LOGIC TK: ALGEBRAIC NOTIONS FROM TARSKI'S CONSEQUENCE OPERATOR

HÉRCULES DE ARAÚJO FEITOSA MAURI CUNHA DO NASCIMENTO MARIA CLAUDIA CABRINI GRÁCIO

São Paulo State University

Abstract. Tarski presented his definition of consequence operator to explain the most important notions which any logical consequence concept must contemplate. A Tarski space is a pair constituted by a nonempty set and a consequence operator. This structure characterizes an almost topological space. This paper presents an algebraic view of the Tarski spaces and introduces a modal propositional logic which has as a model exactly the closed sets of a Tarski space.

Keywords: Tarski space, almost topological space, consequence operator, modal logic, algebraic model.

Introduction

This work is inserted into the tradition of the algebraic logic, particularly, in the Lindenbaum-Tarski style.

The contribution of this paper to the algebraic logic field is to present the concept of Tarski's consequence operator in an algebraic structure, the TK-algebra, and as well as to introduce a subnormal modal logic whose algebraic models are the counterpart of Tarski's consequence operator.

Thus, a new propositional logic is generated and its adequacy in relation to TK-algebras is shown.

1. Tarski spaces

As follows, we adopt the concept of consequence operator in a slightly more general way than it was introduced by Tarski, in 1935.

Definition 1.1. A consequence operator on E is a function $\bar{} : \mathcal{P}(E) \to \mathcal{P}(E)$ such that, for every $A, B \in \mathcal{P}(E)$:

- (i) $A \subseteq \overline{A}$;
- (ii) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$;

Principia 14(1): 47-70 (2010).

Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil.

(iii)
$$\bar{\bar{A}} \subseteq \bar{A}$$
.

From (i) and (iii), it follows that $\overline{\overline{A}} = \overline{A}$ holds, for every $A \subseteq E$.

Definition 1.2. A consequence operator $\bar{}$: $\mathscr{P}(E) \to \mathscr{P}(E)$ is *finitary* when, for every $A \subseteq E$:

$$\overline{A} = \bigcup {\overline{A}_0 : A_0 \text{ is a finite subset of } A}.$$

Definition 1.3. A *Tarski space* (*Tarski's deductive system* or *Closure space*) is a pair $(E, ^-)$ such that E is a nonempty set and $^-$ is a consequence operator on E.

Definition 1.4. Let $(E,^-)$ be a Tarski space. The set A is *closed* in $(E,^-)$ when $\overline{A} = A$, and A is *open* when its complement relative to E, denoted by A^C , is closed in $(E,^-)$.

Proposition 1.5. In $(E, \bar{})$ any intersection of closed sets is also a closed set.

Proof. If
$$\{A_i\}$$
 is a collection of closed sets, then $\cap_i A_i \subseteq \overline{\cap_i A_i} \subseteq \cap_i \overline{A_i} = \cap_i A_i$. Hence, $\cap_i A_i = \overline{\cap_i A_i}$.

Clearly, $\overline{\emptyset}$ and E correspond to the least and the greatest closed sets, respectively, associated to the consequence operator $\overline{}$.

Proposition 1.6. In a structure of sets, the following conditions are equivalent:

- (i) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$;
- (ii) $\overline{A} \subseteq \overline{A \cup B}$.

Proof. (*i*)
$$\Rightarrow$$
 (*ii*): As $A \subseteq A \cup B$, by (i), it follows that $\overline{A} \subseteq \overline{A \cup B}$. (*ii*) \Rightarrow (*i*): If $A \subseteq B$, then $A \cup B = B$. So, by (ii), $\overline{A} \subseteq \overline{B}$.

Definition 1.7. A Tarski space $(E,^-)$ is *vacuous* when $\overline{\varnothing} = \varnothing$.

Definition 1.8. An *almost topological space* is a pair (S, Ω) such that S is a nonempty set and $\Omega \subseteq \mathcal{P}(S)$ satisfies the following condition:

$$B \subseteq \Omega \Rightarrow \cup B \in \Omega$$
.

The collection Ω is called *almost topology* and each member of Ω is an *open* of (S,Ω) . A set $A \in \mathcal{P}(S)$ is *closed* when its complement relative to S is an open of (S,Ω) .

Proposition 1.9. *In an almost topological space* (S, Ω) *the set* \emptyset *is open and* S *is closed.*

Proposition 1.10. *In an almost topological space* (S,Ω) *, any intersection of closed sets is still a closed set.*

Definition 1.11. Let (S,Ω) be an almost topological space. The *closure* of A is the set:

$$\overline{A} =_{\mathrm{df}} \cap \{X \subseteq S : X \text{ is closed and } A \subseteq X\}.$$

Proposition 1.12. Let (S,Ω) be an almost topological space. For every $A \subseteq S$, \overline{A} is closed.

Proposition 1.13. Let (S,Ω) be an almost topological space and let \overline{A} be defined as above, for every $A \subseteq S$. Then $(S, \overline{\ })$ is a Tarski space.

On the other hand, if $(E, \bar{})$ is a Tarski space, let us consider $\Omega = \{X \subseteq E : X \text{ is open}\}.$

Proposition 1.14. *If* $(E, ^-)$ *is a Tarski space, then* (E, Ω) *is an almost topological space.*

It follows from Propositions 1.13 and 1.14 that given a Tarski space an almost topological space is obtained and in another direction given an almost topological space we can define a Tarski space. So naturally we can make an interrelation between the two concepts.

Definition 1.15. An almost topological space (S,Ω) is *0-closed* when it holds:

(iv)
$$\overline{\varnothing} = \varnothing$$
.

Definition 1.16. A *topological space* (S,Ω) is an almost topological space 0-closed such that it holds:

(v)
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
.

The previous definition of topological space was given by the Kuratowski's closure. Naturally, every topological space is a Tarski space, but there are several Tarski spaces which are not topological spaces. Each topological space is an instance of a vacuous Tarski space.

2. TK-algebras

The definition of a TK-algebra introduces the notions of consequence operator in the context of the algebraic structures.

Definition 2.1. A *TK-algebra* is a sextuple $\mathcal{A} = (A, 0, 1, \vee, \sim, \bullet)$ such that $(A, 0, 1, \vee, \sim)$ is a Boolean algebra and \bullet is a new operator, called *operator of Tarski*, such that:

(i)
$$a \lor \bullet a = \bullet a$$
;

(ii)
$$\bullet a \lor \bullet (a \lor b) = \bullet (a \lor b)$$
;

(iii)
$$\bullet(\bullet a) = \bullet a$$
.

Examples:

- (a) The space of sets $\mathcal{P}(A)$ with $A \neq \emptyset$ and $\bullet a = a$, for all $a \in A$, is a TK-algebra.
- (b) The space of sets $\mathscr{P}(\mathbb{R})$ with $\bullet X = X \cup \{0\}$ is a TK-algebra.
- (c) The space of sets $\mathscr{P}(\mathbb{R})$ with $\bullet X = \cap \{I \mid I \text{ is an interval and } X \subseteq I\}$ is a TK-algebra.

Since we are working with Boolean algebras, the item (i) of the Definition 2.1 asserts that, for every $a \in A$, $a \le \bullet a$.

We define in a TK-algebra:

$$a \mapsto b =_{\mathrm{df}} \sim a \vee b;$$

 $a - b =_{\mathrm{df}} a \wedge \sim b.$

Proposition 2.2. *In any TK-algebra the following conditions are valid:*

- (i) $\sim \bullet a \leq \sim a \leq \bullet \sim a$;
- (ii) $a \le b \Rightarrow \bullet a \le \bullet b$.

Proof. (ii)
$$a \le b \Rightarrow a \lor b = b \Rightarrow \bullet(a \lor b) = \bullet b \Rightarrow \bullet a \lor \bullet b = \bullet a \lor \bullet(a \lor b) = \bullet(a \lor b) = \bullet b \Rightarrow \bullet a \le \bullet b$$
.

Proposition 2.3. *In any TK-algebra the following assertions are valid:*

- (i) $\bullet(a \land b) \leq \bullet a \land \bullet b$;
- (ii) $\bullet a \lor \bullet b < \bullet (a \lor b)$.

Proof. (i) $a \land b \le a$ and $a \land b \le b \Rightarrow \bullet(a \land b) \le \bullet a$ and $\bullet(a \land b) \le \bullet b \Rightarrow \bullet(a \land b) \le \bullet a \land \bullet b$.

(ii) is similar to (i).
$$\Box$$

Example:

(a) Let $E = \{a, b, c\}$. The space of sets $(\mathcal{P}(E), \emptyset, E, \cap, \cup, C)$ can be extended to a TK-algebra in the following way: $\bullet X = X$, for all $X \subseteq E$ such that $X \neq \{a, b\}$, and $\bullet \{a, b\} = E$.

If $X = \{a\}$ and $Y = \{b\}$, then $\bullet X = \bullet \{a\} = \{a\}$ and $\bullet Y = \bullet \{b\} = \{b\}$; $\bullet X \cup \bullet Y = \{a,b\}$; $\bullet (X \cup Y) = \bullet \{a,b\} = E$. Hence, $\bullet X \cup \bullet Y \subset \bullet (X \cup Y)$.

If
$$X = \{a, b\}$$
 and $Y = \{c\}$, then $\bullet X = \bullet \{a, b\} = E$, $\bullet Y = \bullet \{c\} = \{c\}$, $\bullet X \cap \bullet Y = \{c\}$, $\bullet (X \cap Y) = \bullet \emptyset = \emptyset$. Hence, $\bullet (X \cap Y) \subset \bullet X \cap \bullet Y$.

Proposition 2.4. *In any TK-algebra, it holds:*

- (i) $\bullet(\bullet a \land \bullet b) = \bullet a \land \bullet b$;
- (ii) $\bullet(\bullet a \lor \bullet b) = \bullet(a \lor b)$:
- (iii) $\bullet a \rightarrow \bullet b \leq \bullet (a \rightarrow b)$.

Proof. (i) It is enough to verify that $\bullet(\bullet a \land \bullet b) \leq \bullet a \land \bullet b$. But, $\bullet(\bullet a \land \bullet b) \leq \bullet a \land \bullet \bullet b = \bullet a \land \bullet b$.

(ii)
$$\bullet(a \lor b) \le \bullet(\bullet a \lor \bullet b) \le \bullet \bullet(a \lor b) = \bullet(a \lor b)$$
. Hence, $\bullet(a \lor b) = \bullet(\bullet a \lor \bullet b)$.

(iii)
$$\bullet a \rightarrow \bullet b = \sim \bullet a \lor \bullet b \le \bullet \sim a \lor \bullet b \le \bullet (\sim a \lor b) = \bullet (a \rightarrow b).$$

We have a new operation in a TK-algebra, dual of ●:

$$\circ a =_{\mathrm{df}} \sim \bullet \sim a$$
.

Proposition 2.5. *In a TK-algebra, the following conditions are valid:*

- (i) $\circ a \leq a$;
- (ii) $a \le b \Rightarrow a \le b$;
- (iii) \circ ($a \wedge b$) $\leq \circ a$;
- (iv) $\circ a \leq \circ \circ a$.

Proof. (i) $\circ a = \sim \bullet \sim a \Rightarrow \sim a \leq \bullet \sim a = \sim \circ a \Rightarrow \circ a \leq \sim \sim a = a$.

- (ii) $a \le b \Rightarrow \sim b \le \sim a \Rightarrow \bullet \sim b \le \bullet \sim a \Rightarrow \sim \bullet \sim a \le \sim \bullet \sim b \Rightarrow \circ a \le \circ b$.
- (iii) It follows from (ii).

(iv)
$$\circ a \leq a \Rightarrow \sim a \leq \sim \circ a \Rightarrow \bullet \sim a \leq \bullet \sim \circ a \Rightarrow \sim \bullet \sim \circ a \leq \sim \bullet \sim a \Rightarrow \circ \circ a \leq \circ a$$
. \square

Definition 2.6. An element $a \in A$ is *closed* when $\bullet a = a$, and $a \in A$ is *open* when $\circ a = a$.

Proposition 2.7. *In any TK-algebra:*

- (i) If a is open, then: $a \le b \iff a \le \circ b$;
- (ii) If b is closed, then: $a \le b \iff \bullet \ a \le b$.

Definition 2.8. An algebra \mathcal{A} is *non-degenerate* when its universe *A* has at least two elements.

Definition 2.9. Let $\mathscr{A} = (A, 0, 1, \vee, \sim, \bullet)$ and $\mathscr{B} = (B, 0, 1, \vee, \sim, \bullet)$ be TK-algebras. A *homomorphism* between \mathscr{A} and \mathscr{B} is a function $h : A \longrightarrow B$ that preserves the TK-operations. The *kernel* of h is the set $Ker(h) =_{\mathrm{df}} \{x \in A : h(x) = 0\} = h^{-1}(0)$.

Theorem 2.10. For each TK-algebra $\mathscr{A} = (A, 0, 1, \vee, \sim, \bullet)$ there is a monomorphism h from A into a Tarski space of sets defined in $\mathscr{P}(\mathscr{P}(A))$.

Proof. Through Stone's isomorphism, we know that for each Boolean algebra $\mathcal{A} = (A, 0, 1, \vee, \sim)$ there is a monomorphism h from A into a field of subsets of $\mathcal{P}(A)$.

Next, we introduce a Tarski space in $\mathcal{P}(A)$ in the following way: For each set $X \subseteq \mathcal{P}(A)$, we define:

$$\overline{X} = \bigcap_{a \in A} \{h(a) : X \subseteq h(a) \text{ and } a = \bullet a\}.$$

Then, we must show that:

- (i) $X \subseteq \overline{X}$
- (ii) $X \subseteq Y \Rightarrow \overline{X} \subseteq \overline{Y}$
- (iii) $\overline{\overline{X}} \subseteq \overline{X}$
- (iv) $h(\bullet a) = \overline{h(a)}$.

We can see that (i) - (iv) are valid by:

- (i) By definition of \overline{X} .
- (ii) Suppose $\overline{X} \nsubseteq \overline{Y}$. Then there is z such that $z \in \overline{X}$ and $z \notin \overline{Y}$. So, for some $a \in A$, $z \notin h(a)$ with $Y \subseteq h(a)$ and $\bullet a = a$. Since $X \subseteq Y \subseteq h(a)$ and $\bullet a = a$, then $z \notin \overline{X}$, and it contradicts $z \in \overline{X}$.
- (iii) $x \in \overline{\overline{X}} \Rightarrow x \in \bigcap_{a \in A} \{h(a) : \overline{X} \subseteq h(a) \text{ and } a = \bullet a\}$. As $X \subseteq \overline{X}$, it follows that $x \in \bigcap_{a \in A} \{h(a) : X \subseteq h(a) \text{ and } a = \bullet a\} = \overline{X} \text{ and, therefore, } \overline{\overline{X}} \subseteq \overline{X}$.
- (iv) On one hand, $h(\bullet a) \subseteq h(a)$ is valid: Consider that $h(a) \subseteq h(b)$ and $b = \bullet b$. Since h is a Boolean monomorphism, $a \le b$ and $\bullet a \le \bullet b$. But, since $\bullet b = b$, then $\bullet a \le b$ and $h(\bullet a) \subseteq h(b)$. Concluding, for each $b \in A$ such that $\bullet b = b$ and $h(a) \subseteq h(b)$, it results that $h(\bullet a) \subseteq h(b)$, that is, $h(\bullet a) \subseteq \overline{h(a)}$.

On the other hand, $\overline{h(a)} \subseteq h(\bullet a)$ is also valid: $a \leq \bullet a \Rightarrow h(a) \subseteq h(\bullet a) \Rightarrow \overline{h(a)} \subseteq \overline{h(\bullet a)}$. Since $h(\bullet a) \subseteq h(\bullet a)$ and $\bullet a = \bullet \bullet a$, then $\overline{h(\bullet a)} = h(\bullet a)$ and $\overline{h(a)} \subseteq h(\bullet a)$.

3. Ideals in TK-algebras

As in Boolean algebras, we can define an ideal into TK-algebras and use it to analyze aspects of the consequence in the next sections.

Definition 3.1. Let $\mathscr{A} = (A, 0, 1, \vee, \sim, \bullet)$ be a TK-algebra. An *ideal* in *A* is a nonempty set $I \subseteq A$ such that, for all $x, y \in A$:

- (i) $x, y \in I \Rightarrow x \lor y \in I$;
- (ii) $x \in I$ and $y \le x \Rightarrow y \in I$.

If *I* is an ideal and $a_1, a_2, \dots, a_n \in I$, by induction on n, we have that $a_1 \vee a_2 \vee \dots \vee a_n \in I$.

Definition 3.2. The ideal *I* is a *TK-ideal* when $x \in I \Rightarrow \bullet x \in I$.

Examples:

- (a) The set A is a TK-Ideal in \mathcal{A} .
- (b) The single $\{0\}$ is a TK-ideal if, and only if, $\bullet 0 = 0$.
- (c) Given $a \in A$, the set $[a] = \{x \in A : x \le \bullet a\}$ is a TK-Ideal. The set [a] is the TK-Ideal *generated* by a.

Proposition 3.3. Let \mathscr{A} be a TK-algebra and I be an ideal in \mathscr{A} . The following conditions are equivalent:

- (i) $a \in I \Rightarrow \bullet a \in I$;
- (ii) $a \mapsto b \in I \Rightarrow \bullet a \mapsto \bullet b \in I$.

Proof. (\Rightarrow) $a \mapsto b \in I \Rightarrow \bullet(a \mapsto b) \in I$. Since $\bullet a \mapsto \bullet b \leq \bullet(a \mapsto b)$, then $\bullet a \mapsto \bullet b \in I$

(
$$\Leftarrow$$
) If $a \in I$, as $a = 1 \Rightarrow a$, then $1 \Rightarrow a \in I$. By (ii), $\bullet 1 \Rightarrow \bullet a \in I \Rightarrow 1 \Rightarrow \bullet a \in I$. □

Proposition 3.4. Let \mathscr{A} be a TK-algebra and $\varnothing \neq B \subseteq A$. The set $[B] = \{x \in A : (\exists a_1, \ldots, a_n \in B)(x \leq \bullet(a_1 \vee \ldots \vee a_n)\}$ is a TK-ideal.

Proof. (i) If $x, y \in [B]$, then there are $a_1, \ldots, a_n, b_1, \ldots, b_n \in B$ such that $x \le \bullet(a_1 \lor \ldots \lor a_n)$ and $y \le \bullet(b_1 \lor \ldots \lor b_n)$. So $x \lor y \le \bullet(a_1 \lor \ldots \lor a_n) \lor \bullet(b_1 \lor \ldots \lor b_n) \le \bullet(a_1 \lor \ldots \lor a_n) \lor \bullet(b_1 \lor \ldots \lor b_n)$ and $x \lor y \in [B]$. (ii) If $x \in [B]$ and $y \le x$, then $y \in [B]$. (iii) If $x \in [B]$, then there exists $a_1, \ldots, a_n \in B$ such that $x \le \bullet(a_1 \lor \ldots \lor a_n)$ and since $\bullet(a_1 \lor \ldots \lor a_n)$ is closed, by Proposition 2.7, $\bullet x \le \bullet(a_1 \lor \ldots \lor a_n)$ and $\bullet x \in [B]$. □

Definition 3.5. TK-ideal [*B*] defined in the Proposition 3.4 is the TK-ideal *generated* by B.

Proposition 3.6. Let \mathscr{A} be a TK-algebra. If I is a TK-Ideal in \mathscr{A} and $b \in A$, then

$$[I,b] = \{x \in A : (\exists c \in I)(\bullet x \le \bullet(b \lor c))\}$$

is a TK-Ideal.

Proof. Of course, if $x \in [I, b]$ and $y \le x$, then $y \in [I, b]$; and $x \in [I, b] \Rightarrow \bullet x \in [I, b]$.

Now, if $x, y \in [I, b]$, there are $c, d \in I$ such that $\bullet x \leq \bullet(b \lor c)$ and $\bullet y \leq \bullet(b \lor d)$. Hence, $\bullet(x \lor y) = \bullet(\bullet x \lor \bullet y) \leq \bullet(\bullet(b \lor c) \lor \bullet(b \lor d)) = \bullet((b \lor c) \lor (b \lor d)) = \bullet(b \lor (c \lor d))$. Therefore, $x \lor y \in [I, b]$.

Definition 3.7. The ideal [I, b] is the TK-ideal generated by I and b.

Definition 3.8. Let I be an ideal in a TK-algebra \mathscr{A} . The ideal I is *proper* when $I \neq A$. The ideal I is *maximal* when it is proper and it is not included in any proper ideal distinct of I. The ideal I is *prime* when it is proper and for all $a, b \in A$ it holds: $a \land b \in I \Rightarrow a \in I$ or $b \in I$.

Of course, if *I* is proper, then there is an $a \in A$ such that $a \notin I$ and therefore $1 \notin I$.

Proposition 3.9. Let I be an ideal in a TK-algebra \mathscr{A} . The following statements are equivalent:

- (i) I is maximal;
- (ii) for every $a \in A$: $a \in I \ \lor \sim a \in I$;
- (iii) I is prime;
- (iv) for every $a, b \in A$, $a b \in I$ or $b a \in I$.

Proof. As \mathscr{A} is a Boolean algebra (i), (ii) and (iii) are equivalent. Let's show the equivalence between (iii) and (iv). (iii) \Rightarrow (iv) Let $a, b \in A$. As $(a - b) \land (b - a) = 0 \in I$ and I is prime, then $a - b \in I$ or $b - a \in I$. (iv) \Rightarrow (iii) Let $a \land b \in I$. If $a \land \sim b = a - b \in I$, then $a = (a \land b) \lor (a \land \sim b) \in I$. If $b \land \sim a = b - a \in I$, then $b \in I$.

The next definitions are specific for TK-ideals.

Definition 3.10. A TK-Ideal I is TK-irreducible when it is proper and for any two TK-Ideals I_1 and I_2 :

$$I = I_1 \cap I_2 \Rightarrow I = I_1 \text{ or } I = I_2.$$

Definition 3.11. A TK-Ideal *I* is *TK-maximal* when it is proper and it is not included in any proper TK-Ideal distinct of *I*.

Definition 3.12. Let I be a TK-ideal in a TK-algebra \mathscr{A} . The ideal I is TK-prime when it is a proper ideal and for all $a, b \in A$ it holds:

$$\bullet a \land \bullet b \in I \Rightarrow \bullet a \in I \text{ or } \bullet b \in I.$$

Let I be a TK-ideal. If I is a prime ideal then I is a TK-prime ideal. However, it is possible that I is a TK-prime ideal that is not prime. The same holds to TK-maximal ideals. Besides, being maximal does not imply to be TK-ideal and hence to be TK-maximal ideal.

Example:

(a) Let $E = \{a, b, c\}$. Consider the TK-algebra $\mathcal{A} = (\mathcal{P}(E), \emptyset, E, \cap, \cup, C, \bullet)$, such that $\bullet \emptyset = \emptyset, \bullet \{a\} = \{a\}, \bullet \{b\} = \bullet \{c\} = \bullet \{a, b\} = \bullet \{a, c\} = \bullet \{a, b, c\} = \bullet \{a, b, c\}$. The TK-ideal $\{\emptyset, \{a\}\}$ is TK-prime but it is not prime.

Proposition 3.13. *If a TK-ideal is TK-maximal, then it is TK-irreducible.*

Proof. Let I be a TK-maximal ideal. So I is proper. Now, if I_1 and I_2 are two proper TK-ideals such that $I = I_1 \cap I_2$, then $I \subseteq I_1$ and $I \subseteq I_2$. As I is TK-maximal, so $I = I_1 = I_2$.

Example:

(a) Let $E = \{a, b\}$. Consider the TK-algebra $\mathscr{A} = (\mathscr{P}(E), \varnothing, E, \cap, \cup, {}^{C}, \bullet)$, such that $\bullet \varnothing = \varnothing, \bullet \{a\} = \{a\}, \bullet \{b\} = \bullet \{a, b\}$. The TK-ideal $\{\varnothing\}$ is TK-irreducible and it is contained in the TK-ideal maximal $\{\varnothing, \{a\}\}$.

It follows from the previous example that we have a TK-irreducible ideal which is not TK-maximal.

Proposition 3.14. Let \mathscr{A} be a TK-algebra and I a TK-ideal in \mathscr{A} . The following statements are equivalent:

- (i) *I is a TK-prime ideal*;
- (ii) for every $a \in A$: either $\bullet a \in I$ or $\sim \bullet a \in I$.

Proof. (i) \Rightarrow (ii) If I is TK-prime, then I is proper. Now, if $\bullet a \in I$ and $\sim \bullet a \in I$, then $\bullet a \lor \sim \bullet a = 1 \in I$, which is a contradiction. Besides, as I is prime and $\bullet a \land \sim \bullet a = 0 \in I$, then $\bullet a \in I$ or $\sim \bullet a \in I$.

(ii) \Rightarrow (i) By hypothesis, I is proper. If $\bullet a \land \bullet b \in I$ and $\bullet a \notin I$, then, by hypothesis, $\sim \bullet a \in I$. Hence, $\bullet b \leq \bullet b \lor \sim \bullet a = 1 \land (\bullet b \lor \sim \bullet a) = (\bullet a \lor \sim \bullet a) \land (\bullet b \lor \sim \bullet a) = (\bullet a \land \bullet b) \lor \sim \bullet a \in I$. Since I is a TK-ideal, then $\bullet b \in I$. Therefore, I is a TK-prime ideal.

Proposition 3.15. *If a TK-ideal is TK-prime, then it is TK-maximal.*

Proof. Consider I as a TK-prime ideal which is properly included in a TK ideal M and take x such that $x \in M$, but $x \notin I$. Since I is a TK-ideal, then $\bullet x \notin I$ and since M is a TK-ideal, $\bullet x \in M$. As I is a TK-prime ideal, by Proposition 3.14, $\sim \bullet x \in I$. Hence, $\bullet x \in M$, $\sim \bullet x \in I \subseteq M$, therefore $1 = \bullet x \lor \sim \bullet x \in M$, that is, M = A.

Corollary 3.16. *If an TK-ideal is TK-prime, then it is TK-irreducible.*

Proof. It follows from Propositions 3.15 and 3.13.

Example:

- (a) Let $E = \{a, b, c\}$. Consider the TK-algebra $\mathcal{A} = (\mathcal{P}(E), \emptyset, E, \cap, \cup, C, \bullet)$, such that $\bullet \emptyset = \emptyset, \bullet \{a\} = \{a\}, \bullet \{b\} = \{b\}, \bullet \{c\} = \{c\}, \bullet \{a, b\} = \{a, b\}, \bullet \{a, c\} = \bullet \{b, c\} = \{a, b, c\}$. The TK-ideal $I = \{\emptyset, \{c\}\}$ is TK-maximal, but it is not TK-prime:
- (i) I is TK-maximal: if $I \subset J$ with J a TK-ideal, then J has an element x such that $x \notin I$. If $x = \{a\}$, then $\{a,c\} = \{a\} \cup \{c\} \in J$, and like J is a TK-ideal, then $\{a,b,c\} = \bullet \{a,c\} \in J$ and therefore J = A. If $x = \{b\}$ or $x = \{a,b\}$ or $x = \{a,c\}$ or $x = \{b,c\}$ or even $x = \{a,b,c\}$, we show that J = A.
- (ii) I is not TK-prime: $\bullet\{a\} \land \bullet\{b\} = \emptyset \in I$, but $\bullet\{a\} \notin I$ and $\bullet\{b\} \notin I$.

Definition 3.17. A *chain* of ideals is a sequence $(I_1, I_2, I_3, ...)$ of ideals such that $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$

Lemma 3.18. Let \mathscr{A} be a TK-algebra and (I_1, I_2, I_3, \dots) be a chain of proper TK-ideals of \mathscr{A} . The union $\cup I_n$ is a proper TK-ideal.

Proof. Let $x \in I$ and $y \in A$, with $y \le x$. Since $I = \cup I_n$, there is $n \in \mathbb{N}$ such that $x \in I_n$, and since I_n is a TK-ideal, then $y \in I_n \subseteq I$. Let $x, y \in I = \cup I_n$. Since $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$, there is $n \in \mathbb{N}$ such that $x, y \in I_n$, and as I_n is a TK-ideal, so $x \lor y \in I_n \subseteq I$. Hence, I is an ideal. Since $1 \notin I_n$, for every n, hence $1 \notin I$. Therefore, I is a proper ideal. It is immediate that I is a TK-ideal.

Theorem 3.19. Each proper TK-ideal in a TK-algebra is contained in a TK-maximal TK-ideal.

Proof. The result follows from the previous lemma and by Zorn's Lemma.

Corollary 3.20. Let \mathscr{A} be a TK-algebra and $a \in A$ such that $\bullet a \neq 1$. Then, there is a maximal TK-ideal I for which $a \in I$.

Proof. Since $\bullet a \neq 1$, the TK-ideal generated by a is proper, then by previous theorem, [a] is included in a TK-maximal TK-ideal I and $a \in I$.

Proposition 3.21. Let \mathscr{A} be a TK-algebra and I be a TK-ideal in \mathscr{A} . If $a \notin I$, then there is a TK-irreducible TK-ideal I^* such that $I \subseteq I^*$ and $a \notin I^*$.

Proof. Let S be the ordered set of all TK-ideals J of \mathscr{A} such that $I \subseteq J$ and $a \notin J$. By Zorn's Lemma and Lemma 3.18, there is a TK-maximal element M in S. If $M = I_1 \cap I_2$, considering that $a \notin M$, then $a \notin I_1$ or $a \notin I_2$. If $a \notin I_1$, since $I \subseteq M \subseteq I_1$, then $I_1 \in S$ and as M is TK-maximal in S, $M = I_1$. Besides, if $a \notin I_2$, $M = I_2$. Hence, M is TK-irreducible.

Theorem 3.22. Let $h: A \longrightarrow B$ be a surjective homomorphism between $\mathscr{A} = (A, 0, 1, \vee, \sim, \bullet)$ and $\mathscr{B} = (B, 0, 1, \vee, \sim, \bullet)$. Then:

- (i) $h(a) = h(b) \Leftrightarrow a \equiv_{Ker(h)} b \Leftrightarrow_{df} a b \in Ker(h) \text{ and } b a \in Ker(h);$
- (ii) the relation $\equiv_{Ker(h)}$ is a congruence;
- (iii) $\mathscr{A}|_{Ker(h)}$ is a TK-algebra;
- (iv) $\mathscr{A}|_{Ker(h)} \approx \mathscr{B}$.

Proof. (i) (\Rightarrow) $h(a) = h(b) \Rightarrow h(a) \land \sim h(b) = 0 \Rightarrow h(a \land \sim b) = 0 \Rightarrow a \land \sim b \in ker(h) \Rightarrow a - b \in ker(h)$. In the same way, $b - a \in ker(h)$. (\Leftarrow) $a - b \in ker(h) \Rightarrow a \land \sim b \in ker(h) \Rightarrow h(a \land \sim b) = 0 \Rightarrow h(a) \land \sim h(b) = 0 \Rightarrow h(a) \lor h(b) = h(b) \Rightarrow h(a) \le h(b)$. Also, $b - a \in ker(h) \Rightarrow h(b) \le h(a)$. So, h(a) = h(b).

(ii) Clearly $\equiv_{Ker(h)}$ is an equivalence relation. We only need to show the details about how to extend to a TK-algebra, that is, $a \equiv_{Ker(h)} b \Rightarrow \bullet a \equiv_{Ker(h)} \bullet b$. So $a \equiv_{Ker(h)} b \Leftrightarrow h(a) = h(b) \Rightarrow \bullet h(a) = \bullet h(b) \Rightarrow h(\bullet a) = h(\bullet b) \Leftrightarrow \bullet a \equiv_{Ker(h)} \bullet b$.

(iii) Since $\equiv_{Ker(h)}$ is an equivalence we have a partition on $\mathscr{A}|_{Ker(h)}$. Now, let $\overline{a} = \{b \in A : a \equiv_{Ker(h)} b\}$. We must produce a Tarski operator in $\mathscr{A}|_{Ker(h)}$. Let $\bullet \overline{a} = \overline{\bullet a}$. This is the looked operator: (1) $\overline{a} \vee \overline{\bullet a} = \overline{a} \vee \bullet a = \overline{a} \vee \overline{a} = \overline{a} \vee \overline{a} \vee \overline{a} \vee \overline{a} \vee \overline{a} = \overline{a} \vee \overline{a} \vee \overline{a} \vee \overline{a} = \overline{a} \vee \overline{a} \vee \overline{a} \vee \overline{a} \vee \overline{a} = \overline{a} \vee \overline{a}$

(iv) As usual, we define $\tilde{h}: \mathscr{A}|_{Ker(h)} \longrightarrow \mathscr{B}$ by $\tilde{h}(\overline{a}) = h(a)$. Naturally \tilde{h} is well defined and bijective. We will show that \tilde{h} preserves the operation \bullet : $\tilde{h}(\bullet \overline{a}) = \tilde{h}(\overline{\bullet a}) = h(\overline{\bullet a}) = \bullet h(a) = \bullet \tilde{h}(\overline{a})$.

Definition 3.23. Let \mathscr{A} be a TK-algebra and I a maximal (or prime) TK-ideal in \mathscr{A} . Consider the following (equivalence) relation \equiv_I in \mathscr{A} :

$$a \equiv_I b \iff =_{df} a - b \in I \text{ and } b - a \in I.$$

In the above definition, *I* more than TK-maximal is maximal.

The next theorem will show that the relation \equiv_I is a congruence in $\mathscr A$ with respect to \land , \lor , \sim and \bullet , that is, [a] = [b] implies $[\sim a] = [\sim b]$ and $[\bullet a] = [\bullet b]$; and [a] = [b], [c] = [d] implies $[a \land c] = [b \land d]$ and $[a \lor c] = [b \lor d]$. Also, [1] is the unit, [0] is the zero element of $\mathscr A|_I$.

Proposition 3.24. Let \mathscr{A} be a TK-algebra and I a maximal TK-ideal in \mathscr{A} .

- (i) the relation \equiv_I determined by I is a congruence relation;
- (ii) considering, for every $x \in A$, $\bullet[x] = [\bullet x]$, the quotient algebra $\mathcal{A}|_I$ is a TK-algebra;
- (iii) the function $h: \mathcal{A} \longrightarrow \mathcal{A}|_{I}$ defined by $h(a) = \overline{a}$ is a surjective homomorphism;

- (iv) *I* is the kernel of h, and for every $a \in A$, $a \in I \Leftrightarrow a \equiv_I 0$;
- (v) for every $a \in A$, $a \notin I \iff a \equiv_I 1$.

Proof. (i) Clearly \equiv_I is an equivalence relation. Now:

- (1) $[a] = [b] \Leftrightarrow a b \in I$ and $b a \in I \Leftrightarrow a \land \sim b \in I$ and $b \land \sim a \in I \Leftrightarrow \sim a \land b \in I$ and $\sim b \land a \in I \Leftrightarrow \sim a \sim b \in I$ and $\sim b \sim a \in I \Leftrightarrow [\sim a] = [\sim b]$. (2) $[a] = [b] \Leftrightarrow a - b \in I$ and $b - a \in I \Leftrightarrow a \land \sim b \in I$ and $b \land \sim a \in I$. If $a \in I$, then $\bullet a \in I$ and $\sim a \notin I \Rightarrow \sim \bullet a \notin I$ and $b \in I \Rightarrow \bullet b \in I \Rightarrow \bullet a - \bullet b \in I$ and $\bullet b - \bullet a \in I \Leftrightarrow [\bullet a] = [\bullet b]$. If $a \notin I$, then $\bullet a \notin I$ and $\sim b \in I \Rightarrow \sim \bullet a \in I$ and $b \notin I \Rightarrow \bullet b \notin I \Rightarrow \sim \bullet b \in I \Rightarrow \bullet a - \bullet b \in I$ and $\bullet b - \bullet a \in I \Leftrightarrow [\bullet a] = [\bullet b]$. In any case, we have $[\bullet a] = [\bullet b]$.
- (3) If [a] = [b] and [c] = [d], then $a \land \sim b \in I$, $b \land \sim a \in I$, $c \land \sim d \in I$ and $d \land \sim c \in I$. Since I is an ideal, and $a \land \sim b$, $c \land \sim d \in I$, then $a \land c \land \sim b$, $a \land c \land \sim d \in I$, therefore $(a \land c) \land \sim (b \land d) = (a \land c) \land (\sim b \lor \sim d) = (a \land c \land \sim b) \lor (a \land c \land \sim d) \in I$. That is, $(a \land c) (b \land d) \in I$. Analogously, $(b \land d) (a \land c) \in I$. Hence, $[a \land c] = [b \land d]$.
- (4) If [a] = [b] and [c] = [d] then $a \land \sim b \in I$, $b \land \sim a \in I$, $c \land \sim d \in I$ and $d \land \sim c \in I$. Since I is an ideal, and $a \land \sim b$, $c \land \sim d \in I$, then $a \land \sim b \land \sim d$, $c \land \sim b \land \sim d \in I$, therefore $(a \lor c) \land \sim (b \lor d) = (a \lor c) \land (\sim b \land \sim d) = (a \land \sim b \land \sim d) \lor (c \land \sim b \land \sim d) \in I$. That is, $(a \lor c) (b \lor d) \in I$. Analogously, $(b \lor d) (a \lor c) \in I$. Hence, $[a \lor c] = [b \lor d]$.
 - (ii) We need to verify that $\bullet|_{\equiv_t}$ preserves the properties of operator \bullet .
- $(1) [x] \lor \bullet [x] = [x] \lor [\bullet x] = [x \lor \bullet x] = [\bullet x] = \bullet [x].$
- $(2) \bullet [x] \lor \bullet [x \lor y] = [\bullet x] \lor [\bullet (x \lor y)] = [\bullet x \lor \bullet (x \lor y)] = [\bullet (x \lor y)] = \bullet [(x \lor y)].$
- $(3) \bullet \bullet [x] = [\bullet \bullet x] = [\bullet x] = \bullet [x].$
 - (iii) It is immediate.
- (iv) (\Rightarrow) If $a \in I$, as $a = a \land 1 = a \land \sim 0 = a 0 \in I$ and $0 = 0 \land \sim a = 0 a \in I$. So $a \equiv_I 0$. (\Leftarrow) If $a \equiv_I 0$ then $a = a \land 1 = a \land \sim 0 = a - 0 \in I$.

(v)
$$a \notin I \Leftrightarrow \sim a \in I \Leftrightarrow \sim a \equiv_I 0 \Leftrightarrow a \equiv_I 1$$
.

We observe that if *I* is an ideal then $\mathcal{A}|_{I}$ is degenerate $\iff I = A$.

Proposition 3.25. *If* I *is a prime TK-ideal, then the quotient algebra* $\mathscr{A}|_{\equiv_I}$ *is linearly ordered.*

Proof. Let *I* be a prime TK-ideal and take $a, b \in A$. From this we have that $a - b \in I$ or $b - a \in I$, that is, $[a] \le [b]$ or $[b] \le [a]$ and, therefore $\mathscr{A}|_I$ is linearly ordered. \square

In the next section, a new logic associated with Tarski's consequence operator is introduced.

4. Logic TK

The propositional logic TK is the logical system associated to the TK-algebras. The propositional language of TK is $L = (\neg, \lor, \rightarrow, \blacklozenge, p_1, p_2, p_3, ...)$ and TK is presented as follows:

Axioms:

(CPC) φ , if φ is a tautology;

$$(TK_1) \varphi \rightarrow \phi \varphi;$$

$$(TK_2) \Leftrightarrow \varphi \varphi \rightarrow \varphi \varphi.$$

Deduction Rules:

(MP)
$$\frac{\varphi \to \psi, \ \varphi}{\psi}$$
;

$$(RM^{\blacklozenge}) \ \frac{\vdash \varphi \to \psi}{\vdash \blacklozenge \varphi \to \blacklozenge \psi}.$$

As usual, we write $\vdash_{\mathbf{S}} \varphi$ to indicate that φ is a theorem of some axiomatic system \mathbf{S} , and we drop the subscript when there is no possibility of misunderstanding.

Definition 4.1. Let Γ be a set of formulas, and φ a formula of some system **S**. We say that Γ *deduces* φ (notation: $\Gamma \vdash_{\mathbf{S}} \varphi$) if there is a finite sequence of formulas $\varphi_1, \ldots, \varphi_n$ such that $\varphi_n = \varphi$ and, for every φ_i , $1 \le i \le n$,

- (i) φ_i is an axiom; or
- (ii) $\varphi_i \in \Gamma$; or
- (iii) φ_i is obtained from previous formulas of the sequence by some of the deduction rules.

Notice that the notion of syntactic consequence (deduction) presented here is *global*. Accordingly, we will have, for instance, $p \to q \vdash \blacklozenge p \to \blacklozenge q$. However, $(p \to q) \to (\blacklozenge p \to \blacklozenge q)$ is not a theorem (what we can show semantically after proving completeness), and so the Deduction Theorem does not hold¹.

Proposition 4.2. $\vdash \blacklozenge \varphi \rightarrow \blacklozenge (\varphi \lor \psi)$.

Proof.

1.
$$\varphi \to (\varphi \lor \psi)$$
 Tautology
2. $\phi \varphi \to \phi(\varphi \lor \psi)$ R^{ϕ} in 1

Proposition 4.3. $\vdash \varphi \Rightarrow \vdash \blacklozenge \varphi$.

Proof.

$$\begin{array}{lll} 1. \ \varphi & & \text{Premise} \\ 2. \ \varphi \rightarrow \blacklozenge \varphi & & \text{Ax}_{\text{TK1}} \\ 3. \ \blacklozenge \varphi & & \text{MP in 1 and 2.} \end{array}$$

Proposition 4.4. $\Gamma \vdash \phi \varphi \lor \phi \psi \rightarrow \phi (\varphi \lor \psi)$

Proof.

$$\begin{array}{ll} 1. & & & & & & & & & \\ & 1. & & & & & & \\ & 2. & & & & & & \\ & 2. & & & & & & \\ & 2. & & & & & \\ & 4.2 & & & & \\ & 5.3 & & & & \\ & 5.4 & & & & \\ & 5.4 & & & & \\ & 5.4 & & & \\$$

As in the case of a TK-algebra, we can define the dual operator of \blacklozenge in the following way:

$$\Diamond \varphi =_{\mathrm{df}} \neg \phi \neg \varphi.$$

Proposition 4.5. $\vdash \varphi \rightarrow \psi \Rightarrow \vdash \Diamond \varphi \rightarrow \Diamond \psi$.

Corollary 4.6. $\vdash \varphi \longleftrightarrow \psi \Rightarrow \vdash \Diamond \varphi \longleftrightarrow \Diamond \psi$.

Proposition 4.7. $\vdash \Diamond \varphi \rightarrow \varphi$.

Proposition 4.8. $\vdash \Diamond \varphi \rightarrow \Diamond \Diamond \varphi$.

Proposition 4.9. $\vdash \Diamond(\varphi \land \psi) \rightarrow \Diamond\varphi$.

Corollary 4.10. $\vdash \Diamond(\varphi \land \psi) \rightarrow (\Diamond \varphi \land \Diamond \psi)$.

We could, alternatively, consider the operator \Diamond as primitive and substitute the axioms TK_1 and TK_2 for the following ones:

$$(TK_1^*) \quad \Diamond \varphi \rightarrow \varphi,$$

$$(TK_2^*) \quad \Diamond \varphi \rightarrow \Diamond \Diamond \varphi,$$

and the rule RM[♦] by the rule RM[♦]:

$$(RM^{\Diamond}) \quad \frac{\varphi \to \psi}{\Diamond \varphi \to \Diamond \psi}.$$

In the following section, the algebraic adequacy of the Logic TK relative to TK-algebras is shown.

5. The algebraic adequacy

Below, we indicate the set of propositional variables of TK by Var(TK), the set of its formulas by For(TK) and a generic TK-algebra by \mathcal{A} . The propositional logical system TK is determined by a pair $(L,^-)$, where L is the propositional language of TK and $^-$ is a consequence operator on For(TK) given by axioms and deduction rules of TK.

Thus, for $\Gamma \subseteq \text{For}(\text{TK})$, denoting the set of axioms of TK by Ax, then $\overline{\Gamma} = \{\psi : \Gamma \cup Ax \vdash \psi\}$. We say that ψ is derivable in TK or is a theorem of TK when $\psi \in \overline{\varnothing}$, or, $\Gamma = \varnothing$.

Definition 5.1. A *TK-theory* is a set $\Delta \subseteq For(TK)$, such that $\overline{\Delta} = \Delta$.

When $\Delta = \emptyset$, we have the theorems of TK, that is, $\psi \in \overline{\emptyset} \Leftrightarrow \vdash \psi$.

Definition 5.2. A formula $\psi \in \text{For}(TK)$ is *refutable* in Γ when $\Gamma \vdash \neg \psi$. Otherwise, ψ is *irrefutable*.

Definition 5.3. A set $\Gamma \subseteq \text{For}(TK)$ is *irreducible* if it is consistent and for any two sets $\Delta_1, \Delta_2 \subseteq \text{For}(TK)$:

$$\overline{\Gamma} = \overline{\Delta}_1 \cap \overline{\Delta}_2 \Rightarrow \overline{\Gamma} = \overline{\Delta}_1 \ \lor \ \overline{\Gamma} = \overline{\Delta}_2.$$

Definition 5.4. A set $\Gamma \subseteq \text{For}(TK)$ is *maximal* if it is consistent and for any consistent set $\Delta \subseteq \text{For}(TK)$:

$$\overline{\Gamma} \subseteq \overline{\Delta} \Rightarrow \overline{\Gamma} = \overline{\Delta}.$$

Definition 5.5. A *restrict valuation* is a function \check{v} : Var(TK) $\longrightarrow \mathscr{A}$ that interprets each variable of TK in an element of \mathscr{A} .

Definition 5.6. A *valuation* is a function v: For(TK) $\longrightarrow \mathscr{A}$ that extends natural and uniquely v as follows:

- (i) $v(p) = \breve{v}(p)$;
- (ii) $v(\neg \varphi) = \sim v(\varphi)$;
- (iii) $v(\phi\varphi) = \bullet v(\varphi);$
- (iv) $v(\varphi \wedge \psi) = v(\varphi) \wedge v(\psi)$;
- (v) $v(\varphi \lor \psi) = v(\varphi) \lor v(\psi)$.

As usual, operator symbols of left members represent logical operators and the right ones represent algebraic operators.

Definition 5.7. Let \mathscr{A} be a TK-algebra. A valuation ν : For(TK) $\longrightarrow \mathscr{A}$ is a model for a set $\Gamma \subseteq \text{For}(\text{TK})$ when $\nu(\gamma) = 1$, for each formula $\gamma \in \Gamma$.

In particular, a valuation ν : For(TK) $\longrightarrow \mathscr{A}$ is a model for $\varphi \in \text{For}(TK)$ when $\nu(\varphi) = 1$.

Definition 5.8. A formula φ is valid in a TK-algebra $\mathscr A$ when every valuation ν : For(TK) $\longrightarrow \mathscr A$ is a model for φ .

Definition 5.9. A formula φ is TK-valid, what is denoted by $\vDash \varphi$, when it is valid in every TK-algebra.

If we consider the set of formulas For(TK), naturally we have an algebra on For(TK), $\mathscr{B} = (For(TK), \land, \lor, \sim, \spadesuit)$ such that \land and \lor are binary operators, \neg and \spadesuit are unary operators.

Now, we define the Lindembaum algebra of TK.

Definition 5.10. Let $\Gamma \cup \{\varphi, \psi\} \subseteq \text{For}(TK)$ and \simeq the equivalence relation defined by:

$$\varphi \simeq \psi \Leftrightarrow_{df} \Gamma \vdash \varphi \to \psi \text{ and } \Gamma \vdash \psi \to \varphi.$$

The relation \simeq , more than an equivalence, is a congruence, since by the rule R^{\blacklozenge} : $\varphi \simeq \psi \Rightarrow \Gamma \vdash \varphi \to \psi$ and $\Gamma \vdash \psi \to \varphi \Rightarrow \Gamma \vdash \blacklozenge \varphi \to \blacklozenge \psi$ and $\Gamma \vdash \blacklozenge \psi \to \blacklozenge \varphi \Rightarrow \blacklozenge \varphi \simeq \blacklozenge \psi$.

For each $\psi \in \text{For}(TK)$, we denote the class of equivalence of ψ modulo \simeq and Γ by $\lceil \psi \rceil_{\Gamma} = \{ \sigma \in For(TK) : \sigma \simeq \psi \}$.

The *Lindembaum algebra* of TK, denoted by $\mathscr{A}_{\Gamma}(TK)$, is the quotient algebra $\mathscr{B}|_{\simeq}$, defined by:

$$\mathcal{A}_{\Gamma}(TK) = (For(TK)|_{\sim}, 0, 1, \neg_{\sim}, \blacklozenge_{\sim}, \land_{\sim}, \lor_{\sim}), \text{ such that:}$$

$$0 = [\varphi \land \neg \varphi],$$

$$1 = [\varphi \lor \neg \varphi],$$

$$\neg_{\sim}[\varphi] = [\neg \varphi],$$

$$\blacklozenge_{\sim}[\varphi] = [\blacklozenge \varphi],$$

$$[\varphi] \land_{\sim}[\psi] = [\varphi \land \psi],$$

$$[\varphi] \lor_{\sim}[\psi] = [\varphi \lor \psi].$$

In general, we do not indicate the index $_{\sim}$ of operations. When $\Gamma=\varnothing$ we just write $\mathscr{A}(TK)$.

Proposition 5.11. *In* $\mathscr{A}_{\Gamma}(TK)$ *it is valid:* $[\varphi] \leq [\psi] \Leftrightarrow \Gamma \vdash \varphi \to \psi$.

$$\begin{array}{l} \textit{Proof.} \ \, [\varphi] \leq [\psi] \Leftrightarrow [\varphi] \vee [\psi] = [\psi] \Leftrightarrow [\varphi \vee \psi] = [\psi] \Leftrightarrow \Gamma \vdash \varphi \vee \psi \leftrightarrow \psi \Leftrightarrow \Gamma \vdash \varphi \rightarrow \psi. \end{array}$$

Proposition 5.12. *The algebra* $\mathcal{A}_{\Gamma}(TK)$ *is a TK-algebra*.

Proof.
$$Ax_{TK1}$$
: $\Gamma \vdash \varphi \rightarrow \phi \varphi \Rightarrow [\varphi] \leq [\phi \varphi] \Rightarrow [\varphi] \leq \phi[\varphi]$;
Proposition 4.2: $\Gamma \vdash \phi \varphi \rightarrow \phi(\varphi \lor \psi) \Rightarrow [\phi \varphi] \leq [\phi(\varphi \lor \psi)] \Rightarrow \phi[\varphi] \leq \phi[\varphi \lor \psi]$;
 Ax_{TK2} : $\Gamma \vdash \phi \phi \varphi \rightarrow \phi \varphi \Rightarrow [\phi \phi \varphi] \leq [\phi \varphi] \Rightarrow \phi \phi[\varphi] \leq \phi[\varphi]$.

Definition 5.13. The algebra $\mathcal{A}_{\Gamma}(TK)$ is the canonical model of $\Gamma \subseteq \text{For}(TK)$.

As an immediate consequence, $\mathcal{A}(TK)$ is the canonical model for the theorems of TK.

Corollary 5.14. *Let* $\Gamma \cup \{\varphi\} \subseteq For(TK)$:

- (i) If $\Gamma \vdash \varphi$, then $[\varphi] = 1$ in $\mathscr{A}_{\Gamma}(TK)$;
- (ii) If $\Gamma \vdash \neg \varphi$ (φ is refutable in Γ), then $[\varphi] = 0$ in $\mathscr{A}_{\Gamma}(TK)$;
- (iii) If $\mathscr{A}_{\Gamma}(TK)$ is non degenerate, then there is a formula that is not a theorem of Γ .

Proof. Since $\mathscr{A}_{\Gamma}(TK)$ always has an identity element 1, then for every $\varphi \in \text{For}(TK)$, $\lceil \varphi \rceil \leq 1$.

- (i) The formula $\varphi \to (\psi \to \varphi)$ is a tautology and, hence, a theorem of TK. With a substitution we have $\vdash \varphi \to ((\varphi \to \varphi) \to \varphi)$. Now, if $\Gamma \vdash \varphi$, by MP, it follows that $\Gamma \vdash (\varphi \to \varphi) \to \varphi$, that is, $1 = [\varphi \to \varphi] \leq [\varphi]$ and $[\varphi] = 1$.
- (ii) Let φ be refutable in Γ , that is, $\Gamma \vdash \neg \varphi$. But $\Gamma \vdash \neg \varphi$ iff $[\neg \varphi] = 1$ iff $\sim [\varphi] = 1$ iff $[\varphi] = 0$.
- (iii) Finally, $[\varphi] = 1$ iff $\Gamma \vdash \varphi$ and, therefore, $\mathscr{A}_{\Gamma}(TK)$ has a different element of 1 iff there is $\varphi \in \text{For}(TK)$ such that $\Gamma \nvdash \varphi$.

Naturally, if $[\varphi] = 1$, then $\Gamma \vdash \varphi$ and if $[\varphi] = 0$, then $\Gamma \vdash \neg \varphi$. So, it results from preceding propositions that for every formula $\varphi \colon [\varphi] = 1$ iff $\Gamma \vdash \varphi$, $[\varphi] = 0$ iff $\Gamma \vdash \neg \varphi$, and $[\varphi] \neq 0$ iff φ is irrefutable in Γ , and, since $\mathscr{A}_{\Gamma}(TK)$ is non-degenerate, then Γ has some non theorem.

Theorem 5.15 (Soundness). *The TK-algebras are correct models for the Logic TK.*

Proof. Let $\mathcal{A} = (A, 0, 1, \vee, \sim, \bullet)$ be a TK-algebra. It remains to prove that the axioms Ax_{TK1} and Ax_{TK2} are valid and the rule R^{\blacklozenge} preserves validity:

$$\begin{aligned} & \text{Ax}_{TK1} \colon \nu(\varphi \to \phi \varphi) = \nu(\varphi) \mapsto \nu(\phi \varphi) = \sim \nu(\varphi) \lor \nu(\phi \varphi) = \sim \nu(\varphi) \lor (\nu(\varphi) \lor \nu(\phi \varphi)) \\ & = (\sim \nu(\varphi) \lor \nu(\varphi)) \lor \nu(\phi \varphi) = 1 \lor \nu(\phi \varphi) = 1. \end{aligned}$$

Ax_{TK12}:
$$v(\phi \phi \varphi \to \phi \varphi) = \bullet \bullet v(\varphi) \to \bullet v(\varphi) = \sim \bullet \bullet v(\varphi) \lor \bullet v(\varphi) = \sim \bullet v(\varphi) \lor \bullet v(\varphi) = 1$$
.

$$R^{\blacklozenge}$$
: Using Proposition 2.2 (ii): $v(\varphi \to \psi) = 1 \Leftrightarrow v(\varphi) \leq v(\psi) \Rightarrow \blacklozenge v(\varphi) \leq \blacklozenge v(\psi) \Rightarrow v(\diamondsuit \varphi) \leq v(\diamondsuit \psi) \Leftrightarrow v(\diamondsuit \varphi \to \diamondsuit \psi) = 1.$

Theorem 5.16 (Adequacy). Let $\varphi \in For(TK)$. The following assertions are equivalent:

- (i) $\vdash \varphi$;
- (ii) $\models \varphi$;
- (iii) φ is valid in every TK-algebra of closed subsets of a Tarski space $(S, ^-)$;
- (iv) $v_0(\varphi) = 1$, where v_0 is the valuation defined at the canonical model.

Proof. (i) \Rightarrow (ii) it follows from Soundness Theorem. (ii) \Rightarrow (iii) it suffices to observe that the algebra of closed subsets of any Tarski space is a TK-algebra. (iii) \Rightarrow (iv) since every TK-algebra is isomorphic to a subalgebra of closed subsets of a Tarski space $(S,^-)$ and $\mathscr{A}(TK)$ is a TK-algebra, the result follows. (iv) \Rightarrow (i) if $\varphi \in \text{For}(TK)$ and it is not derivable in TK, by Corollary 5.12, $[\varphi] \neq 1$ in $\mathscr{A}(TK)$ and thus $v_0(\varphi) \neq 1$.

Corollary 5.17 (Completeness). *If* $\varphi \in For(TK)$, *then*: $\vDash \varphi \iff \vdash \varphi$.

In the next proposition it is proved that the formula $(\varphi \to \psi) \to (\phi \varphi \to \phi \psi)$ is not TK valid by a counter example.

Proposition 5.18.
$$\not\models (\varphi \rightarrow \psi) \rightarrow (\Diamond \varphi \rightarrow \Diamond \psi)$$
.

Proof. There is a TK-algebra in which does not hold the above formula. Let $E = \{x,y,z\}$ and take the Boolean algebra $(\mathcal{P}(E), {}^C, \cap, \cup, \emptyset, E)$. Now, define the following consequence operator over $(\mathcal{P}(E), {}^C, \cap, \cup, \emptyset, E)$: $\bullet\{x\} = \{x,y\}, \bullet\{x,z\} = \{x,y,z\}$, and $\bullet X = X$, for all the other sets in $\mathcal{P}(E)$. Then $(\mathcal{P}(E), {}^C, \bullet, \cap, \cup, \emptyset, E)$ is a TK-algebra, but the formula $(\varphi \to \psi) \to (\bullet \varphi \to \bullet \psi)$ is not valid in it. Below we show that $v(\varphi \to \psi) \not\subseteq v(\bullet \varphi \to \bullet \psi)$, when φ is interpreted by $\{x\}$ and ψ by $\{z\}$:

$$\{x\} \mapsto \{z\} = \{x\}^C \cup \{z\} = \{y, z\} \cup \{z\} = \{y, z\} \text{ and}$$

 $\bullet \{x\} \mapsto \bullet \{z\} = (\bullet \{x\})^C \cup \bullet \{z\} = \{z\} \cup \{z\} = \{z\}.$

As a consequence of the previous proposition, follows that the Deduction Theorem is not valid for the TK Logic when it was applied the rule R^{\blacklozenge} in a deduction.

The next results involve the models of set of formulas with the concept of ideals in a TK-algebra.

6. Strong adequacy

Definition 6.1. Let \mathscr{A} be a TK-algebra and $\Gamma \subseteq \operatorname{For}(\operatorname{TK})$. An *algebraic model* for Γ is a valuation ν : For(L) $\longrightarrow \mathscr{A}$, such that for every $\gamma \in \Gamma$, $\nu(\gamma) = 1$.

We denote that \mathscr{A} is an algebraic model for $\Gamma \subseteq \operatorname{For}(\operatorname{TK})$ by $\mathscr{A} \models \Gamma$, that is, $\mathscr{A} \models \Gamma$ if, and only if, for every $\gamma \in \Gamma$, $\nu_{\mathscr{A}}(\gamma) = 1$.

Definition 6.2. Let $\Gamma \cup \{\gamma\} \subseteq \text{For}(\text{TK})$. The set Γ *implies* γ (or γ is a *semantic consequence* of Γ) when, for every model \mathscr{A} , if $\mathscr{A} \models \Gamma$, then $\mathscr{A} \models \{\gamma\}$.

We denote that Γ *implies* γ by $\Gamma \vDash \gamma$.

Proposition 6.3. *For* $\Gamma \subseteq For(TK)$, *we have:* $\Gamma \vdash \gamma \Rightarrow \Gamma \vDash \gamma$.

Proof. Let $v: For(L) \longrightarrow \mathscr{A}$ be a model for Γ . Since \mathscr{A} is a TK-algebra, then v is a model for every axiom of TK and for every $\gamma \in \Gamma$. As in the Soundness Theorem, the rules of TK preserve validity and if $\Gamma \vdash \gamma$, then $v_{\mathscr{A}}(\gamma) = 1$.

Definition 6.4. Let $\Gamma \subseteq For(TK)$. A model ν : For(TK) $\longrightarrow \mathscr{A}$ is *strongly adequate* for Γ when, for every $\gamma \in For(TK)$:

$$\Gamma \vdash \gamma \iff \Gamma \vDash \gamma$$
.

Proposition 6.5. *Let* $\Gamma \subseteq For(TK)$ *be consistent. Then:*

- (i) the algebra $\mathcal{A}_{\Gamma}(TK)$ is non degenerate;
- (ii) the canonical valuation v_0 is an adequate model for Γ in $\mathscr{A}_{\Gamma}(TK)$ such that $\Gamma \vdash \sigma \iff \text{if } v_0(\gamma) = 1, \text{ for every } \gamma \in \Gamma, \text{ then } v_0(\sigma) = 1.$

Proof. (i) As Γ is consistent, there is σ such that $\Gamma \nvdash \sigma$. So $[\sigma] = 0 \in \mathscr{A}_{\Gamma}(TK)$ and for any axiom φ of TK it follows that $[\varphi] = 1 \in \mathscr{A}_{\Gamma}(TK)$. Then $\mathscr{A}_{\Gamma}(TK)$ is non degenerate.

(ii) $\mathscr{A}_{\Gamma}(TK)$ is a TK algebra and by construction $\nu_0 = [\]$ and $\Gamma \vdash \gamma \iff [\gamma] = 1$, for any $\gamma \in \Gamma \Rightarrow [\sigma] = 1$.

Theorem 6.6. Let $\Gamma \subseteq For(TK)$. The following conditions are equivalent:

(i) Γ is consistent;

- (ii) there is an adequate model for Γ ;
- (iii) there is an adequate model for Γ in a TK-algebra $\mathscr A$ of all closed subsets of a Tarski space $(S, \bar{})$;
- (iv) there is a model to Γ .

Proof. $(i) \Rightarrow (ii)$ It follows of preceding proposition.

- $(ii) \Rightarrow (iii)$ Since $\mathscr{A}_{\Gamma}(TK)$ is a TK-algebra and every TK-algebra is isomorphic to a subalgebra of closed sets of a Tarski space $(S, ^-)$, then the result follows.
- $(iii) \Rightarrow (iv)$ It is an immediate consequence.
- $(vi) \Rightarrow (i)$ Let \mathscr{A} be a model for Γ and suppose that Γ is not consistent. Then $\Gamma \vdash \gamma$ and $\Gamma \vdash \neg \gamma$. So $v_{\mathscr{A}}(\gamma) = 1$ and $v_{\mathscr{A}}(\neg \gamma) = 1 = \sim v_{\mathscr{A}}(\gamma)$. But if $v_{\mathscr{A}}(\gamma) = 1$, then $\sim v_{\mathscr{A}}(\gamma) = 0$ and therefore we have a contradiction.

Corollary 6.7. Let $\Gamma \cup \{\gamma\} \subseteq For(TK)$ consistent. The following conditions are equivalent:

- (i) $\Gamma \vdash \gamma$;
- (ii) $\Gamma \models \gamma$;
- (iii) every model of Γ in a TK-algebra of all closed subsets of a Tarski space $(S, \bar{})$ is a model to γ ;
- (iv) $v_0(\gamma) = 1$, for the canonical valuation v_0 .

7. Some meta-theorems

In this section, some other syntactic and semantic consequent results from previous sections are established.

Theorem 7.1. *Propositional calculus TK is consistent.*

Proof. Suppose that TK is not consistent. Then there is $\varphi \in \text{For}(\text{TK})$ such that $\vdash \varphi$ and $\vdash \neg \varphi$. By Soundness Theorem, φ and $\neg \varphi$ are valid. Let ν be a valuation in a TK-algebra with two elements $2 = \{0, 1\}$. Since φ is valid, then $\nu(\varphi) = 1$ and therefore $\nu(\neg \varphi) = \sim \nu(\varphi) = 0$. This contradicts the fact that $\neg \varphi$ is valid.

Proposition 7.2. Let $\Gamma \subseteq For(TK)$. The set $I_{\Gamma} = \{ [\varphi] : \exists k \in \mathbb{N}, \gamma_1, \dots, \gamma_k \in \overline{\Gamma} \vdash \varphi \rightarrow \{ (\gamma_1 \vee \dots \vee \gamma_k) \} \text{ is a TK-ideal in the TK-algebra } \mathscr{A}(TK).$

Proof. (1) $[\varphi], [\psi] \in I_{\Gamma} \Rightarrow \vdash \varphi \rightarrow \phi(\gamma_{1} \vee ... \vee \gamma_{k}) \text{ and } \vdash \psi \rightarrow \phi(\sigma_{1} \vee ... \vee \sigma_{m}) \Rightarrow \vdash (\varphi \vee \psi) \rightarrow \phi(\gamma_{1} \vee ... \vee \gamma_{k}) \vee \phi(\sigma_{1} \vee ... \vee \sigma_{m}) \Rightarrow \text{ (by Proposition 4.4) } \vdash (\varphi \vee \psi) \rightarrow \phi(\gamma_{1} \vee ... \vee \gamma_{k} \vee \sigma_{1} \vee ... \vee \sigma_{m}) \Rightarrow [\varphi \vee \psi] = [\varphi] \vee [\psi] \in I_{\Gamma}.$

(2) $[\varphi] \leq [\psi]$ and $[\psi] \in I_{\Gamma} \Rightarrow \vdash \varphi \rightarrow \psi$ and $\vdash \psi \rightarrow \phi(\sigma_1 \lor ... \lor \sigma_m) \Rightarrow \vdash \varphi \rightarrow \phi(\sigma_1 \lor ... \lor \sigma_m) \Rightarrow [\varphi] \in I_{\Gamma}$.

$$\begin{array}{l} (3) \ [\varphi] \in I_{\Gamma} \Rightarrow \vdash \varphi \rightarrow \blacklozenge (\gamma_{1} \vee \ldots \vee \gamma_{k}) \Rightarrow [\varphi] \leq [\blacklozenge (\gamma_{1} \vee \ldots \vee \gamma_{k})] \Rightarrow [\varphi] \leq \\ \blacklozenge [(\gamma_{1} \vee \ldots \vee \gamma_{k})] \Rightarrow \blacklozenge [\varphi] \leq \blacklozenge [(\gamma_{1} \vee \ldots \vee \gamma_{k})] \Rightarrow [\blacklozenge \varphi] \leq [\blacklozenge (\gamma_{1} \vee \ldots \vee \gamma_{k})] \Rightarrow \\ \vdash \blacklozenge \varphi \rightarrow \blacklozenge (\gamma_{1} \vee \ldots \vee \gamma_{k}) \Rightarrow [\blacklozenge \varphi] = \blacklozenge [\varphi] \in I_{\Gamma}. \end{array}$$

In the logical context, this proposition is similar to the Proposition 3.4 about ideals. In both we could take $\gamma \in \overline{\Gamma}$ because if $\gamma_1, \ldots, \gamma_k \in \overline{\Gamma}$, then $\gamma_1 \vee \ldots \vee \gamma_k \in \overline{\Gamma}$ and also $\P(\gamma_1 \vee \ldots \vee \gamma_k) \in \overline{\Gamma}$. So, the above TK-ideal I_{Γ} is the TK-ideal generated by $\{ [\gamma] : \gamma \in \overline{\Gamma} \}$.

The set $\Gamma \subseteq \text{For}(\text{TK})$ is consistent if, and only if, I_{Γ} is a proper ideal of $\mathscr{A}(TK)$, because Γ is not consistent iff $1 \in \overline{\Gamma}$ iff $[1] \in I_{\Gamma}$ iff I is not a proper ideal.

Proposition 7.3. If J is a TK-ideal in $\mathscr{A}(TK)$ and $\Gamma = \{\psi \in For(TK) : [\psi] \in J\}$, then $J \subseteq I_{\Gamma}$.

Proof. Let
$$\Gamma = \{ \psi \in For(TK) : [\psi] \in J \}$$
. Hence $[\varphi] \in J \Rightarrow \varphi \in \Gamma \Rightarrow [\varphi] \in I_{\Gamma}$.

Proposition 7.4. Let $\Gamma \subseteq For(TK)$. The TK-ideal I_{Γ} is maximal if, and only if, the set Γ is maximal

Proof. (\Rightarrow) Suppose that Γ is not maximal. In this case, there is $\psi \in \text{For}(\text{TK})$ such that $\Gamma_1 = \Gamma \cup \{\psi\}$ and $\Gamma_2 = \Gamma \cup \{\neg \psi\}$ are consistent. So $\overline{\Gamma} \subseteq \overline{\Gamma}_1 \cap \overline{\Gamma}_2$, with $\overline{\Gamma}_1 \neq \overline{\Gamma}_2$. Therefore, $I_{\Gamma} \subseteq I_{\Gamma_1} \cap I_{\Gamma_2}$ and since I_{Γ} is maximal, then $I_{\Gamma} = I_{\Gamma_1} = I_{\Gamma_2}$ what is a contradiction, because $[\psi] \in I_{\Gamma_1}$, $[\neg \psi] \in I_{\Gamma_2}$ and $1 \notin I_{\Gamma}$.

(\Leftarrow) If Γ is maximal, for each $\psi \in \text{For}(\text{TK})$, either $\psi \in \overline{\Gamma}$ or $\neg \psi \in \overline{\Gamma}$. Then for each $\psi \in \text{For}(\text{TK})$, $[\psi] \in I_{\Gamma}$ or $[\neg \psi] \in I_{\Gamma}$. Since Γ is consistent, then I_{Γ} is proper and it is not the case that $1 = [\psi] \lor [\neg \psi] \in I_{\Gamma}$. Hence, the TK-ideal I_{Γ} is maximal. □

Proposition 7.5. *If* $\Gamma \subseteq For(TK)$ *is consistent, then there is a maximal set* $\Delta \subseteq For(TK)$ *such that* $\Gamma \subseteq \Delta$.

Proof. The result follows from Zorn's Lemma.

Proposition 7.6. *If* $\Gamma \subseteq For(TK)$ *is consistent, then there is* $\Delta \subseteq For(TK)$ *irreducible such that* $\Gamma \subseteq \Delta$.

Proof. If Γ is consistent, by previous proposition, there is a maximal set Δ such that $\Gamma \subseteq \Delta$. Now, since each maximal set is an irreducible set, then Δ is irreducible. \square

Definition 7.7. A model for Γ in a non degenerate TK-algebra \mathscr{A} is a \bullet -semantic model of Γ when for every $a \in A$: either $\bullet a = 1$ or $\bullet a = 0$.

Proposition 7.8. If $\Gamma \subseteq For(TK)$ is consistent, then Γ has a \bullet -semantic model.

Proof. If Γ is consistent, it is included in a maximal set Γ^* and it has a model \mathscr{A} . By Proposition 7.4, I_{Γ^*} is maximal and from Proposition 3.24, $\mathscr{A}|_{J^*}$ is a non degenerate TK-algebra with the property that for every $\bar{a} \in \mathscr{A}|_{J^*}$, either $\bullet \bar{a} \equiv 0$ or $\bullet \bar{a} \equiv 1$. If h is the surjective homomorphism $h: \mathscr{A} \longrightarrow \mathscr{A}|_{J^*}$, so the composition hov is a \bullet -semantic model for Γ .

Given $\Gamma \subseteq \text{For}(TK)$, consider the function $h : \mathcal{A}(TK) \longrightarrow \mathcal{A}_{\Gamma}(TK)$, defined by $h([\psi]) = [\psi]_{\Gamma}$. We are going to denote a member of $\mathcal{A}(TK)$ by $[\psi]$, and a member of $\mathcal{A}_{\Gamma}(TK)$ by $[\psi]_{\Gamma}$. Naturally h is a surjective homomorphism. Now, the kernel of h is:

 $\operatorname{Ker}(h) = \{ [\psi] \in \mathscr{A}(TK) : h([\psi]) = [0]_{\Gamma} \} = \{ [\psi] \in \mathscr{A}(TK) : [\psi]_{\Gamma} = [0]_{\Gamma} \} = \{ [\psi] \in \mathscr{A}(TK) : \Gamma \vdash \neg \psi \}, \text{ because } [\psi]_{\Gamma} = [0]_{\Gamma} \iff \Gamma \vdash \psi \to 0 \text{ and } \Gamma \vdash 0 \to \psi \iff \Gamma \vdash \neg \psi \text{ and } \Gamma \vdash 1 \iff \Gamma \vdash \neg \psi.$

By Theorem 3.22, $\mathscr{A}(TK)|_{Ker(h)}$ is isomorphic to $\mathscr{A}_{\Gamma}(TK)$

Theorem 7.9. Given $\Gamma \subseteq For(TK)$, the following statements are equivalent:

- (i) for every $\varphi \in For(TK)$ exactly one holds: $\Gamma \vdash \phi \varphi$ or $\Gamma \vdash \neg \phi \varphi$;
- (ii) Γ is maximal;
- (iii) $\mathscr{A}_{\Gamma}(TK)$ is isomorphic to a non degenerate TK-algebra of sets (Tarski space) \mathscr{A} which is a \bullet -semantic model of Γ ;
- (iv) Γ is consistent and each \bullet -semantic model for Γ is adequate.

Proof. (i) ⇒ (ii) Suppose that Γ is not maximal. So there is Δ maximal such that $\overline{\Gamma} \subset \overline{\Delta}$. From Proposition 7.5, there is $[\psi] \in I_{\Delta}$ but $[\psi] \notin I_{\Gamma}$. Then $[\blacklozenge \psi] \notin I_{\Gamma}$ and Γ $\nvdash \blacklozenge \psi$. By (i) Γ $\vdash \neg \blacklozenge \psi$, then $\Delta \vdash \neg \blacklozenge \psi$ and $\Delta \vdash \blacklozenge \psi$, what contradicts the maximality of Δ.

(ii) \Rightarrow (iii) By previous analysis $\mathscr{A}_{\Gamma}(TK) \approx \mathscr{A}(TK)|_{Ker(h)}$. Now, since Γ is maximal, $\mathscr{A}_{\Gamma}(TK)$ is not degenerate and, for every $\psi \in For(TK)$, $\Gamma \vdash \psi \Leftrightarrow \psi \in \overline{\Gamma}$. So, for every $\psi \in For(TK)$, either $[\blacklozenge \psi] = 0$ or $[\blacklozenge \psi] = 1$, that is, $\mathscr{A}(TK)|_{Ker(h)}$ is \bullet -semantic. From Theorem 2.10, this TK-algebra is isomorphic to a TK-algebra of sets (or Tarski space) \mathscr{A} .

(iii) \Rightarrow (iv) Considering (iii), the set Γ is consistent. Now let $\mathscr A$ be an arbitrary \bullet -semantic model for Γ . Given $\varphi \in \text{For}(\mathsf{TK})$, either $v_{\mathscr A}(\varphi) = 0$ or $v_{\mathscr A}(\varphi) = 1$. If $v_{\mathscr A}(\varphi) = 1$, then $\Gamma \vdash \blacklozenge \varphi$ and if $v_{\mathscr A}(\varphi) = 0$, then $\Gamma \nvdash \blacklozenge \varphi$, and thus $\Gamma \vdash \neg \blacklozenge \varphi$.

(iv) \Rightarrow (i) Since Γ is consistent, by Proposition 7.8, there is a \bullet -semantic model \mathscr{A} for it. By (iv) this model is adequate. So for any $\varphi \in \text{For}(\mathsf{TK})$, either $v_{\mathscr{A}}(\varphi) = 0$ or $v_{\mathscr{A}}(\varphi) = 1$, that is, either $\Gamma \vdash \blacklozenge \varphi$ or $\Gamma \vdash \neg \blacklozenge \varphi$.

Corollary 7.10 (Decidability). *The Logic TK is decidable.*

Proof. Consider the \bullet -semantic model $\mathbf{2} = \{0, 1\}$, such that $\bullet 0 = 0$ and $\bullet 1 = 1$. Since from previous theorem any \bullet -semantic model is adequate, therefore $\mathbf{2}$ is adequate and, in this way, for any formula $\psi \in \text{For}(TK)$, $\vdash \psi \Leftrightarrow \nu_2(\psi) = 1$.

8. Final considerations

Logic TK is a kind of modal logic. The operator ♦ has an intuitive algebraic interpretation and another one given by the Tarski spaces.

As it is known from the modal logics, in the presence of the necessitation rule (NR - Proposition 4.3) the K axiom: $\phi(\varphi \to \psi) \to (\phi \varphi \to \phi \psi)$ is equivalent to $\phi(\varphi \land \psi) \leftrightarrow (\phi \varphi \land \phi \psi)$. However, only $\phi(\varphi \land \psi) \to (\phi \varphi \land \phi \psi)$ holds in TK. Therefore we can observe that TK is a subnormal modal logic. It is easier to see that by analyzing the dual operator ϕ .

Of course, we can investigate other kind of semantics for TK, particularly, some relational semantic kind.

Maybe some variations on TK-algebras can provide natural and simple algebraic models to other modal logics.

Acknowledgements

This work has been sponsored by FAPESP.

Bibliography

Bell, J. L. & Machover, M. 1977. *A course in mathematical logic*. Amsterdam: North-Holland. Blackburn, P.; Rijke, M.; Venema, Y. 2001. *Modal logic*. Cambridge: Cambridge University Press.

Carnielli, W. A. & Pizzi, C. 2001. Modalità e multimodalità. Milano: Franco Angeli.

Chagrov, A. & Zakharyaschev, M. 1997. Modal logic. Oxford: Clarendon Press.

Ebbinghaus, H. D.; Flum, J.; Thomas, W. 1984. *Mathematical logic*. New York: Springer-Verlag.

Feitosa, H. A.; Grácio, M. C. C.; Nascimento, M. C. (2007) *A propositional logic for Tarski's consequence operator*. Campinas: CLE E-prints, p.1–13.

Fitting, M. & Mendelsohn, R. L. 1998. First-order modal logic. Dordrecht: Kluwer.

Hamilton, A. G. 1978. Logic for mathematicians. Cambridge: Cambridge University Press.

Mendelson, E. 1987. *Introduction to mathematical logic*. 3. ed. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.

Miraglia, F. 1987. Cálculo proposicional: uma interação da álgebra e da lógica. Campinas: UNICAMP/CLE. (Coleção CLE, v. 1)

Nascimento, M. C. & Feitosa, H. A. (2005) As álgebras dos operadores de conseqüência. São Paulo: *Revista de Matemática e Estatística* **23**(1): 19–30.

Rasiowa, H. 1974. *An algebraic approach to non-classical logics*. Amsterdam: North-Holland. Rasiowa, H. & Sikorski, R. 1968. *The mathematics of metamathematics*. 2. ed. Waszawa: PWN – Polish Scientific Publishers.

Vickers, S. 1990. Topology via logic. Cambridge: Cambridge University Press.

Wóijcicki, R. 1988. *Theory of logical calculi:* basic theory of consequence operations. Dordrecht: Kluwer (Synthese Library, v. 199).

Hércules de Araújo Feitosa São Pauko State University - UNESP/FC BRAZIL haf@fc.unesp.br

Mauri Cunha do Nascimento São Pauko State University - UNESP/FC BRAZIL

mauri@fc.unesp.br MARIA CLAUDIA CABRINI GRÁCIO São Pauko State University - UNESP/FC BRAZIL cabrini@marilia.unesp.br

Resumo. Tarski apresentou sua definição de operador de consequência com a intenção de expor as concepções fundamentais da consequência lógica. Um espaço de Tarski é um par ordenado determinado por um conjunto não vazio e um operador de consequência sobre este conjunto. Esta estrutura matemática caracteriza um espaço quase topológico. Este artigo mostra uma visão algébrica dos espaços de Tarski e introduz uma lógica proposicional modal que interpreta o seu operador modal nos conjuntos fechados de algum espaço de Tarski.

Palavras-chave: Espaço de Tarski, espaço quase topológico, operador de consequência, lógica modal, modelo algébrico.