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Resumen. En este art́ıculo presentamos una breve revisión sobre las A∞-
(co)álgebras, comenzando con su origen, y continuando con algunas ĺıneas

actuales de investigación en varias disciplinas académicas y con algunos pro-

blemas abiertos relacionados con su cálculo, con una atención especial al papel
de la Teoŕıa de Perturbación Homológica.

Abstract. In this paper we give a brief review of A∞-(co)algebras, begin-

ning with their origin, some actual lines of research in various academic disci-
plines, and some open questions related to their computation with particular

attention to role of Homological Perturbation Theory.

1. Introduction

In the early sixties, J. Stasheff introduced the notion of an An-space [29], which
is a topological space X whose singular chains A = C∗ (X) come equipped with
operations

{
mi : A⊗i → A

}
1≤i≤n that relate to one another in a systematic way.

The operation m1 is a degree −1 differential, m2 is a multiplication, and m1 is a
derivation of m2; thus, m1m1 = 0 and m1m2 = m2 (m1 ⊗ 1− 1⊗m⊗1). If m2 is
associative up to homotopy, there is a chain homotopy m3, called the associator,
that relates the two associations in three variables, i.e., m1m3 +m3(m1 ⊗ 1⊗ 1 +
1⊗m1⊗1+1⊗1⊗m1) = m2 (1⊗m2)−m2 (m2 ⊗ 1) . In this case, (A,mi)1≤i≤3 is
an A3-algebra. If there is a chain homotopy m4 relating the five chain homotopic
associations in four variables, the tuple (A,mi)1≤i≤4 is an A4-algebra, and so on.

Stasheff’s definition of an An-space was motivated by the space ΩX of base
pointed loops on a topological space (X, ∗), whose points range over all continuous
maps α : ([0, 1] , {0, 1})→ (X, ∗). Given α, β ∈ ΩX, the product αβ is defined by

αβ (t) =
{

α (2t) , 0 ≤ t ≤ 1
2

β (2t− 1) 1
2 ≤ t ≤ 1.

Thus the product (αβ) γ is not associative, but is associative up to homotopy, as
indicated by the following linear change of parameter diagram:
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In this case, C∗ (ΩX) comes equipped with operations mi for all i, and is called
an A∞-algebra; the complete family of structure relations is given by equation
(1) below (for a more complete exposition see [18]).

In the seventies and eighties, A∞-algebras were applied extensively in Homotopy
Theory [1]; and in the nineties, A∞-algebras assumed an important role in differ-
ential geometry and mathematical physics [30, 11]. Work of Kadeishvili and others
developed the computational techniques of Homological Perturbation Theory to
transfer an A∞-algebra structure at the chain level to homology [16, 17, 12, 13].
Today, the structure relations of an A∞-algebra are encoded by the non-Σ operad
A∞, and an A∞-algebra is viewed as an algebra over A∞ [21]. And there is the
completely dual notion of an A∞-coalgebra.

A current line of research, pioneered by S. Saneblidze and R. Umble [26], consid-
ers the notion of an A∞-bialgebra, which generalizes the notion of an A∞-algebra
by joining an A∞-algebra and an A∞-coalgebra together in a compatible way.
Thanks to this joint work, many naturally occurring examples of A∞-bialgebras,
both topological and algebraic, have been found and are now under study (see
for example [27, 31, 7, 4]). Indeed, over a field, the homology of a loop space is
naturally endowed with an A∞-bialgebra structure.

In the sections that follow we will amplify and extend these introductory no-
tions sufficiently so that the open problems that interest us can be interpreted
clearly. The paper is organized as follows: Section 2 reviews the notion of an
A∞-(co)algebra and the related notions of Homological Perturbation Theory, and
Section 3 discusses some open problems related to A∞-structures from the per-
spective of HPT.

2. Main concepts

Whereas the aim of this paper is to give an exposition of the ideas behind the
open problems itemized in Section 3, we give a somewhat cursory review here.
More rigorous treatments can be found in the literature.

To better understand the notion of an A∞-structure, we begin with a review of
some notation and ideas from homological algebra. For additional related material
see [19]. Let Λ be a commutative ring with unity. A differential graded module
(DGM) is a graded module M together with a square zero morphism dM : M →M
of degree −1. The module M is connected whenever M0 = Λ, in which case the
reduced module M̄ satisfies M̄0 = 0 and M̄n = Mn for n > 1.

Throughout the paper we will strictly adhere to the Koszul sign convention: If
f : M →M ′ and g : N → N ′ are morphisms of DGMs, the map f ⊗ g : M ⊗N →
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M ′ ⊗N ′ satisfies

(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y),

where | · | denotes the degree.
Given a DGM (M,dM), the suspension of M is the DGM (sM, dsM), where

(sM)n = Mn−1 and dsM = −dM . Dually, the desuspension of M is the DGM
(s−1M,ds−1M) given by (s−1M)n = Mn+1 with differential −dM . The tensor
module of M is the DGM TM =

⊕
n≥0M

⊗n whose (tensor) differential dt is the
linear extension of d. The tensor degree of a homogeneous element a1⊗ · · · ⊗ an ∈
TM is given by

∑n
i=1 |ai|. A morphism f : M → N of DGMs induces a morphism

Tf : TM → TN via Tf |M⊗n = f⊗n.
A differential graded algebra (DGA) is a DGM (A, dA) endowed with a unital

associative product µA such that dA is a derivation of µA. In fact, a DGA is an
A∞-algebra with trivial higher order structure. An A∞-algebra is a graded module
M together with a family of maps

{
µi ∈ Homi−2

(
M⊗i,M

)}
i≥1

such that for all
i ≥ 1

(1)
i∑

n=1

i−n∑
k=0

(−1)n+k+nkµi−n+1(1⊗k ⊗ µn ⊗ 1⊗i−n−k) = 0.

Let A be a connected DGA. The reduced bar construction of A, constructed
over the reduced module Ā = A/A0, is the DGM B̄(A) = Ts

(
Ā
)

with differential
dB̄ = dt + ds, where dt is as above and ds is the simplicial differential. Roughly
speaking (up to the appropriate suspensions and desuspensions), the morphism ds
is given by

ds =
r−1∑
i=1

1⊗i−1 ⊗ µA ⊗ 1r−i−1.

The bar construction plays an important role in the transfer of an A∞-algebra
structure from chains to homology via Homological Perturbation Theory (HPT).

Let (M,dM) and (N, dN) be DGMs. A contraction r from N to M [10], denoted
by either a tuple r : {N,M, f, g, φ} or an arrow N → M , is an special type of
homotopy equivalence in which the morphisms f : N → M , g : M → N , and the
homotopy operator φ : N∗ → N∗+1 satisfy the relations

(r1)fg = 1M ; (r2)φdN + dNφ+ gf = 1N ;

(r3) fφ = 0 ; (r4)φg = 0 ; (r5)φφ = 0 .

A contraction c : {N, M, f, g, φ} between DGMs induces the tensor module
contraction [12, 13], between the corresponding tensor modules,

T (c) : {T (N), T (M), T (f), T (g), T (φ)},

where

T (φ)|Tn(N) = φ[⊗n] =
n−1∑
i=0

1⊗i ⊗ φ⊗ (g f)⊗n−i−1.
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Of course, the homology groups of the modules N and M are isomorphic, but
the structure in N does not typically transfer faithfully to M . Indeed, if N is a
DGA, a contraction r from N to M induces an A∞-algebra structure on M , which
arises via the following perturbation process [13]: A perturbation δ of a DGM N is
a morphism δ : N → N of graded modules such that (dN + δ) is a differential. A
perturbation datum of a contraction r : {N,M, f, g, φ} is a perturbation δ of N such
that φδ is pointwise nilpotent, that is, for each x 6= 0, there exists an n ∈ N such
that (φδ)n(x) = 0. The fundamental tool of HPT is the Basic Perturbation
Lemma (BPL) [28, 9, 11], which is an algorithm whose input is a contraction
r : {N,M, f, g, φ} together with a perturbation datum δ of r and whose output is
a new contraction rδ. The pointwise nilpotency of φδ guarantees that all sums in
the formulas involved are finite for each x ∈ N .

Input: r : (N, dN )

φ

�� f --
(M,dM )

g
nn + perturbation δ

Output: rδ : (N, dN + δ)

φδ

�� fδ ..
(M,dM + dδ)

gδ
nn

where fδ, gδ, φδ, dδ are given by

dδ = f δΣδr g; fδ = f (1− δΣδr φ); gδ = Σδr g; φδ = Σδr φ;

and Σδr =
∑
i≥0(−1)i (φδ)i.

To obtain an A∞-algebra structure on a small DGM of a contraction, we apply
the so-called tensor trick given in [13] and expressed by the following algorithm:

As initial datum, let (A,µ) be a DGA and let r : {A,M, f, g, φ} be a
contraction.
Form the tensor module contraction on the suspension

Ts(r) : {Ts(A), T s(M), T s(f), T s(g), T s(φ)}.
Using the simplicial differential as a perturbation datam of Ts(r), apply
the BPL and obtain a new contraction

r̃ : {B̄(A), T s(M), f̃ , g̃, φ̃};

where Ts(M) is endowed with a differential d̃ = dTs + dδ. Recall that the
formula of dδ is provided by the BPL.

Finally, the induced A∞-algebra structure on M can be extracted from the
differential d̃. More precisely, since d̃ is a differential, and hence d̃d̃ = 0, we
can construct a family of maps {mi}i≥1 satisfying the A∞-algebra structure
relations in (1). In fact, this strategy produces the following formulas for
the induced A∞-algebra operations mi [15]:

mi = (−1)i+1fµ(1)φ[⊗2]µ(2) · · ·φ[⊗i−1]µ[i−1]g⊗i,
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where µ(k) is some kind of linear extension of the product µ,

µ(k) =
k−1∑
i=0

(−1)i+11⊗i ⊗ µ⊗ 1⊗k−i−1.

It is important to note that if A is a DGA, there are certain conditions under
which a contraction r of A preserves the algebra structure (see [24] for details).
Consequently, an induced A∞-structure on M is in some sense “natural” if we
systematically control all of the data in the contraction r.

Dually, when the initial DGM N in a contraction is a differential graded coalge-
bra, there is an induced A∞-coalgebra structure on M that arises in a completely
analogous way.

3. Open questions

At this moment, there are many unanswered questions related to A-structures;
we list some of them here. First, we consider lines of research related to A∞-
structures induced by a chain contraction of a DG (co)algebra. Following the
pioneering work in [16] and [13], numerous papers considered the problem of com-
puting these strongly homotopy associative structures [14, 15, 2, 6, 3]. An impor-
tant goal in some of these works is to reduce the computational complexity of the
formulas for computing A∞-(co)algebra operations. Whereas this problem seems
to be exponential in nature, the first question that arises is:

Is it possible to compute A∞-(co)algebra operations in polynomial time?

Numerous questions are related to the computation of these operations in a
digital context. In the paper [5], the authors exhibit some experimental results
when computing some low-dimensional operations on the homology of simple 3D
digital images. These operations are potentially the first higher-order operations
in the induced A∞-coalgebra structure given by a contraction of the underlying
simplicial chain complex associated with a given 3D digital image. Thus we ask:

Under what conditions is it possible to compute a “complete” A∞-coalgebra
structure on the homology of a finite cell, cubical or simplicial complex?
For example, are such structures computable for finite complexes with cells
in some range of dimensions?
Are there situations under which the simple-connectivity condition assumed
by HPT can be relaxed? Is there a coherent theory that applies the techniques
of HPT to compute A∞-operations in a non-simply-connected setting?
Can A∞ structures be used to distinguish between non-homotopically equiv-
alent spaces in a digital context?

Answers to these and related questions will allow us to advance the difficult
problem of establishing an algorithm for classifying low dimensional finite cell
complexes up to topological invariants such as connected components, holes or
tunnels, cavities, and so on.

We conclude with some open questions related to A∞-bialgebras.
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In [27], the authors introduce new techniques to compute an induced A∞-
bialgebra structure on homology. Is it possible to apply techniques of classi-
cal HPT to induce an A∞-bialgebra structure on homology and to compute
the induced operations?
In [26], the authors define a diagonal on the associahedron Kn and use
it to define the tensor product of A∞-(co)algebras. Is it possible to use a
tensor product of contractions to reproduce (up to isomorphism) their tensor
product?
In [4] the authors construct algebraic examples of A∞-bialgebra of type
(m,n), which are A∞-bialgebras with exactly one higher order operation
ωnm : H⊗m → H⊗n. Do there exit topological spaces X(m,n) whose homol-
ogy carries an induced A∞-bialgebra of type (m,n)?
As mentioned in the Introduction, if F is a field, H = H∗(ΩX;F ) is nat-
urally endowed with an A∞-bialgebra structure, and over Q, this structure
is well-understood. At the time of this writing, however, the global A∞-
bialgebra structure of H∗((Z, n); Zp) is unknown, although some local results
were obtained in [7]. Thus we ask, how are the A∞-bialgebra operations
ωnm : H⊗m → H⊗n on H∗((Z, n); Zp) defined?
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[3] A. Berciano, M. J. Jiménez, P. Real. On the computation of A∞-maps. Lecture Notes

in Computer Science 4770, 45–57, 2007.
[4] A. Berciano, S. Evans, R. Umble. A∞-bialgebras of type (m,n). Preprint arXiv.908.0674,

2009.
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