive data type
of lists. Thus, a good strategy to prove properties of such function will
be by using induction. Once again, the fun package will be in charge of
automatically introducing an induction rule (named generate.induct) that
should help us to prove properties of this function. This induction rule is
to be added to some other well-known induction rules already available in
the system, such as structural induction on lists, or induction on the length
of lists. The automatically generated induction rule for this function looks
as follows:

[[P [];
∧
a. P [a];∧

a b l. [[a = b =⇒ P (b # l) ]]=⇒ P (a # b # l);∧
a b l. [[a 6= b =⇒ P (b # l) ]]=⇒ P (a # b # l) ]] =⇒ P a

The previous induction rule, apart from the special syntax of the system,
should be read as follows: “If a given property P holds for the empty list
(base case), and it also holds for lists with a single element (another base
case), and the property is such that for every two elements a and b with
a = b and every list l, if the property holds for the list b#l we know how
to prove the property for a#b#l, and for a and b with a 6= b, and any list
l, if the property holds for b#l we also know to prove P for a#b#l, then
we know that P holds for every list l”. Usually, this induction rule will be
the most adequate one for proving properties of the function generate, but
any other rule matching with the property to be proved can be applied.
Actually, the previous induction rule can be also seen as a particular case
of structural induction on lists with a proper case distinction (illustrating
the fact that the same theorem can be proven in different ways, or at least
by means of different rules).
Finally, and concerning the definition of the function, we had to provide
a type definition of generate (otherwise the system would infer the most
general type, which is not always the one we pretend), which in this case
consists in a functional type mapping a list over a variable type ′a to the
type of pairs of degeneracy lists over ′a. Then, the behavior of generate
over any possible list must be defined (in our case, splitting the definition
into three possible cases).



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 29

Even if most of the recursive functions that can be thought of are accepted
by the fun mechanism shown, there are some other ways to introduce function
definitions in Isabelle/HOL that we will not consider in this paper [7].

After introducing the concrete syntax of the system, we can now clarify the ex-
pected behaviour of function generate. For any given list of elements, the function
generate computes a pair of lists. The first one, of natural numbers, contains the
positions in which the original list has two consecutive equal elements (the list of
degeneracies in the original list). The second one is a list with all the elements of
the original list, but without two consecutive equal elements (a non-degenerated
list).3

The Isabelle definition of the function add one should be now self-explanatory.
We also take the chance to introduce another auxiliary function, red one, which
decreases in one unit every element of a given list and will be used later:

fun add_one :: "nat list => nat list"

where
add_one_Nil: "add_one [] = []"

| add_one_Cons: "add_one (a # l) = (a + 1) # add_one l"

fun red_one:: "nat list => nat list"

where
red_one_Nil: "red_one [] = []"

|red_one_Cons: "red_one (a # l) = (a - 1) # red_one l"

The next step in our development would consist in proving some properties of
the introduced function. In order to state such properties, one can indistinctly use
different commands in the Isabelle syntax (such as theorem, lemma or corollary).

lemma "hd (snd (generate (a # l))) = a"

by (induct l rule: generate.induct, auto)

The first line in the previous code script states the property that we would
like to prove. In this case, that whenever we apply the function generate to a
non-empty list (every non-empty list can be expressed in the form a#l for a given
element a and a list l), the second list produced, which should contain the elements
of the original list without equal consecutive elements, will have the element a as
first element (or hd). The second line in the previous script contains a proof of
such result (indeed, a proof accepted by the system, otherwise the system would
return a failure).

If we look closely to the proof, it can be observed that it is carried out by
induction on the list l, applying the induction rule shown above (generate.induct).
Applying such rule produces four different goals (cases l = [], l = [b], l = b#c#m
with b = c and l = b#c#m with b 6= c). The auto tactical is capable of fulfilling

3Of course, that is the purpose of our definition, but we must prove such properties.



30 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

the details of the proofs of that four cases, and thus the result is accepted as a
new lemma for the system.

Actually, we could explicitly provide such details giving place to a longer proof
(as in mathematics, there is no unique proof for a given result). Unfortunately,
not every proof can be completed in a single line, and we will see examples of
more elaborated proofs later. Nevertheless, the previous proof should be helpful
for the interested reader to estimate the kind of details that the system is capable
of verifying automatically.

The next required definition in our development is the one of the deg operator.
We use again a recursive definition (in this case, the recursion is defined over the
natural numbers) by means of the fun package. The cases that are considered in
the definition are whether the natural number is equal to 0, or otherwise, is the
successor (Suc) of some n:

fun deg :: "nat => ’a list => ’a list"

where
deg_0: "deg 0 (a # l) = a # a # l"

| deg_Suc: "deg (Suc n) (a # l) = a # deg n l"

The previous function is now applied to introduce the definition of the degen-
erate function. The function degenerate will be our candidate to be proved to be
the inverse of the previous function generate.

fun degenerate :: "’a deg_pair => ’a list"

where
degenerate_Nil: "degenerate ([], m) = m"

|degenerate_Cons: "degenerate (i # l, m) = degenerate (l, (deg i m))"

The function degenerate is applied to a pair of a list of natural numbers and a
list of elements of any type, and it returns a new list in which the repetitions of
the elements pointed out by the natural numbers of the first list are applied to the
second list.

The previous functions generate and degenerate are to be proved now that they
define a bijection. This bijection is defined between two sets: One is the set of
every list of elements over an (arbitrary) type ′a. The second set is the one of
canonical pairs of lists (over the same type ′a). This property of canonicity of
pairs of lists includes various predicates. First, the first list of the pair, the one
containing natural numbers, has to be strictly increasing (or decreasing, both cases
would be valid). Second, the second list cannot include equal consecutive elements
(i.e it should be a non-degenerated list). Finally, each natural number in the first
list has to be less than the length of the list over which it will be applied (in order
to be a meaningful degeneracy when applied to such list). Let us introduce the
Isabelle definitions of such predicates:



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 31

fun str_incr:: "nat list => bool"

where
str_incr_Nil: "str_incr [] = True"

| str_incr_Cons_1: "str_incr (a # []) = True"

| str_incr_Cons_2:

"str_incr (a # b # l) = ((a < b) ∧ (str_incr (b # l)))"

fun no_consec_repet :: "’a list => bool"

where
no_consec_repet_Nil: "no_consec_repet [] = True"

| no_consec_repet_Cons_1: "no_consec_repet (a # []) = True"

| no_consec_repet_Cons_2:

"no_consec_repet (a # b # l) = ((a 6= b) ∧ no_consec_repet (b # l))"

fun deg_list :: "’a deg_pair => bool"

where
deg_list_Nil: "deg_list ([], l) = True"

|deg_list_Cons:

"deg_list (a # b, l) = ((a < length l) ∧ (deg_list (b, deg a l)))"

Now, we join the three previous predicates (it can be observed that the return
value of each of them is of type bool, the type of boolean values) in a single
definition named canonical, by means of the following command:

definition canonical :: "’a deg_pair => bool"

where canonical_def: "canonical dg =

(str_incr (fst dg) ∧ no_consec_repet (snd dg) ∧ deg_list dg)"

The previous predicate canonical also serves us for the purpose of illustrating
that not every definition in the system needs to be recursively stated (by means
of the fun package).

With the previous definitions (and some auxiliary lemmas about them), we are
ready to state (and to prove) the following statement:

lemma existence:

"canonical (generate l) ∧ degenerate (generate l) = l"

The statement includes two different facts. First, that the result of applying the
function generate over any given list l satisfies the canonical definition. Secondly,
and regarding the bijection, the result of applying function generate to any list l
and then function degenerate is equal to that list.

There is still a second interpretation of the previous statement (and that is the
reason why we named it existence). For any given list l, there exists a canonical
representation of it, generate l (and this canonical representation is such that
when applying degenerate to it is equal to the original list l).



32 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

The proof of the previous result in Isabelle is implemented by induction over
the list l, and consumed ca. 100 lines of code.

The second part of our development consists in proving that for any canonical
pair of lists l = (l1, l2), the result of applying function degenerate and then generate
is equal to l. This result will also give us the key to prove that, for every list
l there exists a unique pair of lists (l1, l2) such that they are canonical and
l = degenerate (l1, l2).

The statement of the result is as follows:

lemma uniqueness_main_lemma:

assumes "canonical (l1, l2)"

shows "generate (degenerate (l1, l2)) = (l1, l2)"

The previous result, together with the previous lemma existence, complete the
proof of the set of lists and the set of canonical pairs of lists being bijective.

The previous lemma, though, contains a little subtlety. If we try to prove it by
induction over the structure of l1, the two following cases show up.

First, the case where l1 is the empty list. Its proof is completed in the following
way. It can be proved that degenerating any list (for instance, l2) by an empty list
of natural numbers (l1 = []) produces the same list (in this case, l2). Then, the
result of generating a list where no consecutive elements are equal (l2) is a pair of
lists, where the list of degeneracies is empty, and the list containing no consecutive
equal elements is that list (l2).

The second case considers l1 not empty, so let us assume that l1 = a#ld. In or-
der to apply the induction hypothesis, we should be capable of proving that the pair
(ld, l2) is canonical, for which we only can count on the premise canonical(l1, l2),
but in general that is not true.

A different approach has to be think of. The idea (thanks to L. Lambán and
Mirian) consisted in using induction on the length of l1. Therefore, the induction
hypothesis will be (in Isabelle syntax) as follows:

∀ l.length l < length l1 −→ canonical (l,l2)

−→ generate (degenerate (l,l2))=(l,l2)

Now, we apply case distinction over the structure of l1. The proof of the case
l1 = [] is completed as explained above. The case where l1 = a#ld requires
to detect under which conditions it is possible to extract the first degeneration
(deg a), obtaining thus a case where the induction hypothesis can be applied.

This condition relies on a predicate named fst repet which, given a list, returns
the position of the list in which the first pair of consecutive equal elements appear
(if there is no such pair, it returns the length of the list).

This function is defined as follows:

fun fst_repet_i :: "’a list => nat => nat"

where
fst_repet_i_Nil: "fst_repet_i [] i = i"



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 33

|fst_repet_i_Cons_1: "fst_repet_i (a # []) i = Suc i"

|fst_repet_i_Cons_2: "fst_repet_i (a # b # c) i =

(if a = b then (Suc i) else (fst_repet_i (b # c) (Suc i)))"

definition fst_repet :: "’a list => nat"

where fst_repet_def: "fst_repet l = fst_repet_i l 0"

The previous function, fst repet, helps us in the following way. Let us show
a stepwise proof of the lemma uniqueness main lemma in Isabelle, that closely
follows the one in Mirian’s manuscript.

We first unfold the definition of l1, which is equal to a#ld:

have "generate (degenerate (l1, l2)) = generate (degenerate (a # ld, l2))"

Then, we can extract the first degeneration, a, from the degenerate function,
by making use of the result named in Mirian’s manuscript lema 1, obtaining the
following expression:4

also have " . . . = generate (deg a (degenerate (red_one ld, l2)))"

Our next step will consist in moving the degeneracy deg a out of the generate
operator. This step requires two previous results named lema 2 and lema 3 in
Mirian’s manuscript. The result labeled as lema 3 is the one demanding the use
of the function fst repet. In order to move the degeneracy a out of the generate
function, we need to prove first that a is less than the first repetition occurring
in degenerate (red one ld, l2). After proving that premise, the following equality
holds:

also have " . . . = (a # add_one (fst(generate(degenerate(red_one ld, l2)))),

snd(generate(degenerate(red_one ld, l2))))"

Now we are ready to introduce the induction hypothesis. The length of red one ld
(which is equal to the length of ld), is less than the length of l1. Additionally, the
pair (red one ld, l2) is canonical. Thus, the induction hypothesis is applicable to
(red one ld, l2), and the following equality holds:

also have " . . . = (a # add_one (fst (red_one ld, l2)), snd (red_one ld, l2)"

The functions add one and red one are inverse of each other, so this permits to
prove the following equality:

also have " . . . = (a # ld, l2)"

Finally, and taking into account that l1 = a#ld, the proof is completed.

4The abbreviation “. . . ” stands for the previous expression in the chain of rewriting steps.



34 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

With the previous results of existence and uniqueness (that complete the proof
of the bijection), proving the unicity of representation becomes a corollary which
complete proof we have included below:

lemma uniqueness:

assumes can_1: "canonical (d1, l1)"

and can_2: "canonical (d2, l2)"

and deg_1_eq_l: "degenerate (d1, l1) = l"

and deg_2_eq_l: "degenerate (d2, l2) = l"

shows "(d1, l1) = (d2, l2)"

proof -

have "(d1, l1) = generate (degenerate (d1, l1))"

using uniqueness_main_lemma [OF can_1] ..
also have " . . . = generate (degenerate (d2, l2))"

unfolding deg_1_eq_l

unfolding sym [OF deg_2_eq_l] ..
also have " . . . = (d2, l2)"

using sym [OF uniqueness_main_lemma [OF can_2]] ..
finally show ?thesis .

qed

4. Formalization in Coq

Coq [4] is an interactive proof assistant based on a theory called Calculus of
Inductive Constructions, that is a lambda calculus with a rich type system. Coq
provides a specification language named Gallina. Terms of Gallina can repre-
sent formal specifications, programs, and proofs of programs complying with their
specifications. Using the so-called Curry-Howard isomorphism, specifications, pro-
grams and proofs are formalized in the same language. The system also supplies a
language of tactics that allows the user to guide the proof process. Coq is widely
used for building machine-checked mathematical proofs and machine-certified pro-
grams.

In this section we present a formalization in Coq of the results included in
Section 2. Besides, as in the previous Isabelle development, it is used to illustrate
the syntax and style of the tool and to explain some of its characteristics.

There exists libraries which contains some basic structures developed in Coq.
An example of such a library is List which is required (i.e., included) in our
development. Such a library contains the inductive definition of the type of lists
(which is parameterized by the type of elements of the list):
Inductive list (A:Type): Type
nil : list A

| cons : A -> list A -> list A.

The inductive definitions contain the introduction rules that define the type
or constructors. In this case a list of elements on a type is nil or it is built
through the inclusion of an element on a list. Coq automatically adds properties
to the context that allow defining functions and proving theorems by structural
induction on the inductive definitions. For instance, the following property, which



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 35

allows proofs by structural induction on lists, is included (the constructor cons is
denoted with the infix notation “::”):
list_ind : forall (A : Type) (P : list A -> Prop),
P nil -> (forall (a : A) (l : list A), P l -> P (a :: l)) ->
forall l : list A, P l

In this last property dependent types are used. In Coq it is possible to build a type
that depends on values of another type. Besides, types are included as terms in
the system, i.e., types are first-class values. So, it is also possible to build types
that depends on types. This is a very powerful type system which allows defining
precise specifications.

In order to represent the simplices of ∆ in Coq a type, A: Type, with a decid-
able equality, eq dec: forall x y: A, {x = y} + {x <> y}, is introduced.
Simplices are then formalized as the lists over this type: ListA:=list A.

The requirement of the decidable equality could need a more detailed explana-
tion. The equality on a type in Coq is defined through an inductive type:
Inductive eq (A : Type) (x : A) : A -> Prop :=
refl_equal : eq x x.

which includes only one constructor corresponding to reflexivity (eq can be rep-
resented with the infix notation “=”). So, this equality is not a boolean relation
like in the Isabelle case. An equality test on the type A can be obtained with the
function eq dec. Given two elements x and y in A, eq dec x y allows us to check
whether {x = y} or {x <> y} is true. The type of this test is obtained by means
of another inductive type sumbool:
Inductive sumbool (A B : Prop) : Set :=

left : A -> sumbool A B
| right : B -> sumbool A B.

(sumbool A B will be represented by {A} + {B}). Then, the two options which
play the role of true and false can be retrieved by pattern matching on eq dec
x y by means of its two possible cases left p and right q with p:x = y or
q:x <> y. In that case, we also obtain that p or q are proofs of x = y or x
<> y, respectively. There exists in Coq an inductive definition of disjunction of
propositions or. Its definition is the same that sumbool above except that its type
is Prop instead of Set. Nevertheless, or is not useful in this case because definitions
by case analysis on proofs of propositions are not allowed in Coq. The reason
of this restriction comes from the intended distinction between the predefined
types Set and Prop, for program types or specifications and logical propositions,
respectively. In Coq when we use the sort Set, programs are considered as different
even if they have the same type. For Prop, the details of the proofs that prove
a proposition are not important and we are just interested in the existence of
the proof. This motivates the proof irrelevance on propositions which means that
different proofs of a proposition cannot be distinguished. Based on this difference,
Coq can automatically extract executable programs from specifications. Roughly
speaking, once a program is verified, the extraction mechanism obtains the code
erasing the parts with type Prop.



36 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

Using the previous data types, we can define two recursive functions: generatel
and generateN which will be collected using pairs in a single function generate.
The first one obtains from a simplex the associated non-degenerated simplex with-
out consecutive repeated elements and the second one the degeneracy list with the
positions of the repetitions, represented as a list of natural numbers (ListN:=
list nat):

Fixpoint generatel (l : ListA) : ListA :=
match l with
| nil => l
| a :: nil => l
| a :: (b :: l2) as l1 =>

if eq_dec a b then generatel l1 else a::generatel l1
end.

Fixpoint generateN (l : ListA) : ListN :=
match l with
| nil => nil
| a :: nil => nil
| a :: (b :: _) as l1 =>

if eq_dec a b then 0::add_one (generateN l1)
else add_one (generateN l1)

end.

Again, some comments can be done on the previous definitions. The Fixpoint
command allows definitions by structural induction on an argument. That is the
case of both definitions above defined on the inductive structure of the list. In
order to be accepted by the system, definitions have to satisfy some syntactical
constraints. Coq imposes an exhaustive pattern matching on the argument struc-
ture ensuring that the function is total, i.e., defined over all possible arguments.
Also, this argument must decrease along the recursive calls which ensures that
the Fixpoint definition always terminates. This is obtained imposing that the
argument of the recursive call has to be a pattern variable obtained from a case
analysis of the formal argument of the function (called guardedness condition). In
this case, the recursive call generatel is applied to the pattern variable l1 (which
renames b::l2) obtained from the case analysis, which obviously decreases the
argument l. This new variable is mandatory because b::l2 does not fulfill the
previous condition since it is not directly obtained as a pattern variable. (At this
point, it is equivalent to replace l2 in b::l2 by a placeholder b:: since this term
is not used in the definition. This feature is included in the generateN definition.)
The if c then b1 else b2 structure also corresponds with a case analysis in
which the inductive type of c has exactly two constructors. This is the case of
eq dec a b as explained before.

The degeneration function of a simplex by a natural number can be defined
by pattern matching on a pair of a natural number and the list representing the
simplex:



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 37

Fixpoint deg(i:nat)(l:ListA){struct l}: ListA:=
match i, l with

| _, nil => nil
| O, x :: l’ => x::x::l’
| S n, x :: l’ => x::deg n l’

end.

In this recursive function two different inductive types appear as arguments. In
that case, it is necessary to tell the system which argument must decrease along
the recursive calls. This is made explicit by the {struct l} annotation which
assigns l as decreasing argument. It should be observed that in this definition it
is also possible to use as decreasing argument the one in nat. This decision has an
influence in the subsequent Coq development. In particular, expressions will be
simplified using matching by the chosen argument. For instance, in our case (deg
n (x::l)) will be simplified (obtaining a function with a simple pattern matching
on the natural number argument n), but (deg (S n) l) will remain unchanged.
For this reason, proofs about this function should rely on induction on the chosen
argument. In this case, the argument in ListA is chosen considering that the list
structure could be more relevant than the natural number in our development.

With these structures it is possible to prove some preliminary lemmas. For
instance, the second equality in Definition 1 for our representation of the universal
simplicial set can be stated and proved in the following way.

Lemma deg_permut: forall (a b:nat)(l:ListA), a<=b -> b<(length l)
-> deg a (deg b l) = deg (S b)(deg a l).
Proof.
double induction a b.
intro l; case l; simpl; trivial.
intros n H l; case l; case n; simpl; trivial.
intros n b0 l H; inversion H.
intros n H n0 H0 l H1 H2; induction l.
inversion H2.
simpl; rewrite H0; auto with arith.

Qed.

In this lemma, the tactic-style of Coq can be appreciated. Its proof is based on
double induction on two natural numbers. This origins four subgoals. Three of
them are proved by case analysis or induction on the list and the fourth one by
contradiction with the hypotheses.

The previous degeneration function of a simplex by a natural number is easily
extended in order to define the degenerate function of a simplex by a list of
natural numbers:

Fixpoint degenerate(ln:ListN)(l:ListA):ListA:=
match ln with

| nil => l
| a::ln’ => (degenerate ln’ (deg a l))

end.



38 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

Then, a witness for the existence part of Theorem 2 is given by the pair of lists
built by the generate function. So, by means of the degeneration of the generated
lists the initial list is recovered:

Lemma existence_degenerate: forall l:ListA,
(degenerate (generate l)) = l.

The proof of this lemma can be obtained by induction on the structure of the list
using some auxiliary lemmas.

In order to complete the existence lemma is necessary to prove some canoni-
cal properties on both generated lists. These properties are the following. First,
generateN generates a strictly increasing list (property denoted by str incr), sec-
ond, generatel generates a list without two equal consecutive elements (denoted
by no consc rep) and finally generateN generates a correct degeneracy list with
respect to the list generated by generatel, which means that each natural number
of the degeneracy list is less than the length of the simplex which degenerates. All
these properties are defined in a similar way using inductive types and collected
in a predicate named canonical. For instance, the last one is defined as follows:

Inductive deg_list: ListN -> ListA -> Prop:=
deg_list0: forall l:ListA, deg_list nil l

| deg_list1: forall (a:nat)(l:ListA)(ln:ListN), a<length l ->
(deg_list ln (deg a l)) -> (deg_list (a::ln) l).

With the previous ingredients it is possible to obtain the existence lemma:

Lemma existence: forall l:ListA,
canonical (generate l) /\ (degenerate (generate l)) = l.

where the required canonical properties are proved using again induction on the
list.

The statement and proof of this lemma has consumed 492 Coq code lines (in-
cluding the definitions and previous lemmas).

The proof of the uniqueness part of Theorem 2 is based on the following main
lemma which is described in the manuscript in Figure 1:

Lemma uniqueness_main_lemma: forall (l1:ListN)(l2:ListA),
canonical (l1, l2) -> (generate (degenerate (l1, l2))) = (l1, l2).

The proof of this lemma is also detailed in that manuscript. It can be obtained
by induction on the length of the first list and using a chain of three rewriting
lemmas. Structural induction is not possible in this case. If we try to apply this
type of induction, in the cons case l1 is assumed to be a::l. Then, in order
to apply the induction hypothesis is necessary to prove canonical (l, l2) from
canonical (a::l, l2) which is not true in general. But, it is possible to prove
canonical (red one(l), l2) with red one a function which reduces in one each
element of the list. Since length(red one(l)) < length(a::l), induction on
the length of the list can be useful.



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 39

In general, in Coq it is possible to reason by induction on relations that are
well-founded. That is the case of the list length relation. A proof that this re-
lation is well-founded is included by P. Castéran and E. Contejean in the Coq
users contributions [8]. They also prove the following lemma which formalizes the
induction on the length of a list (see [8], for a detailed description):
Lemma length_list_ind:

forall (P:list nat -> Prop),
(forall (l2:list nat), (forall (l1:list nat),
length l1 < length l2 -> P (l1)) -> P (l2))
-> forall (l2:list nat), P l2.

Besides, the three auxiliary rewriting lemmas are defined. The first one:
Lemma Lema1: forall a ln l, str_incr (a::ln) -> deg_list (a::ln) l
-> degenerate ln (deg a l) = deg a (degenerate (red_one ln) l).

is proved by induction on the list ln of natural numbers, and the second one:
Lemma Lema2: forall l a, a < length l ->
generatel(deg a l) = generatel l.

by induction on the list l. The third Lemma:
Lemma Lema3: forall l a, a < fst_repet l ->
generateN(deg a l) = a::(add_one(generateN l)).

introduces a new function fst repet which obtains the position of the first pair of
consecutive elements repeated in a list (in the case that there are no consecutive
pair of elements repeated then it obtains the length of the list). This function is
defined in the following way:
Fixpoint fst_repet (l : ListA) : nat :=
match l with
| nil => 0
| a :: nil => 1
| a :: (b :: _) as l1 => if eq_dec a b then 1 else S(fst_repet l1)
end.

This third lemma is also proved by induction on the list l.
Finally, the uniqueness lemma can be trivially obtained by rewriting the previ-

ous uniqueness main lemma:
Lemma uniqueness: forall (l1 l2: ListNxListA)(l: ListA),
canonical l1 /\ canonical l2 -> (degenerate l1) = l /\
(degenerate l2) = l -> l1 = l2
Proof.
intros ln1 ln2 l1 l2 l H H0;elim H;elim H0;intros H1 H2 H3 H4.
rewrite <-(uniqueness_main_lemma’ H3);trivial.
rewrite <-(uniqueness_main_lemma’ H4);trivial.
rewrite H1;rewrite H2;trivial.
Qed.

This second part requires 433 lines of Coq code.



40 JESÚS ARANSAY-AZOFRA AND CÉSAR DOMÍNGUEZ

5. Conclusions and Further work

This work has presented the formalization of a result in Simplicial Topology in
two different theorem provers. Actually, the aim of this work was not to increase
the confidence in such a result, since its proof had been already formalized in
another theorem prover, ACL2, but to illustrate the look and feel of Isabelle/HOL
and Coq by means of an example.

The capacities of both systems are far beyond from the ones that we have
presented here. The logics underneath them permit quite more elaborated for-
malizations, and they both pose a wide users’ community increasing their features
and also the amount of results being formalized.

In this setting, our work should be useful as an introduction to the basics of their
type systems, the definition of functions, the proving strategies and the amount
of effort being required for a complete formalization.

In addition to this, the formalization presented in this paper should serve also
to illustrate that, even for a rather intuitive result, as the one stated in Theorem 2,
which simply says that every list admits a representation by means of two lists,
one containing the repetitions of that list and another one without repetitions, a
formal proof (a pencil & paper one or by means of a theorem prover) can some-
times become rather tricky (and requires a certain amount of previous results and
additional definitions).

Another conclusion is that, very commonly, results in Mathematics do admit
very different interpretations. In our case, Theorem 2 can be understood as a way
to simplify the representation of lists. But the proof of the result demanded from
us the definition of a new function generate, as well as proving that this function
was the inverse of the introduced degenerate function. Along our development, we
had to prove that both functions defined a bijection between lists and the set of
canonical pairs of lists. From a different point of view, Theorem 2 could be also
seen as a compression algorithm. Actually, extracting the degeneracies out of a
list is not very far from the well-known compression algorithm run-length.

The work presented here may continue in different lines. For instance, it could
be formally proved that the simplicial set ∆ and its representation by means of lists
really fulfill the identities in Definition 1. Some of that identities have been already
proved in our work. Moreover, it could be explored the relation of ∆ with respect
to the Category of simplicial sets. To this respect, ∆ is not an initial object, but
it is known to be the simplicial set containing the minimal set of identifications
required to define a simplicial set. Yet another idea is to formalize the identities
verified by any simplicial set as a rewriting system, and then try to build up proofs
of theorems for simplicial sets as normalization processes. This proposal was also
explored in Mirian’s work [2], getting a different proof of Theorem 2, and its
possibilities are still being used in the ACL2 system for proving more elaborated
results.

The goal of certifying Kenzo still appears far from our reach. Actually, the
system has been widely tested, and the results known have been proven always
correct (it is worth noting that some of the results obtained with Kenzo have



FORMALIZING SIMPLICIAL TOPOLOGY IN ISABELLE/HOL AND COQ 41

not been obtained by any other means). Along these years, and thanks, among
others, to Mirian’s research, different parts of the system have been formalized in
different provers, some crucial algorithms implemented and certified, and some of
its computations mechanically verified. Thus, the system has shown to be a great
laboratory to measure and test the strengths and weaknesses of proof assistants
and theorem provers.

References

[1] M. Andrés, L. Lambán, J. Rubio. Executing in Common Lisp, proving in ACL2. In Pro-

ceedings of Calculemus 2007, M. Kauers et al. (eds.). Lecture Notes in Computer Science
4573, pp. 1–12. Springer, Hagenberg, Austria, 2007.

[2] M. Andrés, L. Lambán, J. Rubio, J. L. Ruiz-Reina. Formalizing Simplicial Topology in

ACL2. In Seventh International Workshop on the ACL2 Theorem Prover and its Applica-
tions, pp. 34-39. Austin, Texas (Estados Unidos), 2007.

[3] J. Aransay, C. Ballarin, J. Rubio. A mechanized proof of the Basic Perturbation Lemma.

Journal of Automated Reasoning 40, 271–292, 2008.
[4] Y. Bertot, P. Castéran. Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science,
vol. 25. Springer, Berlin, 2004.

[5] X. Dousson, F. Sergeraert, Y. Siret. The Kenzo program. 1999. Available at http:

//www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.
[6] M. Kaufmann, P. Manolios, J. Strother-Moore. Computer-Aided Reasoning: An Ap-

proach. Kluwer Academic Press, Boston, 2000.

[7] A. Krauss. Automating recursive definitions and termination proofs in higher order logic.
Ph.D. Thesis, Technische Universität München, 2009.

[8] LogiCal project. The Coq Proof Assistant. 2009. http://coq.inria.fr/.

[9] J. P. May. Simplicial objects in Algebraic Topology. Van Nostrand Mathematical Studies,
vol. 11. D. Van Nostrand Co., Princeton, 1967.

[10] T. Nipkow, L. C. Paulson, M. Wenzel. Isabelle/HOL: A proof assistant for higher order

logic. Lecture Notes in Computer Science, vol. 2283. Springer, Berlin, 2002.
[11] J. Rubio, F. Sergeraert. Constructive Algebraic Topology. Bulletin des Sciences

Mathématiques 126, 389–412, 2002.

Departamento de Matemáticas y Computación, Universidad de La Rioja, Spain
E-mail address: jesus-maria.aransay@unirioja.es

Departamento de Matemáticas y Computación, Universidad de La Rioja, Spain
E-mail address: cesar.dominguez@unirioja.es




