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ON UNIQUENESS OF EQUILIBRIUM FOR COMPLETE
MARKETS WITH INFINITELY MANY GOODS AND
IN FINANCE MODELS*

ELvio AcCINELLI

Abstract

Our concern in this paper is to obtain conditions for the uniqueness of equilib-
ria, with commodity bundles as consumption patterns which depend on the state
of the world.

In the first section we consider an economy with complete markets, where con-
sumption spaces are a finite product of measurable function spaces, with sepa-
rable and proper utility functions and with strictly positive endowments. Using
the excess utility function the infinite dimensional problem stated above is re-
duced to a finite dimensional one. We obtain local uniqueness. The degree theory
and specially the Poincaré-Hopf theorem applied to this excess utility function,
allow us to characterize the cardinality of the equilibrium set, and we find con-
ditions for the global unigqueness of this set.

On the other hand, we obtain conditions for the uniqueness in economies with
incomplete markets and only one good available in each state of the world.
When markets are incomplete, equilibrium allocations are typically not Pareto
efficient; then the results obtained in section 1, cannot be generalized here.
Nevertheless we show that for the single consumption good case the first wel-
fare theorem is satisfied, and then conditions for the unigqueness of equilibrium
can be obtained as a straightforward extension of our results shown in the first
section. This is a particular simple case on incomplete markets but, is a very
important one on finance theory.

Resumen

Nuestro objetivo en este trabajo es obtener condiciones para la unicidad del
equilibrio, con canastas de bienes como patrones de consumo que dependen
del estado del mundo.

En la primera seccidn consideramos una economia con mercados completos,
donde los espacios de consumo son un producto finito de espacios funcionales
medibles, con funciones de utilidad bien comportadas v separables y con
dotaciones estrictamente positivas. Usando la funcién de exceso de utilidad, el
problema de dimensidn infinita establecido anteriormente, se reduce a una de
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dimensiones finitas. Obtenemos unicidad local. La Teoria de Grado y especial-
mente el teorema de Poincaré-Hopf aplicado a esta funcidn de exceso de utilidad
nos permite caracterizar la cardinalidad del con junto de equilibrio. Ademds
encontramos condiciones para la unicidad global de este conjunto.

Por otra parte, obtenemos condiciones para la unicidad en economias con
mercados incompletos y con un solo bien disponible en cada estado del mundo.
Cuando los mercados son incompletos las asignaciones de equilibrio tipicamente
no son Pareto eficientes. Luego, los resultados obtenidos en la seccidn | no se
pueden generalizar aqui. Sin embargo, mostramos que para el caso de un solo
bien de consumo el Primer Teorema del Bienestar se cumple y entonces se
pueden obtener condiciones para la unicidad del equilibrio como extensiones
directas de los resultados de la primera seccion.

Este es un caso particular simple de mercados incompletos. Sin embargo, es un
caso muy importante en teoria financiera.

1. INTRODUCTION

The first four sections of the paper concern exchange economies in which
each agent's utility depends both upon his consumption vector and the realiza-
tion of the world. Both trades and prices can be state contingent. A Walrasian
equilibrium thus consists of a pair of measurable mappings (p, x) defined on the
probability space €2 whose elements are the states of the world, where p(-) speci-
fies the prices and x(-) specifies the net trades as function of the state. The main
problem addressed in the first part of the paper concerns the nature of the set of
equilibria of such an economy. This is complicated by the fact that the set of
states can be infinite, which is the sense in which the paper considers an infinite
number of goods. In the more elementary case in which there is not uncertainty
(i.c., the state of the world is fixed), a Walrasian equilibrium is given by the
solutions of &(p) = 0, where £(-) is the excess demand function and p is the
vector of prices. Here, however, p(-) is a measurable mapping on a probability
space, and so to obtain a solution for the equation £(p) = 0 is nontrivial. More-
over, the existence of the excess demand function is not a necessary conse-
quence of a maximization process, its existence is rare in infinite dimensional
cases.

In this paper we introduce the excess utility fi unction to characterize the
equilibrium set, showing that it is a powerful tool in order to characterize the
equilibrium set. In this sense, the excess utility function appears as good substi-
tute in infinite dimensional economies, for the generally inexistent, excess de-
mand function.

On the other hand the excess utility function allows us 1o obtain a structural
relation between the vector of welfare weights, the equilibrium prices and en-
dowments. It follows, as we will show, from the fact that there exists an one-10-
one correspondence between the zeros of the excess utility function and the set
of Walrasian equilibria. .

The excess utility function is definite on the n—/ dimensional simplex, and
interpreting each element of this simplex as a vector of welfare weights, the
weighted sum of the expected utilities of the agents, is maximized subject to the
resource constraint at some particular state contingent allocation x(5). The so-
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lution to this constrained optimization problem determines implicit prices p(s)
(i.e., the Lagrange multipliers at the solution x(s)). The excess utility function
e(-) calculates, for each vector of welfare weights A, the budget deficit of each
of the n traders at the solution x(s) to the constrained optimization problem.
This budget deficit is calculated using the implicit prices p(s) determined by
the solution x(s) and A. The Pareto optimality of a Walrasian equilibrium is then
invoked to establish that the set of Walrasian equilibrium is in one-to-one corre-
spondence with the solutions of the equation e(L) = 0.

Note that, the aggregate utility function depends on the weighting, A, and it
will be affected when we change their relative magnitudes. Each coordinate of
a vector of welfare weights that is a zero of the excess utility function, will be
determined by the distribution of initial endowments of individuals. Then the
prices in the economy will be affected by the distribution of initial endowments
across individuals. In this way we obtain the above mentioned structural rela-
tion. On this subject, G. Becker says “In decentralized economies like our owWn,
families, governments, and other organizations influence what to produce...
There is a kind of proportional representation in which the influence of each
person is not fixed nor shared equally. but is strictly proportional to his com-
mand over resources. Influence is exerted by offering to exchange these re-
sources for the goods and services that are desired” [Becker (71)].

On the other hand, this approach allows us to reduce an infinite dimensional
problem to a finite dimensional one. It is shown in lemma 2, that the excess
utility function &£(-) has some of the useful properties that the excess demand
function &(-) exhibits when there is a single state.

The excess utility function was introduced in [Mas-Colell (85)], (Ch.5, P.174),
it is proved that the excess utility function in the finite dimensional case, has the
same properties of the excess demand function. In [Mas-Colell (91)], Proposi-
tion 1, it is proved that the set of zeros for the excess utility function is generi-
cally finite. In this paper, for the infinite dimensional case, from the excess
utility function we prove that generically, in the conditions of the model (see
section 1) the set of Walrasian equilibria is not empty and that the excess de-
mand function is a vector function in the conditions of the Poincaré-Hopf theo-
rem, then we obtain conditions for uniqueness of equilibrium.

Note that while the not existence of the demand function is not a serious
obstacle for the study of the existence of equilibrium, it is a serious one for the
knowledge of the cardinality (and uniqueness) of the equilibrium set. Qur result
generalizes one of Dana, [Dana (93)]. In this work, R. A. Dana obtains a first
result on uniqueness for economies with one good in each state of the world,
with infinitely many states. Our result concerns a finite number of goods in
each state of the world, and allows to use some of well know topological argu-
ments to argue that the set of Walrasian equilibria in infinite dimensional case,
with separable utilities, has the local uniqueness property, moreover it is ge-
nerically finite, and we obtain some sufficient conditions for its uniqueness.

Finally we extend this analysis for the incomplete markets in the special
case of one commodity and J assets. In this case the Walrasian equilibrium is
Pareto optimal. This is a particular simple case on incomplete markets but, it is
a very important one on finance theory. In the general case of incomplete mar-
kets, a Walrasian equilibrium need not be a Pareto optimal.
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2. TueE MobpEL

We shall consider a pure exchange economy with uncertainty in the states
of the world Q. We shall treat uncertainty as a probability space (£2, A, v), where
A is the © — algebra of subsets of € that are events, and v a probability mea-
sure. In each state of the world, there are / commodities available for consump-
tion and n agents.

We assume that each agent has the same consumption space, M =TT, M,
where M f is the space of all positive measurable f unctions defined on (£2, A, v).

Let A denote the set of functions A: R, — R satisfying:

« his C2on R, i.c.hhassecond derivatives on R|, = {x £R' with all com-
ponent positive } and one-sided second derivatives on Ri_, / R!, , and these
are continuous,

- h(x)=O0forallxe R./R,,,

= 5 Fh(x)

 hisdifferentially monotonic on R, i.e 9h(x)Z0(i.e
forallx e R ; i

20f=1,2,ud)

« his differentially strictly concave on R., ie.forallxe R' . the Hessian
matrix of second partial derivatives of A is negative definite and

= h satisfies the * ’ infinite marginal utility condition at zero, i.e. the limit of
| @h(x) | is infinite, when x approaches to the boundary of Rih i.e: the set
B={x:x,=0forsomei=1,...,n}.

Let i be the set of all measurable functions U: Q X R,, — R, such that
U(s, -) e A foreachse .

Forx,ye Rlwewillx2yifx,2y;i=1...,and we will write x> yif x;, 2y,
i=]...land x=y.

Definition 1 A function u is strictly monotone if x > y = u(x) > u(y).

We introduce in U the norm
U, = ess sup max {IU(s, 2)| + 19U(s, 2)! + IFU(s, 2)I}.
£ ﬂ e K

for any compact K < RL .
Each agent is characterized by his utility function u, and by his endowment
w,e M, i={1,2,...,n}, satisfying the following additional conditions:

a) The utility functions u,: M — R are separable. This means that they can be
represented by

(1) u;(x) = jnu,. (s, x(s) dv(s) i=1,.,n

where foreachi=1,2,...,n, U: QX R_f,_,_ — R belongs to a fixed compact
set of A and
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b) for each s € € the functions U (s,-)" belong to U.

c) The agent endowments, w, € M are bounded away from zero in any compo-
nent, i.e. there exists, h and H two positive numbers such that, h < wﬁ(s) <H
foreachj=1...lL, and s e .

An economy £ is a list («, w), i € I, where / is a set of agents or traders (in
aurcase F=11.2, .« B
The following definitions are standard.

Definition 2 An allocation of commodities is a list x = (x,, ..., x ) where
x: 82— R" and T]_,; x; (5) < Z}_, w, (5),fora.es. € Q.

Definition 3 A commodity price system is a measurable function p: £2 — RE..
For any z: £2 — R' we denote by <p, z> the real numbﬂ*rfﬂpq"s,lz{ﬂdu{s). (Note
that p(s)z(s) is the Euclidean inner product in R'.)

The following definition is given in [Mas-Colell (91)]:

Definition 4 The pair (p, x) is an equilibrium if:

1) p is a commodity price system and x is an allocation,
i) <p,x>< <p,w><e=Vie (1, .., n}

iii) if <p, z> < <p, w> withz: Q@ — R, then

Jo U(s,x;(sNdv(s) = JqU(s,z(s)dv(s) ¥V i € {l,...n}

That is there is not an alternative allocation z superior in the sense that is
feasible, i.e. T7_, z; (s)< i, w; (5) and u(2) = u(x), i=1,2, ..., n with strictly
inequality for some i.

3. Tue Excess UtiLity FuNncTION

In order to obtain our results we introduce the excess utility function.
We begin by writing the following well known proposition, see [Kehoe (91)]:

Proposition 1 For each A in the (n—1) dimensional open simplex, A"' =
{(Ae R!.;3A =1}and U,e A, there exists T(A) = {%;(A),....X,(A)} € R, a
Pareto efficient solution of the following problem:

max.__om Z AU (x;)
(2} e

subject to Z,;x; = Z,w; and x; = 0.

If U, depend alsoons € Q,and Ufs,-) € Aforeachse Q, andA e A1
there exists X(s, A) = X,(s, A),..., X, (s, A) solution of the following problem:
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(3) maxxis,JER" Eiliu.‘f-ﬂ x;(s5))
Subj&l to Z,-,xr-f.S'J ,'E Eiw’.(sj and x‘r(.f) 2 U+

If ¥/ (s, A) are the Lagrange multipliers of the problem @).je {1;.+:1),
then from the first order conditions we have:
t ax;
Remark 1 Due to the “infinite marginal wtility” condition at zero, the solution

of (3) must be strictly positive almost everywhere. Since U(s,=) is a monotone
function, we can deduce that Zi_; X; (5) = =2, w; (s5)

=+vyi(s,\) withie {1,...n}andje {1....1}.

Let us now define the excess utility function.
Definition 5 Let x(s, L) € {1,...,n)} be asolution of (3).

We say that e: A™! — R" e(L) = (¢,(R), ..., e, (M), with

1 .
(4) e;(A) = 5% [ny(s,z.}[xi(s.).}-w,.(s}] dv(s), i=1 ..., n

is the excess utility function.

Remark 2 Since the solution of (3) is homogeneous of degree zero: i.e,
% (s, A) =X (5, aA) for any o > 0, then we can consider e, defined all over
R, by e(oA) = e (A) for all Ae ﬁf_:’, a>0.

4. EQUuILIBRIUM AND THE EXCESS UriLity FuNCTION

ForA={ A, Ay ... A} € RY, let us consider the following problem:

max,. Mz;zﬂi .’ﬂ U,’ (s, X; (s5)) dv (s)

5
= subject to X, x;(s) < Z,w;(s) and x;(s) 2 0.

It is a well known proposition, [Mas-Colell (91)] that an allocation X, is
Pareto optimal if and only if we can choose a A ., such that X solves the above
problem with A = 71 . Moreover, since a consumer with zero social weight re-
ceive nothing of value at a solution of this problem, we have that if X is a
strictly positive allocation, thatis { X & R'.} , all consumption has a positive
social weight. See for instance [Kehoe (91)]. Reciprocally if A is in the interior

of the simplex, then from remark (1) the solution x(., A) of (6) is a strictly
positive Pareto optimal allocation, [Kehoe (91)]).
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The first theorem of welfare establishes that every equilibrium alloca-
tion is Pareto optimal. In our setting this theorem holds. To see this, suppose
that there exists a feasible allocation z that Pareto dominates the equilibrium
allocation x. As the equilibrium price p, is nonnegative for all s € Q'it follows
that <p, z>2<p, w> foralli =1, 2, ..., n, and strictly for some of them. It

follows that < p, 2., z;> > <p, Z_, w;> (*). As z is a feasible allocation,
<p.X_, z;>=< <p, X, w;>, holds, contrary to (*).

Let X be an equilibrium allocation, then there exists a A such that
R {E, Sherl } : 2 — R", is a solution for the problem (6).

In the conditions of our model, the first order conditions either for problem
(6) or for (3) are the same. Then if a pair (p, X) is an price-allocation equilib-

rium, there exists a A such that x(5)=X(s, I}; solves (6) and p(s) = y(s, I).
solves (4) for a.e.s € ).
Moreover we have the following proposition:

Proposition 2 A pair (p, X) is an equilibrium, if and only if there exists A e
A" such that X(s) = X(s, I)so!ves (6) and p(s) = y(s, i}, solves (4) fora.e.s
and e[I) = .

Proof: Suppose that x(-, 5:} solves (6) and y(s, I} solves (4), then e(A) = 0.
Because X is Pareto optimal and from the strictly concavity of each iy £=1,2, . R
there is not a feasible allocation z such that u(z)Zu(x)and<p, z>=<p, w>

for all consumer. Then the pair (p, ¥), with p = Y(v,i'_n.} and X=x(-, I}, is an
equilibrium. Reciprocally, if (p, X) is an equilibrium, then form the first wel-

fare theorem, there exists A € A”"~! such that X is a solution for (6). Since p is
an equilibrium price, it is a support for x, i.e. if for some x we have that ulx) =
u{x),1=1{1, .., n}, strictly for some i, then <, x> > <p, w> and from the

first order conditions we have that: p(s) = ¥( 7. 5). Then e( I} =0.
Letbe s7, ={AeR": AP=3" 22 =1, 2,) o}

From remark 2, with o = , we can consider e defined on S, .

1
We give now the definition of the equilibrium set.
Definition 6 We say that A is an equilibrium for the economy if A € E, where

E={Ae S, :e(A)=0}. The set E will be called, the equilibrium set of the
economy.
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A pair formed by a utility function and an endowment will be called a char-
acteristic.

We will endow the set of characteristics C = U X M with the topology gen-
erated by the norm:

“(U will, = (U)h +|w]| = ess sup max (qul+ |8U|+|82U|+[lw(s)l}
sefd

Let I" be the set of economies with characteristics in C such that zero is a
regular value of its excess utility function. That is, for any A such that e(A) =
we have that rank of the Jacobian of e()), is n—1, i.e: rankJ[e(A)] = n—1, from
[Mas-Colell (91)], we know that T" is open and dense in the set of economies.
From now on we will work with economies in T".

Letbe T,S], = {i eR":MA=0, A € SL}, and I, the orthogonal pro-
jection from R" onto T, S7,. Since whenever e(A) = 0, J[ e(x)] maps 7S],
into Ti.S‘L (to verify it differentiate Ae(A) = 0), if Ais a regular value, J[e( i)]

maps T;S7 7!, onto TESL':’, Its determinant is equal to the determinant of the
following matrix, (see [Mas-Colell (85)] B.5.2):

[I‘[- e{?..)]] [.n:e{:-.n E]

Since HEJ[e@:)] is an isomorphism from Ti.'.‘u‘ﬂ;' onto TxSf:'. its determinant
1S not zero.

We will put sign J(e(L)) = +1(~1) according to whether det[I1,J(e(\)] >
0(<0).

We may now state our main result:

Theorem 1 Consider an economy in T" with infinitely dimensional consump-
tion set, differentiable strictly convex proper and separable utilities functions
and satisfying the conditions a), b), ¢) in section (1,1), then:

(1) The cardinaliry of E is finite and odd,

(2) If sign J(e()\)) is constant in E, there exists an unique equilibrium, where
J(e(\)) denotes the Jacobian of the excess utility function.

The main tool that will be used to prove theorem 1, is the Poincaré Hopf
theorem.
Let us recall it.
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Poincaré Hopf theorem. Let N be a compact n-dimensional C' manifold
with boundary and f a continuous vector field on N. Suppose that:

(i) f points outward at 8 N [this means that f (x) g (x) > 0 for all x € 8 N, where
g is the Gauss map'] and

(ii) f has a finite number of zeros.

then the sum of the indices of f at the different zeros equals the Euler character-

istic of N.

For the definition of index of fat x (zero of f) and the Euler characteristic of
N, see [Mas-Colell (85)].
We need, also, the following lemmas:

Lemma 1 The excess utility function is C'.
Proof: The lemma follows immediately from the following assertion: The

Lagrange multiplier ¥ (s, ) and the Pareto optimal allocation x(s, \) are C'
with respect to A. Let us consider the following system of equations:

AU (s, x (s, M) =7 (s, A)
z:zl.x:j (s, A)= 2:;- w, (5).

From the implicit function theorem, taking derivatives in the above system,
with respect to x and y, we obtain a matrix with the following form:

(6)

A 8
M=[3 0]
: : = : Ik aEUII
where A is a (nl) X (nl) matrix; and B is a (nl) X l matrix; and U]" = i
dx’dx
[ L |
7 TR il 0
: : . 0
gt e oo 0
A= o - g = 0
: UrI:I g U-Irll
& 0 O 0 = 2w gl 4

I Recall that if N is a closed C* n-dimensional manifold with boundary, then we can define
a C' function g from the boundary of M into §"~!, called the Gauss map, see [Mas-Colell
(85)].
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and
F 1 0 0 9
|3 S 0
i Q.9 1
gl @ ALY 0
Q. 0
A 0 D |

That is B is a (nl) X [ matrix

We claim that there is no vector z = (v, w) # 0 withv € R" and w € R' such
that Mz = 0.

Indeed, if v is such that Mz = 0, then

@) B'v=0
and
(8) Av + Bw =0,

Then from (8) and (9), we have that
2) ViAv=0

If v is in the kernel of B then

Vi > vh! + sk ; v{»—l}hl =0
Vy b Vs e F Ve =0
v, + vy + o+ v, = 0.
Observe that
"
D AU =

ol ol aU ol au aU
?" lf l!-"! —L "'t?‘- "r lr "1"'|. ?er - =
{ k a'.x, ll ax; }‘-I : a'.x] f axz . 8'1, }

={¥1s Y2oros Yioross Yoo Yzoroos Yisots V1o Y2uuros Vi
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Then

(1) B{ZHU"}.V =YW TV FaF Ve i Y YO ) =0,

=l

From (8), (9) and the strictly differentiable convexity of ZLI AU we de-

duce that v = 0.

The since B is a injective matrix, from (6) w = 0. We have that z =0, proving
our claim.

From the claim and the fact that (U.,(s, -), is in a compact set of A, the lemma
follows.

Lemma 2 The excess utility function has the following properties:

1) e(Xr) is homogeneous of degree zero;

2) Ae(A)=0,VA e R",;
3) there exists k € R such that e(A) << k1, where 1 =(1,1,1..., 1) & R".
4) fle@)| = ccas L; >0 forany je {1, ....n} and A € A" ;

5) Let e : 8" — R" for economies in T, and A e E rank J[e("?:}] =n-1ie.
maps T3S, onto TS,
Proof: Property 1) follows from remark 2. Property 2) follows from remark
2), and definition 7). Property 5), that, whenever e{i) = 0, J[e(I}] maps into
75" is a general property of the vector field, [Mas-Colell (85)]. An economy

is regular if and only if 735" maps onto 7:-5". This property identifies de con-

cept of regularity with the non nullity of determinants.
To prove poverty 3), note that from equation (2) we can write

ei(A)= Iﬂ ol (s, .r,-(?n.))[x,—(s, A)— w:-(s}]dv{s),
From the concavity of U, it follows that:
U; (5, x;(N) = U;(s,w;(5)) = U (s, x;(5, 1)) (x;(5, L) — w;(5)).

Therefore,

e (L) = _[n Ui(s,x; (X)) — U;(w,;(s))dv(s) < J’nu(z wj{s})dv{s}, Y A.

i=1
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If we let

k; =jﬂu,{g w,.(s}]du(s) and k = sup k.

15isn

Hence, property 3) follows.

To see property 4) recall that y(s, A) > 0 and that a consumer with zero social
weight receive nothing of value. Then, since endowments are strictly positive
and x, (s, +) is a continuous function (see lemma 1), the property follows.

We can now prove the following lemma:

Lemma 3: The excess utility function is an outward pointing vector field at the
boundary of S...

Proof: From property 2 of lemma 2 it follows that e(A) € 4 e
To prove that e(A) is an outward pointing vector field, let us now define z;

= . e,(A")
- = _l.lmas:, n;(l'")i'

By Property 3 of Lemma 2, we know that e,(A™) is uniformly bounded above,
and because lle(A)l — o= (Property 4 of Lemma 2). the limit of e,(}\.""}fle{?..’")l
must be non-positive. Then we conclude that z; <0.

Furthermore, z; could be different from zero only if A, were zero. This
follows from the fact that if A, is different from zero, then we can write

;, Zej():“)z—ﬁ'-.

n
i Jj=l :""'r

Ef(?&m } —

Letting k&’ = —kn /A7, we have that k° = e;(A") < k. Hence z;=0.

Strictly speaking, we have proved that we have a continuous outward point-

ing vector field for almost any point in the boundary of 57;'. The excess utility
function has properties similar to those of the excess demand function. Mas-
Colell (1985) proves that for excess demand functions there is an homotopic
cward vector field for all points of the boundary S)7'. In our case, with an

analogous proof, we can obtain an homotopic outward vector field for excess
utility functions.
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Proof of Theorem 1

Since S}7' is homeomorphic to the (n1—1)-bidimensional disk, its Euler char-
acteristics is one.

The equilibrium set £, is a compact set. Moreover, from the fact that zero is
aregular value of e, we have that £ is a finite set. On the other hand, e(A)isa C!
vector field on the tangent space pointing outward at the boundary of §";'.

Then we can apply the Poincaré Hopf theorem.

In our case the index of the vector field e at A € E is the sign of determinant
of Jle(M)].

So, we obtain that:

1= z sign der J(e(\)).
{A:e(h)=0}

The theorem follows by simple cardinality arguments.

5. THE CasE oF INCOMPLETE MARKETS

The exchange economy has n traders and two periods, r = 0, 1. There is a
state space (£2, A, v), which is a probability space. There is one commodity
available in each s € Q.

Utility functions and endowments are the same as in section 1. At =0
there are J < <o assets. Each asset is specified by a measurable bounded return
function f; : Q — R!, . Assets have real returns. There are not initial endow-
ments for assets.

Following [Mas-Colell, Monteiro (96)] we define an equilibrium for the

enconomy as a set (g, 0, p, ¥). where:

(a) g € R/, g # 0 is an assel price.
q q p

(b) 8=(0',---8") & R is a vecior of asscts portfolios such that
2.0 =0 and g6 < OV = 1,....n.

(c) p: £2 — R_ is a non zero, measurable spot commodity price function.

(d) x=(x',...,x") is an allocation. Each x' : @ —> R is a (measurable) function

such that: Z:;] xf(s) =z;=1 w"{.r), for a.e. 5 and for every i.

(e) (', B') solves:
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max LU*(S.x"(S))dv(S)

(11) ,
subject to p(s)x'(s) < p()(w'(s)+ >0, f,(s), fora.e.s andg®’' <0

It is proved that the equilibrium exists. [Mas-Colell, Monteiro (96)].
As we have a single commodity we can suppose that the spot price p(s) = |

Vs € €. Then the decision problem (3.1) can be reduced to the pure portfolio
choice problem:

J
max u'(6) = jﬂ U‘[s. D> wis)+6,f, (s)]dv{s}
J=1

(12)
)

subject to w'(s)+ ».6,f,(s) = 0 and g8'<0
f=1

Definition 7 An equilibrium in incomplete markets (GEI equilibrium) with

one consumption good is a vector of asset prices q € R’ and an allocation of

assets © € R", such that:
1) 8’ solves (13).
2) @ is a feasible allocation; i.e. y,; 6" =0.

3) If 6> Bie.: u,-(ﬁ) = w;(0).foralli=1, 2, ..., nand with strictly inequality
for at least one of them, is not in the budger set.

Since U (-) is a strictly concave function, and f; is a positive one, then

U*(tv‘(s)+2?_l‘f}(s]{~)):R"—}R is a strictly concave function. The set

o' ={Be R’ w"{s)+z:fj(s)ﬁj = 0 for a.e. seﬂ} is a lower bounded

set. Then an economy with incomplete markets and only one good available
in each state of the world is an Arrow-Debreu model.
The following proposition proves this statement.

Proposition 3 Every equilibrium assets allocation is Pareto optimal.

Proof. Supose 8 € R" is an equilibrium allocation, and there is a feasible 8

with 6> 8. That is, Ui(11+i{5)+2:=1j'}{s)'ﬂj;) = Ui(u'i(s}+z;=|f}{s}§;]
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strictly for at least one j € {1,2,...,n} and 2:_1:1'8;:0, % s in a non
null subset of Q. Then g8/ >g8'. From 0= ZLIBF :Z?ﬂﬁi we have
0= 3" g0’ = > g6’ . Therefore, g8* < 8% must hold for at least one &,
and thus 0% # 8% . Then, it follows from the strict convexity of the preferences

that %91‘ +%§"‘ =, 8% holds. Therefore we have %q@’“ +%q§k >0> g0,

From this we have qB"’ 3 qﬁk, which is a contradiction. Then 6 , i1s a Pareto

optimal allocation.
So, it is possible to derive the equilibrium set using the excess utility
function.

5.1 Equilibrium in the Portfolio Choice Problem

In the above conditions, for the portfolio choice problem, if 0 is a Pareto
optimal portfolio, we know that there exists a positive “social weight” vector

A € R" such that @ solves the problem:

13 swp3 |, Us[w{s) # Zﬁiﬂ(ﬂJd*’(s) subject to >.0; =0.
i=1 i=1 i
First order equations for this maximization problem are:
9 J
(14) Aisg Jo Ui| W)+ X £;()8;(X) |dv(s) = Y(A).

i=1

As in section 1, we construct the excess utility function:

€/(A) = —y(2)8,(2)
(15) A

e(A)={e(A), -, ¢,(A)}

As in this case,

J g
%jﬂ Uf[w(sJ 4 sz(s)a,}(l)}u(_«.-) = _|' ﬂ% u,.[w.:s}+ _Z;j(s}e,.j{l)Jdv{:}.
=1 Jj=1
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From the first order conditions we obtain the following equation:

J
(16) e; (M) = jﬂa I:U,-[wj(ﬂ + Zﬂij(l}fj{s}]] 0,(A)dv(s).

W say that the “social weight” vector %is an equilibrium if and only if

e(A)=0.

As in section 1, in order to obtain conditions for the uniqueness of equilib-
rium we consider the Jacobian of the excess utility function.

The term in the i row and j column in the Jacobian of the excess utility
function, is given by

a7 J(eM));(\)) = jng‘%[aiu,. 8, +3U,] dv(s).
J

An Example with Uniqueness

In order to obtain an example with unique equilibrium, consider an economy
with two agents and two assets.

From the above equations we obtain that the Jacobian of the excess utility
function has the following form:

(18) ony
[aEU, (Wf + ﬁBl -+ fzel} (ﬂB’ -+ fzﬂz) -+ BU,-(W,- + .ﬁel =+ fzez }] d‘l-"(.’f).
Suppose that there are two agents with endowments w;, > 0, two assets and

only one good available in each state.
Let us consider the following utility functions:

1
wi(x)=[_x(9)? dv(s), i ={1, 2}

We have the following portfolio choice problem:

2 2 2
sulef‘[n(w,-(s)**l- zﬂ,-jfj{s}) dv(s)
@ i=l

J=1
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The excess utility function is:
1

2 S 2
e;(A) = ﬂ% [w,.(s)+ z_f}(.s*)ﬁ!-j(l)} (zfj(s) 9,}.{1.}} dv(s).
j=1

i=1

From this equation we obtain:

s .I 7 2
gil. =2L.j-n {Zf} _'3:-_‘.;] |:82Ui [Zfs‘eij:"'"auf}d“”)*
i F=1 J=1

38, 28,

if
an, o,

Since 9” + sz =0,5= {1, 2}, we obtain that: ; i k and

r={L2);k={1,2}).
Since BJU,- [Zil fj(s} E}:-j(l}] + dU, = 0 we obtain:

gf_ > (<) 0 then ;;" <(>) 0,

i i

if

hence e(A) has the “Gross Substitute” property [Dana (93)] and uniqueness of
equilibrium follows.
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