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RESUMEN  
En el presente trabajo se hace un estudio teórico con vistas a explicar algunos resultados de la simulación que se realizó 
en el artículo “Sobre la estimación de los parámetros del modelo de clases latentes en condiciones de raleza” (González, 
Sánchez & Hernández, 2002). La herramienta fundamental es la aplicación de resultados acerca de la normalidad 
asintótica de los estimadores máximo verosímiles. 
 
ABSTRACT 
A theoretical study is accomplished in this paper in order to explain some simulation results exposed in the paper “Sobre 
la estimación de los parámetros del modelo de clases latentes en condiciones de raleza” (About the parameter estimation 
of the latent class model under sparseness ) (González, Sánchez & Hernández, 2002). The main tool is the application of 
results concerning asymptotic normality of the maximum likelihood estimators 
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1 INTRODUCTION 
 
In the paper “Sobre la estimación de los parámetros del modelo de clases latentes en condiciones de 
raleza” (About the parameter estimation of the latent class model under sparseness )  by González, 
Sánchez & Hernández (2002) the following latent class model with four (manifest) variables A, B, C, 
and D and two latent classes is considered. Let X be the (unobservable) random variable characterizing 
the latent class and define  
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Suppose that the manifest variables are conditionally independent, then we have for }{ 1,0,,, ∈mlkj  
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are the conditional probabilities. 
 
The estimation of the probability π and of the conditional probabilities by the maximum likelihood 
method leads to highly nonlinear system of equations which can be solved only by iterative procedures.  
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A question arising in this context is what happens when there is some sparseness in the cells of the 
resulting table. In  the above mentioned paper the authors investigated the effect of sparseness on the 
estimation of π and of 1/Ap  by a simulation study. For that purpose different sparseness constellations 
were generated by varying the following four factors: 
 

 Sample size 
 Strength of relation between manifest and latent variables 
 Size of the latent class 
 Noise 

 
On the basis of the simulations empirical versions of the bias and the mean squared error were computed. 
It was observed in the results that for some constellations there was a large number of the so-called 
indeterminate solutions of the estimation procedure. 
 
A program for MatLab 5.3 was written for the generation of data and LEM for MSDOS (Vermunt, 1997)  
was used for the fitting of the latent class model. Por each treatment all th necessary replications were 
generated up to 10 000 fitte models with principal latent class.  
 
The aim of the present paper is to get by some theoretical investigations an explanation for some of the 
simulations results. The main tool to do this is the application of results about the asymptotic normality of 
maximum likelihood estimators.  
 
 
2. MODELS AND MAXIMUM LIKELIHOOD ESTIMATOR 
 
We start our considerations with the correct model, that is: model (1). The unknown (nine dimensional) 
parameter is ϑ  = t

DABA pppp ),,,,,,( 2/2/1/1/ πKK . 

Given the observations ),,,( 4321 iiiii yyyyy = , }{ 1,0∈iqy , ,,,1,4,,1 niq KK ==  the likelihood 
function has the form: 
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and for the log likelihood function we obtain: 
 

),,,,(log)(),(
1

0

1

0

1

0

1

0
mlkjpyHyL

j k l m
jklm∑∑∑∑

= = = =

=ϑ  

where )),,,(,),,,((),( 411411 nnjklm yyyyyyH KKK=  are the cell frequencies, that is: 
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the maximum likelihood estimator (m.l.e.) nϑ̂  is defined by 
 

),(),ˆ( yLyL n ϑϑ ≥  for all ϑ . 
 
Sometimes, this models is not adequate in practice. For example, if answers to questions are given 
randomly or in cases where the same value is added to each cell in order to avoid sparseness. We describe 
such situations by a model with noise; that is: our observations follow the model: 
 

.
16
1)1(),,,(),,,(*),,,( ττ −+====== mlkjpmlkjpmDlCkBjAP                                  (2) 
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Here τ is the parameter of noise, for τ = 1 we get the correct model. In the simulation study τ = 7/8 and 
τ = ¾ were chosen. 
 
3. BEHAVIOR OF THE ESTIMATORS IN THE CORRECT MODEL 
A consequence of the high non-linearity of the likelihood equations is that one cannot compute the bias 
and the variance of the resulting estimators. One possibility to get a deeper insight of the properties of the 
estimator is to investigate its Fisher information matrix (Cox & Hinkley, 1982).  
 
It is known that under weak assumptions on the underlying model for the maximum likelihood the 
following asymptotic result holds (Kendall & Stuart, 1973): 
 

)),(,0()ˆ( 1 ϑϑϑ −⎯→⎯− INn d
n  

where )(1 ϑ−I is the inverse of the Fisher information matrix in model (1). The elements of the Fisher 
information matrix are defined by: 
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Let )(1 ϑ−

rsI be the elements of the inverse of the Fisher information matrix. Then )(1
11

1 ϑ−− In  and 

)(1
99

1 ϑ−− In  can be considered as asymptotic expressions for the variance of the estimator 1
ˆ

nϑ  for 1/Ap  

and 9
ˆ

nϑ  for π , respectively. 
 
The computation of the Fisher information matrices for the parameters used for the simulations yields the 
following results: 
 
3.1 Strong cases 
 
We set 
 

1.0,9.0,1.0,9.0,1.0,9.0,1.0,9.0 2/1/2/1/2/1/2/1/ ======== DDCCBBAA pppppppp  

and 5.0=π  for the symmetric case and 9.0=π for the asymmetric case. 
 
The eigenvalues of ),( symmstrongI are 

2.301,  5.776,  5.556,  5.057,  4.336,  4.626,  4.428,  4.336,  5.556 
and those of ),( asymmstrongI are 

8.409,  9.728,  9.929,  10.626,  0.578,  0.821,  9.728,  0.821 
 
From here we conclude that these matrices are non-singular and we get for the strong symmetric case: 
 

1
11
−I ),( symmstrong = -.2215  and  1

99
−I ),( symmstrong = 0.2846 

 
For the strong asymmetric case we have 
 

1
11
−I ( asymmstrong, ) = 0.1076  and  1

99
−I ( asymmstrong, ) 0.1066. 

 
Thus, we give in the following tables the asymptotic approximations for the variance of the estimators 

1/1 ˆˆ
An p=ϑ  and πϑ ˆˆ

9 =n  in our simulated cases 
 
We see: 
 
1. Since the maximum likelihood estimators are asymptotically unbiased, we can interpret the 
asymptotic expressions for the variance resulting form the approach used as (theoretic) approximations of 
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the MSE. Our results show that the difference between this “theoretic” MSE an the one from the 
simulation is almost zero. 
The variance in the asymmetric case is always a little bit smaller than in the symmetric one. For 
estimating π this corresponds to the well-known fact that the variance of the estimator for the success 
probability in a binomial distribution is maximal if this parameter is 0.5. For estimating 1/Ap  the 
explanation is that in this case we have more information about class 1 than in the case where both classes 
have the same probability. 
2. We see from the inverses of  Fisher matrices that in the symmetric case the variances of the 
estimators for the other components of the parameter vector ϑ  do not differ very much (about 

22.01−n ). It seems to be clear from a heuristical point of view because we have the same information 
from each class and estimating 0.9 or 0.1 leads to the same variance in the binomial distribution. In the 
asymmetric case we see that the parameters 321 ,, ϑϑϑ  and 4ϑ  are estimated with a variance of about 

108.01−n , but the parameters 765 ,, ϑϑϑ  and 8ϑ have variances of about 34.11−n . This is due to the 
fact that π = 0.9 gives only little information about the second class. 
3. Considering variances (resp. MSE’s) it seems that the asymmetric is better, the fact of having 
indeterminate results being a contradiction to this statement. A possible explanation for this phenomenon 
is that we have more sparse cells in this case. This is reflected by the fact that some of the eigenvalues of 
the Fisher matrix are very small (in comparison to the eigenvalues in the symmetric case.) 
 

1/ˆ Ap  
 Asymptotic expression Simulation MSE 

N Symmetric Asymmetric Symmetric Asymmetric 
32 
64 
128 
256 

0.0069 
0.0035 
0.0017 
0.0009 

0.0034 
0.0017 
0.0008 
0.0004 

0.007 
0.004 
0.002 
0.001 

0.004 
0.002 
0.001 
0.000 

Table 1: Asymptotic approximations for the variance of the estimator 1/ˆ Ap  
 
π̂  

 Asymptotic expression Simulation MSE 
N Symmetric Asymmetric Symmetric Asymmetric 
32 
64 
128 
256 

0.0089 
0.0044 
0.0022 
0.0011 

0.0033 
0.0017 
0.0008 
0.0004 

0.008 
0.004 
0.002 
0.001 

0.005 
0.002 
0.001 
0.000 

Table 2: Asymptotic approximations for the variance of the estimator π̂  
 
3.2 Weak cases 
 
We set 1/Ap  = 0.9, 2/Ap  = 0.1, 1/Bp  = 0.9, 2/Bp  = 0.1, 1/Cp  = 0.5, 2/Cp  = 0.5, 1/Dp  = 0.5, 2/Dp  
= 0.5 and π = 0.5 for the symmetric case, and π  = 0.9 for the asymmetric case. 
It turns out that the Fisher information matrices are singular in the weak cases. The computed eigenvalues 
of  ),( symmweakI  are 

-0.4 ×  10-9,  0.7 ×  10-11,  1.30,  1.60,  1.88,  2.05,  4.34,  4.36,  5.56 
that is, without computational errors 

0,  0,  1.30,  1.60,  1.88,  2.05,  4.34,  4.36,  5.56 
and those of I(weak, asymm) 

-0.8 ×  10-9,  0.16 ×  10-9,  10.29,  9.11,  5.70,  2.83,  3.66,  0.29,  0.30 
and 

0,  0,  10.29,  9.11,  5.70,  2.83,  3.66,  0.29,  0.30, 
respectively. 
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In the weak cases the parameters sϑ  are not identifiable. For example, vector ϑ  = (5/42, 2/25, 1/2, 1/2, 
37/42, 23/25, 1/2, 1/2, 1/2) leads to the same cell probabilities as in the weak symmetric case. This 
explains why we have so many indeterminate simulation results in the weak cases. 
What does “weak” mean? In the weak cases we have 
 

5.0)1)(2/()1/()( =−==+==== ππ XlCPXlCPlCP  
 

and the same occurs with 5.0)( ==mDP . 
 
So, the random variables C and D do not depend on X. The model is overparametrized, and the 
conclusion for the practical application is: if one is not convinced that the variables of interest depend on 
a latent class, then it is better to choose another model. 
 
4. BEHAVIOR OF THE ESTIMATORS IN THE NOISE MODEL 
 
We introduce the following notation to handle the noise: *p  is the (15 ×  1)-vector of the cell 
probabilities )1,0,0,0(*,),0,1,1,1(*),1,1,1,1(* ppp KK 1. The corresponding vector of the cell 
probabilities in the correct model is denoted by p. The relationships between p, p* and the parameter ϑ  

are described by the functions [ ] [ ]159 1,01,0: ⎯→⎯ϕ , [ ] [ ]159 1,01,0: ⎯→⎯η : 
 

16
1)()(*),( τϑτϕϑηϑϕ −

+=== pp 1, 

where 1 is the vector consisting of 1’s. Let nh  be the vector of the relative cell frequencies. It is well 
known that (under mild regularity conditions) 
 

                                       ⎯→⎯− d
n phn *)( N ),0( Σ                                                                           (3) 

 
with 
 

⎩
⎨
⎧

≠−
=−

=Σ
utifpp
utifpp

ut

tt
tu **

** 1(

 
 

)15,,1,( K=ut . Since nh  is the m.l.e. for p* the m.l.e. for ϑ , say nϑ̂ , satisfies the equation 
 

)( *
nnh ϑη= . 

Further, under mild conditions, *
nϑ  is consistent and we have 

 

)1()()())()((*)( **
Pnnn onRnphn +−=−=− ϑϑϑϑηϑη .                                                (4) 

Here )(ϑR  is the (15 ×  9)-matrix of partial derivatives 
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at ϑ . On the other hand we have the asymptotic normality of the m.l.e.: 
 
                                           ⎯→⎯− d

nn )( * ϑϑ N ))(,0( 1
* ϑ−I ,                                                            (5) 
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16
*
1 ,,( pp K ) is not considered to avoid singularities. 
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where )(1
* ϑ−I  is the inverse of the Fisher information in model (2), i.e.: 
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Thus, from (3), (4) and (5) it follows that 
 
                                                    )()()( 1

* ϑϑϑ tRIR −=Σ                                                                        (6) 
 
The difference phn −  can be decomposed into 
 

BnZppnphnphn nnn +=−+−=− )*(*)()( . 
 

By (3) the first summand converges in distribution to N ),0( Σ . The second summand is equal to  
 

16
1()1( τ−=B 1 )p− . 

 
Furthermore, by definition of the estimator nϑ̂  we have 
 
             ).1()ˆ()~())()ˆ(()( Pnnn onMnphn +−=−=− ϑϑϑϑϕϑϕ                                     (7) 
 
Here )~(ϑM  is the (15 ×  9)-matrix of partial derivatives 
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at a point ϑ~ , which lies between nϑ̂  and ϑ . Observe that )()( ϑτϑ MR = . So we have 
 
                                      ⎯→⎯−− d

n BnnM )ˆ()~( ϑϑϑ N ),0( Σ .                                                   (8) 
 
Let us assume that we can replace (M ϑ~ ) by )(ϑM (This is a very rough approximation!), then we 
have 
 

BnZnM nn +≈− )ˆ()( ϑϑϑ   

                                   BMnZMnMM t
n

t
n

t )()()ˆ()()( ϑϑϑϑϑϑ +≈−  
 
From this we get as an approximation for the variance of the estimator nϑ̂  
 
    Var nϑ̂  ≈  111 ))()()(()())()(( −−− Σ ϑϑϑϑϑϑ MMMMMMn ttt  

                 = 11
*

11 ))()()(()()()()())()(( −−−− ϑϑϑϑϑϑϑϑϑ MMMRIRMMMn tttt  

                 = 11
*

121 ))()()(()()()()())()(( −−−− ϑϑϑϑϑϑϑϑϑτ MMMMIMMMMn tttt  

                 = )(1
*

21 ϑτ −− In .                                                                                                                       (9) 
 
And as approximation for the bias we get 
: 
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               Bias ( nϑ̂ ) ≈  BMMM tt )())()(( 1 ϑϑϑ −  

                                   = 
16
1()())()()(1( 1 tt MMM ϑϑϑτ −− 1 )p− .                                                (10) 

 
Computing these approximations for the bias in the strong case we get the following results:  
 

8/7,ˆ 1/ =τAp  
Asymptotic expression for Bias  Simulation Bias 
Symmetric Asymmetric n Symmetric Asymmetric 

 
 

-0.0207 

 
 

-0.01147 

32 
64 
128 
256 

0.026 
0.026 
0.027 
0.029 

0.000 
0.009 
0.014 
0.015 

Table 3: Approximation for the bias in the strong case 
 

4/3,ˆ 1/ =τAp  
Asymptotic expression for Bias  Simulation Bias 
Symmetric Asymmetric n Symmetric Asymmetric 

 
 

-0.0413 

 
 

-0.02294 

32 
64 
128 
256 

0.051 
0.054 
0.056 
0.057 

0.008 
0.019 
0.023 
0.024 

 
Table 4: Approximation for the bias in the strong case 4/3,ˆ 1/ =τAp  

 
8/7,ˆ =τπ  

Asymptotic expression for Bias  Simulation Bias 
Symmetric Asymmetric n Symmetric Asymmetric 

 
 

-0.0048 

 
 

-0.0548 

32 
64 
128 
256 

-0.000 
-0.001 
-0.000 
0.001 

0.083 
0.066 
0.058 
0.054 

 
Table 5: Approximation for the bias in the strong case 8/7,ˆ =τπ  

 
4/3,ˆ =τπ  

Asymptotic expression for Bias  Simulation Bias 
Symmetric Asymmetric n Symmetric Asymmetric 

 
 

-0.0095 

 
 

-0.1095 

32 
64 
128 
256 

-0.001 
-0.000 
0.000 
0.001 

0.147 
0.136 
0.133 
0.133 

 
Table 6: Approximation for the bias in the strong case 4/3,ˆ =τπ  

 
Although the agreement between the simulated bias and the approximating term is not so good as in the 
case of the variance in the correct model these results can be interpreted as follows: 
1. It is clear that the bias does not depend on the sample size. Furthermore, if the amount of noise is 
larger, then the bias becomes larger, as it was expected. 
2. Let us consider the estimation of π. In the symmetric cases the bias is very small, almost zero. 
This corresponds heuristically to the fact of the simple binomial model with noise, i.e.: P(Z = 1) = τp + (1 
– τ)/2. In this model the bias of the relative frequency as estimator of p is zero, if p = 0.5 (for all τ.) In our 
more complicated model one can use the following approach: By definition of the m.l.e. the estimators 
satisfy the following condition: 
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3.  
nHp jklm

mlkj
jklm /ˆˆ

,,,
/1∑=π  

where  jklmp /1  = P( ),,,/1 mDlCkBjAX =====  (see: Goodman, 1974), equation (12). Now, 

simplify this equation to get a heuristic explanation and replace jklmp /1ˆ  by jklmp /1 . In this idealized case 
the bias is  
 

E .),,,(*ˆ
,,,

/1 πππ −=− ∑ mlkjpp
mlkj

jklm  

 
Computing this for the parameter constellations 
 

)5.0),1(),1)(1(),1(,,,,( aaaaaaaa −−−−=ϑ  
 

one gets that the bias is zero.  

4. The bias of the estimator for 1/Ap  is in the symmetric cases larger than the bias of the estimator 
for π, in the asymmetric case it is smaller. Further, comparing the simulated bias of the estimator for 

1/Ap  in the symmetric and the asymmetric cases, we see that it is smaller in the asymmetric model. But 
this is also only on the first view, namely in the asymmetric case with noise a large number o simulation 
results are eliminated because of indeterminate results. It is not clear why it is theoretical smaller. It could 
be because M is too rough an approximation.  
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