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Resumen 

Se extienden a un estado superconductor nuestros resultados previamente obtenidos para un 

estado normal en el marco del formalismo Lagrangiano. Se considera la expansión no-

perturbativa a N grande aplicada a un modelo generalizado de Hubbard describiendo N bandas 

degeneradas correlacionadas. Se obtienen la diagramática Feynman del modelo y se calculan y 

analizan las cantidades físicas renormalizadas. Nuestro propósito es obtener la corrección 1/N de 

los propagadores bosónico y fermiónico renormalizados cuando se tiene en cuenta un estado de 

condensación de pares de Cooper. 
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Abstract 
In this paper we extend previous results obtained in the framework of the Lagrangian formalism 

for the normal-state case to the superconducting state. The non-perturbative expansion applied to 

the generalized Hubbard model describing N-fold-degenerate correlated bands for large-N is 

considered. The standard Feynman diagrammatics is obtained and the renormalized physical 

quantities for this model are computed and analyzed. Our purpose is to obtain the 1/N corrections 

to the renormalized boson and fermion propagators for a state with Cooper-pair condensation. 
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1. Introducción   

Many problems concerning the superconductivity of strongly correlated systems within  the  

context  of  the  generalized  Hubbard  model  were  treated  by  using  the decoupled  slave-

boson  representation  (Kotliar and Liu 1988, 5142; Grilli and Kotliar 1990, 1170 and  Tandon, 

Wang and Kotliar 1999, 2046) [1, 2]. In this papers, the generalized Hubbard model describing 

N-fold-degenerate correlated bands in the infinite-U limit by means of the large-N expansion was 

studied. From slave-boson techniques, thus it contributes to the dynamics of fermion, Fermi-

liquid properties of strongly correlated systems were studied. In turn, it is shown  that  the  1/N 

corrections give rise to different superconducting instabilities according  to  the  band  structure  

and  the  filling  factor.  

As it is known, the slave-particle models exhibit a local gauge invariance which is destroyed in 

the mean field approximation. This local gauge invariance has associated a first class constraint 

which is difficult to handle in the path-integral formalism.  

The Hubbard operator representation naturally allows to study the electronic effects (Izyumov 

1997, 445 and Coleman, Hopkinson and Pépin 2001, 140) [3, 4], we have developed a 

Lagrangian formalism whose Lagrangian is written in terms of the Hubbard X-operators. So, the 

field variables are directly the Hubbard X-operators (Foussats, Greco and Zandron 1999, 238; 

Foussats, Greco, Repetto, Zandron and Zandron 2000, 5849; Foussats, Repetto, Zandron and 

Zandron 2002, 1053 and Abecasis and Zandron 2007, 1861) [5, 6, 7, 8].  In this approach, the 

Hubbard X-operators representing the real physical excitations are treated as indivisible objects 

and no decoupling scheme is used.  

   Next, by using the path-integral technique, the correlation generating functional and the 

effective Lagrangian were constructed. This is the quantization of the model by constructing the 

standard Feynman diagrammatics in terms of the Hubbard X-operators.  

Later on, in Ref. [7] the quantization of the t-J model in terms of the Hubbard X-operators for the 

normal state was given. The non-perturbative formalism for the generalized Hubbard model was 

analyzed. This was done by means of a new large-N expansion in the infinite-U limit carried out 

on our Lagrangian formalism for the t-J model. The parameter N represent the number of the 

electronic degrees of freedom per site and 1/N can be considered as a small parameter.  

Thus, defining proper propagators and vertices the standard Feynman diagrammatics of the 

model is given, so, the bosonic and the fermionic self-energies can be renormalized. From these 
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renormalized quantities several physical properties can be evaluated and the results were 

confronted with others previously obtained. The free boson propagator, of order 1/N, is 

renormalized by series of fermionic bubbles whose contributions are also of order 1/N. In relation 

to these problems it is therefore important to take into account previous results for the Hubbard 

model describing dipolar bosons in optical lattices (Liang, Liang and Liu 2003, 436 and Xie and 

Liu 2004, 456) [9, 10].  

The generalized Lagrangian model was checked by explicit computation of charge-charge and 

spin-spin correlation functions (Foussats and Greco 2002, 1951) [11]. The agreement with 

previous results is excellent and gives a strong test of our Lagrangian approach as well as of the 

large-N expansion.  

Using the Dyson equation the renormalized fermionic propagator can be evaluated at order 1/N 

by solving the correspondent equations self-consistently. The self-consistent method of solution 

for the equations involving the dressed fermion propagator, is the usual, such as that one in the 

Hamiltonian formalism for the decoupled slave-boson representation (Grilli and Kotliar 1990, 

1170; Kotliar and Liu 1988, 5142 and Tandon, Wang and Kotliar, 1999, 2046) [12, 13, 14].  

Having shown how our model is useful to describe the normal state i.e, the state in which the 

Cooper-pair amplitude c  ,  c   k k↑ − ↓< >  is zero because of the number conservation.  

The key feature of the frequently used Bardeen-Cooper-Schriefer (BCS) theory is the Cooper-

pair condensation. The simplest model, which permits the description of the superconducting 

state, is given by the BCS reduced Hamiltonian formalism. The BCS integral equation is 

introduced by means of the Gor'kov's method. Next, the superconducting state is incorporated 

into the formalism by using the Nambu matrix notation (Nambu 1960, 648 and Allen and 

Mitrovíc 1982, 1) [15, 16].  

The purpose of the present paper is to make possible the description of the superconducting state 

in the framework of our Lagrangian formalism when the pair of states ( , )k k↑ − ↓ is coherently 

occupied. This is done by introducing the Nambu matrix notation in the new non-perturbative 

large-N expansion for the generalized Hubbard model proposed in Ref. [7].  

The aim is to give the formulas for the renormalized physical quantities, such as self-energies and 

propagators to leading order in 1/N for the superconducting state with Cooper-pair condensation.  

The paper is organized as follows.  In section 2, the main results of sections 2 and 3 of Ref. [7] 

are collected, and the Nambu notation is introduced. Next, by using the Nambu matrix notation 
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the Feynman diagrammatics is analyzed up to one loop. In section 3, by using the resulting 

expression, the 1/N correction to the total fermion self-energy for both the normal and the 

superconducting states are evaluated. The conclusions are given in section 4. 

2. Nambu notation: Definitions and Diagrammatics 

For the slave-boson representation for the generalized Hubbard model describing N-fold-

degenerate correlated bands, the non-perturbative large-N expansion technique is used routinely, 

Refs. [12,13,14]. Also the large-N expansion was used in functional theories written in terms of 

the X-operators (Zeyher and Kulíc 1996, 2850 and Zeyher and Greco 1998, 473) [17, 18], and 

was shown that in order 1/N the method gives different results for superconductivity. 

By using our Lagrangian model written in the framework of the path-integral formalism a new 

non-perturbative large N-expansion was proposed, Ref. [7]. The generalized Hubbard model is 

described by means of the introduction of a set of fermion field ipf , in such a way that their 

proportionality with the fermion-like Hubbard 0 p
iX operators is maintained for all order in the 

large-N expansion. Looking at the Lagrangian equation (2.17) of Ref. [7], we see that it is 

sufficient to retain terms up to order 2
iRδ to take into account all the terms of order 1/N. Thus the 

Lagrangian is written: 
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In Ref. [7] is proved that our Lagrangian formalism for the t-J model is a second-class 

constrained system. The physical quantities such as propagators and vertices were renormalized 

by means of the introduction of proper ghost fields. Therefore in the present paper we assume 

that all the physical quantities we must handle were previously renormalized. 

Thus we can easily construct the diagrammatics from the Lagrangian (1) in the U-infinite limit 

( 0)ijJ = . 

Taking into account the superconducting state, the renormalized fermion propagator ( )
ˆ

DG  is a 2x2 

matrix schematically written: 

 

where the diagonal elements with the two arrows pointing in the same direction are the normal 

fermionic propagators, while the non-diagonal elements with the two arrows pointing in the 

opposite direction are the anomalous fermionic propagators. 

Introduce the Nambu matrix notation is a simple way of describing the fermionic sector when the 

complete fermionic propagator is of the form (2), Ref. [15]. In this notation the two-component 

fermionic field operator ( , )im x τΨ is given by: 

 

The Lagrangian (1) in terms of the field operator ( , )im x τΨ  is written: 
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where we have named '
0μ μ λ= − . 

We can see from the equation (4) that the bosonic sector (third term) described by the two field 

components ( , )i iRδ δλ remains unchanged, and the fermionic sector (first, second and fourth 

terms) was written by using the 2x2 Pauli matrices I and 3τ . Therefore, to describe non-diagonal 

quantities that appear in the fermionic propagator when considering the superconducting state, 

the four Pauli matrices are introduced. 
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The two-component fermionic field operator (3) in the momentum space reads: 

 

and  

 

Using the previous notation, we study the diagrammatics for both normal and superconducting 

states with the objetive to find the equation for the total fermion self-energy and hence to write 

the renormalized fermion propagators to leading order of large-N expansion. 

The Feynman rules and the diagrammatics can be obtained, and compute the 1/N corrections to 

the propagators, we will study the structure of the model to one loop. 

The equations are written in the momentum space, and so once the Fourier transformation was 

performed, the bilinear parts of the Lagrangian (4) give rise to the field propagators and the 

remaining pieces are represented by vertices. 

The boson sector remains unchanged, and the free boson propagator associated with the two 

component boson field ( , )aX Rδ δ δλ= , is of order 1/N and it is written: 

 

where the quantities q and nω  are respectively the momentum and the Matsubara frequency of 

the bosonic field. 
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We wear the free propagator (11) using the Dyson equation ( ) ( ) 11 ( )
( )

Ren
ab o ab abD D

−− = −Π . In Ref. 

[7], equations (4.4) and (4.5), the boson self-energy and the dressed components 

( , ) , ( , )RR n R nD q D qλω ω and ( , )nD qλλ ω of the matricial boson propagator were found. 

The renormalized boson propagator we found is the suitable one that permits us to evaluate for 

instance the 1/N correction to the fermion self-energy. 

It is important to note that when only the normal state is considered, our diagrammatics was 

checked by computing numerically the charge-charge and spin-spin correlation functions on the 

square lattice for nearest-neighbor hopping t, Ref. [11]. The results are in agreement with 

previous ones arising from the slave-boson model as well as from the functional X-operators 

canonical approach (Gehlhoff and Zeyher 1965, 4635 and Wang 1992, 155) [19, 20]. 

The bilinear fermionic part of the Lagrangian (4) in the momentum space reads: 

 
 
where the 2x2 matrix ( ) 1

(0)Ĝ
−

 is given by: 

 
 
and whose determinant is written: 

 
 
where was defined 0 exp( )k I

r t iI kε = − − ⋅∑ ; and I is the lattice vector. 
 

The quantities k and nν are respectively the momentum and the Matsubara frequency of the 

fermionic field. 
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Therefore the free fermion propagator (0)Ĝ  is: 

 
 
where we call ( )k kε μΔ = − , having the property k kΔ = −Δ . From this property it can be seen 

that: 

 

For noninteracting band electrons, the off-diagonal elements in (2) vanish, and the element (0)11G  

has the usual scalar form ( ) 1
n kiν −− − Δ , Ref. [7]. 

The matrix equation (15) in terms of the Pauli matrices can be written: 

 

Examining the equation (4) it can be seen that the three-leg (one boson-two fermions) and four-

leg (two bosons-two fermions) vertices, are respectively originated by the following pieces of 

that Lagrangian: 

 
 
 
 
 
 
 
 
 
 
                                                                                                                                        (18) 
 



Zandron, O. 

Revista Electrónica Nova Scientia, Nº 4 Vol. 2 (2), 2010. ISSN: . pp: 77 - 92 
- 87 - 

 
 

 

 

 

 

 

Therefore the vertices can be written: 

 

Thus, the Feynman diagrammatics the expression for the 1/N correction to the fermion self-

energy for the normal and the superconducting states can be written. 

3. The fermion self-energy for the normal and the superconducting states, 1/N 
correction 
 
In the introduction it was mentioned that the simplest model suitable to describe the 

superconducting state is given by the BCS reduced Hamiltonian formalism. In the normal state 

such formalism reduces to Migdal's theory whose essence is to use only the lowest order 

Feynman diagram provided by the reduced Hamiltonian (Bardeen, Cooper and Schrieffer 1957, 

1175) [21]. 

In this model the total fermion self-energy Σ for the normal state is given by the sum of 

contributions corresponding to the following two one-loop diagrams: 

 
                                     



Non perturbative expansion for the Generalized Hubbard Model 

Revista Electrónica Nova Scientia, Nº 4 Vol. 2 (2), 2010. ISSN: . pp: 77 – 92 
- 88 -                                            

In the Nambu matrix notation the matrices (1)Σ̂  and (2)Σ̂  respectively are written: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above equations the 1/N correction to the fermion self-energy can be computed, Ref. 

[13]. 

Alternatively the matrices (1)Σ̂  and (2)Σ̂  can be written: 

where: 
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Therefore, for the normal state the total fermion self-energy is a diagonal matrix which in terms 

of the Pauli matrices can be explicitly written as follows: 

 

The fermionic dressed propagator is defined by means of the Dyson equation:  

( ) ( )1 1

( ) (0)
ˆ ˆ ˆ( , ) ( , ) ( , )D n n nG k i G k i k iν ν ν

− −
= −Σ . 

The above equations are suitable to describe the leading 1/N corrections for the normal state in 

the generalized Hubbard model describing N-fold-degenerate correlated bands in the infinite-U 

limit. They were obtained by means of a new non-perturbative large-N expansion in the 

framework of our Lagrangian model. 

Now the superconducting state must be incorporated. By looking at the expression of the 

fermionic self-energy (equation (32)) we assume that the most general form to write the total self-

energy in terms of the Pauli matrices is: 

 

where Z, χ , φ  and φ are four independent arbitrary functions. 
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When the superconducting state is taken into account the "anomalous" dressed fermionic 

propagator also is determined by the Dyson equation, consequently: 

 

 
This matrix can be inverted, and it results: 

 
where: 
 

 
It is clear that the Dyson perturbation series for the matrix ( )

ˆ
DG  turns out to be identical to that 

for ( )DG . The only difference is that ( )
ˆ

DG is a matrix and that factors of the Pauli matrices are 

attached in the interaction matrix elements. 

Since in the normal state the fermionic propagator ( )
ˆ

DG is diagonal, it is clear that the both 

arbitrary functions φ  and φ  must vanish. The arbitrary functions Z and χ  are univocally 

determined by the normal state, and in order to verify the property (16) both quantities must be 

even functions of niν . The "normal" solution 0φ φ= =  always exists. So, the functions Z and χ  

in the normal state remain defined by the following equations: 
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where it was assumed that everything is even in the momentum k. 

Furthermore we assume that the property (16) is maintained in the superconducting state, and so 

is necessary that 2 2φ φ+ must be also an even function in niν . Moreover, it is possible to see that 

φ  and φ  satisfy identical nonlinear equations. Consequently, except a proportionality factor 

(phase factor) both functions must be equals. When a solution ( ),φ φ with one or both functions 

different from zero exists, it is possible to show that it describes the state with Cooper-pair 

condensation (the superconducting state) (Bardeen and Stephen 1964, 1485) [22]. 

The simplest solution is to take 0φ ≠  and 0φ =  corresponding to fix the phase factor. This is 

possible because the physical observables cannot depend of this phase. This choice is equivalent 

to write the self-energy in terms of the real Pauli matrices. 

As it occurs in the normal-state case, the equation for the total fermionic self-energy must be 

solved self-consistently by using the equation (34). As it is usual the explicit computation is 

carried out by introducing the spectral representation of the boson propagator. 

Conclusions 

The BCS theory is the model capable to describe the superconducting state. The Cooper-pair 

amplitude c  ,  c   k k↑ − ↓< >  which is zero in the normal-state due to the number conservation 

becomes finite bellow Tc. An important feature of BCS theory is the Cooper-pair condensation, 

in this approach the pair of states ( , )k k↑ − ↓ is occupied coherently. The simplest model which 

permits such behavior is the BCS reduced Hamiltonian model. 

A Lagrangian family that can be mapped in the slave-boson representation was previously 

studied, Ref. [7]. In the case of the normal-state the nonperturbative formalism for the 

generalized Hubbard model by using a new large-N expansion in the infinite-U limit was given. 

The standard Feynman diagrammatics was constructed, in order to compute the 1/N correction to 

the boson propagator. The structure of the model was examined in detail up to one loop. The 

renormalized boson propagator we found is the suitable one that permits us to evaluate the 1/N 

correction to the fermion self-energy. In the normal-state case, the diagrammatics was checked by 

computing numerically the charge-charge and spin-spin correlation functions on the square lattice 

for nearest-neighbor hopping t. The results obtained in Ref. [11] are in agreement with previous 
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one arising from the slave-boson model as well as from the functional X-operators canonical 

approach. 

In the present paper, by using the Nambu matrix notation we have rewritten the Lagrangian for 

the t-J model and the Feynman diagrammatics was constructed but now taking into account the 

superconducting state. In this situation propagators and vertices were again evaluated. The 

renormalized physical quantities to leading order in 1/N were computed, and the equation for the 

total fermion self-energy which must be solved self-consistently was found. So, we have given 

the theoretical framework suitable to describe the superconducting state in the Lagrangian 

formalism for the generalized Hubbard model. 
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