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Abstract 
Detailed discussions are presented on the determination of Planck’s constant from the Planck radiation law. The 
laboratory setup consists of a low cost lamp and a photodiode such that a light filter of known wavelength is 
interposed between the two pieces of apparatus. The lamp filament is the approximate blackbody of which radiation is 
governed by the Planck’s law of radiation. For the purposes of didactics, it is explained that laboratory precautions will 
enable accurate data. However, if the governing equation is subjected to spurious approximations, errors will be 
inevitable in the computation. This was the situation before. Now, when the setup is in operation, a phenomenon of 
resistance-temperature filter effect is observed. Data collected have been subjected to interesting analyses, which can 
be used to introduce students into numerical experiments. Usually, a pair of intensity values calculated from the 
observed phenomenon, would be required. Ratio of the intensities is then used in the exact Planck’s radiation 
equations leading to a transcendental exponential equation. Solutions of this equation subsume the precise value of the 
Plank’s constant. 
 
Keywords: Planck’s constant determaintion, numerical experiment, photoemperature. 
 
 

Resumen 
A continuación se presenta un grupo de discuciones detalladas sobre la determinación de la constante de Planck que 
aparece en la ley de radiación del mismo nombre. En un laboratorio se dispone de una instalación de bajo costo que 
consta de una lámpara y un fotodiodo, de tal forma que un filtro de luz de longitud de onda conocida es interpuesto 
entre las dos piezas del aparato. El filamento de la lámpara se coomporta como un cuerpo negro cuya radiación está 
gobernada por la ley de radiación de Planck. Para fines didácticos, se explica que se obtienen datos aproximados 
como una medida de precaución en el laboratorio. Sin embargo, si la ecuación gobernante está sujeta a 
aproximaciones espurias, los errores se propagarán inevitablemente en los cálculos. Esta fué una situación anterior. 
Ahora, cuando se pone en marcha esta nueva configuración, un fenómeno de filtración entre la resistencia y la 
temperatura es observado. Los datos recolectados han sido sujetos a análisis interesantes, los cuales pueden ser 
utilizados para introducir a los alumnos en el estudio de los experimentos numéricos. Usualmente, serán requeridos un 
par de valores de intensidad calculados a partir del fenómeno observado. La razón de las intensidades es entonces 
usada en las ecuaciones de radiación de Planck llevándonos a una ecuación trascendental exponencial. Las soluciones 
de esta ecuación nos proveen de un valor preciso para la constante de Planck. 
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I. INTRODUCTION 
 
In all quantum phenomena, it appears that the Planck’s 
constant, h, is ever present. A notable experimental 
determination of, h, may be attributed to the work of 
Millikan during the years in the period of 1905 to 1916. 
With sophiscated apparatus, Millikan’s final result was 
(5.57 ± 0.03) × 10-34Js [1]. This was based on the Einstein 
interpretation of the photoelectric effect. One might 
surmise this as the reason for the existence of several form 
of photoelectric effect experiments in order to determine, 
h. In the present days’ efforts, there are more sophiscated 

sets of apparatus [2], that are based on other principles. It 
is, however, interesting to notice that the determination of, 
h, in all existing experiments is dependent on other 
fundamental constants [2]. This is also the trend to be 
observed in many undergraduate laboratory experiments 
[3, 4]. In this work, too, the Boltzmann’s constant, kB, is 
the fundamental constant associating with, h. We note with 
enthusiasm, that, there is an absolute interesting laboratory 
exercise for the determination of kB [5]. 

In all undergraduate laboratory exercises on, h, the 
emphases are on precautions in the functions of the 
apparatus. While this is good training for the students, it is 
insufficient. Emphases are also necessary on the choices of 
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methods of analysis of data especially when 
approximations are to be used. One of the aims of this 
presentation is an exposition of wrong results owing to 
misleading approximations of the governing Planck’s 
radiation equation, [4]. Another aim is to further test the 
phenomenon of resistance-temperature filter effect, RTFE, 
[6]. The RTFE is due to the physical implications that the 
filter used in the experimental setup has the ability to filter 
temperature. This temperature is certainly the 
phototemperatue consequent to the photocurrent detected 
by the photodiode used.  

In Section II, the manners by which the Planck 
radiation equation is used is explained in more details than 
that was given in [6]. Section III will give the laboratory 
setup of the experiment with further explanation of the 
RTFE. All details of the numerical experiments and 
analyses are presented in Section IV. Discussions of 
results are in Section V. Section VI is for conclussions. 
 
 
II. THEORY 
 
The Planck radiation law governs the energy distribution 
in blackbody radiation [7]. In terms of frequency of the 
radiation, the law can be stated as  
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where ρ, in units of J/m3/s-1, is the radiation energy per 
unit volume, and per unit frequency interval, dν, at the 
temperature, T, c is the speed of light, kB is the 
Boltzmann’s constant and h is the Planck’s constant. For 
equation (2) to be applicable it has to be expressed in the 
standard units of intensity, which are W/m2. Multiplying 
both sides of (2) by c/ν gives 
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where I will be used to denote intensity and i will denote 
electric current in what follow. Units of the equation are 
now W/m2 as given by equation (3). 

For a fixed frequency, ν, at different temperatures Tj 
and Tl the ratio of any two intensities Ij(Tj) and Il(Tl) is  
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where j ≠ l = 1, 2, 3,… 

It should be observed that equation (4) is expressible as 
 

( ) ( )exp exp 1 0 ,l l
j l

j j

I Ih kT h kT
I I

ν ν− + − =        (5) 

 

so that for measured values of intensities Ij and Il, and 
known values of Tj, Tl and ν, equation (5) is a form of 
transcendental equation which does not have a closed form 
of solution for h/k to be found [9]. It is, however, an 
interesting exercise to apply anyone numerical procedure 
such as the Newton’s Method or the fixed-point iteration 
method [8]. The Newton’s Method was attempted in this 
tutorial. 

In the visible range of frequencies used, the 
approximate form of equation (4) based on hν >> kTj so 
that exp(hν/kTj) >> 1 is [4] 
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                         (6) 

 
Results from applications of equations (5) and (6) will be 
discussed in more detail in the following sections. The 
laboratory setup involves measurements of series of 
voltages Vj with their corresponding electric current, ij, of a 
light bulb filament as shown in Fig. 1. To determining the 
intensities Ij and temperature Tj one requires to use the 
Stefan-Boltzmann law which can be expressed as [4] 
 

W ≡ P/A = σT4,                              (7) 
 
where σ is the Stefan-Boltzmann constant and A is the 
surface area of the filament enclosed in the bulb, and P is 
the power emitted. 
 

Resistor 
D

E

Pd

FILTER

 
 
FIGURE 1. Laboratory setup of electric circuit. A and E should 
be stabilized sources and not ordinary batteries which drain every 
second. See text for further explanation. 
 
 
If a power law of the form T ∝ γR  is assumed, and an 
empirical relation between resistance of the filament, Re, 
and temperature Te, through the power dissipated can be 
expressed as  
 

γβσ 442
eeeee RTARiP =≡= ,                      (8) 

 
in which β and γ are constants, and from equation (8) the 
empirical relation of Re and Te is [4]  
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where R0 denotes the filament resistance at temperature T0. 
The room temperature has been used as T0 for which R0 
was measured using a MICRONTA digital resistance 
meter, [6]. Using equation (8) in (9) yields 
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so that a plot of ln( 2

ei Re) on the vertical axis against ln(Re) 
on the horizontal axis is expected to give a straight line in 
order to determine the power, γ, using the least squares fit. 
One should notice that the previous works reported have 
been based on the approximation so far explained [4, 9, 
10]. Also, the circuit given in Fig. 1 is similar in operation 
to that was used in [4], implying that similar raw data 
would be recorded. However, in our present tutorial, we 
have applied RTFE which is due to filter effect on the 
emitted power. It is necessary to explain the RTFE at this 
point. 

Figure 1 consists of two circuits: the heat emitting 
circuit and the detector circuit. Although the pair of 
circuits operates in complete analogy to thermionic 
conversion circuits of heat to electricity [11], the later has 
the photodetector fundamentally of which function is to 
detect the amount of current that is proportional to the 
filtered heat. In the filtering process, therefore, there is 
some content of temperature which is proportional to the 
detected current. The photopower content 2

pi Rp, where ip 
and Rp denote photocurrent and photoresistance, should 
have the relation of Stefan-Boltzmann law as expressed by 
equation (8) for the same power value, γ, already 
determined. That is, for the detected current, ip, the 
empirical relation with Rp and Tp is 
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It should be noticed that ipj are recorded simultaneously 
with Vej and iej in the raw data. Equation (11) which arises 
from RTFE enables us to calculate Rp and Tp. For example, 
by taking the ratio of equation (8) and (11) one gets 
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Equation (12) leads to 
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By expressing Tp in the same form similar to equation (9), 
Tp = (Rp/R0)T0 and then taking the ratio of this expression 
to equation (9), Tp is obtained in terms of ip, ie and Te as 
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It is pertinent to realise that the photointensity of the 
filament due to RTFE for anyone measured set of Vej, iej 
and ipj is Ipj = 2

pji Rpj/A. Another set of raw data values Vel, 

iel and ipl gives photointensity Ipl = 2
pli Rpl/A where Rpj and 

Rpl are calculated using equation (13). With the fixed value 
of frequency (specified for the filter), ν, expressions of the 
applicable Planck radiation law given by equation (3) can 
be written for Ipj and Ipl. Ratio of the photointensities taken 
as in equation (4) would lead to 
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where Tpj and Tpl are obtainable from equation (14). 
Theoretically, one deduces that hν >> kTpj is an improved 
approximation over hν >> kTej, if Tej > Tpj, so that 
exp(hν/kTpj) >> 1 is, by implication, more reliable. Now, a 
form of equation (6) when RTFE is invoked is 
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It should be observed that in either equation (15) or 
equation (16), the filament surface area A is not required 
[4]. If it is necessary, A can be determined from C1 as 
given by equation (10a). 

Equation (16) is an improved version of equation (6) as 
given in ref. [4]. However, the two equations do not give 
reasonable results as would be seen shortly. Advanced 
degree students would find it stimulating to attempting 
solutions of equations (5) and (15) using anyone of several 
numerics [8]. Even then, there are problems. One problem 
concerns the large value of exp(hν/kTej) or exp(hν/kTpj). 
Another one is that due to the presence of exponents; 
either equation has several solutions depending on starting 
input values when the Newton’s Method is applied. In this 
wise a simple Mathematica statement of FindRoot helps a 
lot. Overall, analyses show that equation (15) contains an 
exact value of h, the Planck’s constant. 
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III. LABORATORY SETUP OF THE EXPERI-
MENT 
 
As indicated in Fig. 1. most of the pieces of apparatus are 
common in many undergraduate laboratories. A is a 
stabilised variable d.c power source, of range 0.0 V to 
350.0 V; B and C are MICRONTA digital multimeters for 
measurements of voltage and current. D happens to be an 
analog microammeter as it is an important precaution to 
avoid saturation currents which may likely occur if 
measurement of detected currents are in miliampers. E is a 
PHYWE stabilised a.c./d.c power source of which the d.c 
source was operated at a constant value of 11.0 V to 
biasing the RS 651-995 Photodetector which was chosen 
because of its large area and flexibility to various optical 
filter frequencies up to a peak wavelength of 900 nm. 

The setup consists of two circuits (see Fig. 1): the heat 
emitting circuit through a 60W light bulb, and the heat 
(current) detector circuit essentially by the RS 
photodetector Pd. The two circuits communicate by one 
way from the lamp to the photodetector. However, the 
detected current, ip, is measured with a microammeter D 
and the function of the resistor, 1.0 kΩ, is to dissipate the 
detected power. Certainly the circuit (Fig. 1) is simple to 
operate. By increasing the d.c. voltage, A, in the heat 
emitting circuit, the filament resistance, Re, and 
consequently its temperature Te, increase. The voltage 
across the filament is measured by B and denoted as Ve 
while the electric current through it is ie measured by C. 
Spontaneously, Pd, detects the heat converted to 
photocurrent, ip, measured by D of which value depends 
on the interposing filter (see Figs. 1 and 2). It is therefore, 
conformable to reason that the detected current has some 

content of resistance Rp, and consequently temperature Tp 
filtered from Re and Te. This process we refer to as 
resistance-temperature filter effect, RTFE, resulting into 
equations (13) and (14). Ve, ie, and ip are the physical 
quantities of the raw data shown in table 1; other quantities 
recorded are calculated as indicated. 

 
 

2
3

4

567

8

1 
 
FIGURE 2. Schematic drawing of essential pieces of apparatus: 
1. Connecting cords to variable General \purpose (Philip Harris) 
power supply, 2. Bulb socket, 3. Lamp filiament, 4. Lamp nulb, 
5. PHYWE light filter, 6. Polyvilnyl tube, 7. Connecting cords to 
biasing voltage (i.e., PHYWE stabilzed power surce), 8. RS 651-
995 Photodetector. 

  
TABLE I. Raw experimental data and calculated filament resistance, power, temperature and photocurrent; other quantities are calculated data 
due to RTFE: photoresistance, photopower, and phototemperature. Parameters used are: T0 (Room temperature) = 310 K, R0 (resistance at T0) 
= 64.5 Ω, bulb wattage = 60W, tube length, Lt = 13.0 cm, biasing voltage, Vb = 11.0 V, filter wavelength, λf  = 578.0 nm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is found that avoiding darkening the laboratory is both 
precautionary [4] and applicable to most other experiments 
in our didactic programme. A blackened-inside polyvinyl 
tube of diameter 8.0 cm was used inside of which the 
communication of lamp bulb and photodetector takes place 
thus avoiding other sources of interfering radiation. 
Amount of current detected was found to depend on tube 
length: shorter tube gives more intensity of photocurrent. 

Too, the tube fitted exactly into the PHYWE filters used. A 
simple thermometer was used to measure  T0, the room 
temperature, and R0, the resistance at T0, was measured 
using MICRONTA Digital Multimeter. T0 and R0 are 
required in equation (9). The data recorded in table 1 are 
for the PHYWE yellow light filter of wave length, λf = 
578.0 nm. 

   Ve  
  (V) 

    ie  
  (A) 

Re=Ve/ie   
    (Ω) 

Pe=
2
ei Re 

  (W) 

     Te  
    (K) 

  ip 
(μA) 

     Rp  
    (Ω) 

Pp=
2
pi Rp  

  (pW) 

    Tp  
   (K) 

124.5 0.2065 602.906 25.7093 1735.12  4.0 0.011561 0.18497 0.50534 
156.4 0.2313 676.178 36.1753 1890.89  6.0 0.017368 0.62523 0.68561 
181.8 0.2492 729.535 45.3046 2001.65  8.0 0.023194 1.48443 0.85162 
199.5 0.2612 763.783 52.1094 2071.68 10.0 0.028964 2.89642 1.00591 
213.0 0.2700 788.889 57.5100 2122.51 12.0 0.034734 5.00174 1.15264 
228.2 0.2795 816.458 63.7819 2177.87 14.0 0.040519 7.94164 1.29370 
241.2 0.2879 837.791 69.4415 2220.38 16.0 0.046135 11.8106 1.42591 
252.2 0.2944 857.337 74.3066 2259.10 18.0 0.051945 16.8301 1.55848 
264.5 0.3000 881.667 79.3500 2306.98 20.0 0.058251 23.3004 1.69824 
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Results are also reported here of data collected (see 
table 3) for PHYWE green and blue light filers at the same 
T0, R0 and other parameters recorded in table 1. Actually, 
the data discussed here constitute just one set of a very 
large number of sets of data collected and analysed over a 
period of two years up to now. The effort has so far been to 
diligently observe any drastic deviation from the RTFE. 
 
 
IV NUMERICAL EXPERIMENTS 
 
In this section we detail our numerical procedures. We 
begin with the determination of γ-parameter, [4] which is 
clearly by using equation (10). The resulting straight line 
(see Fig 3) from the least squares fit yields the value of γ 
that is subsequently used to calculate the variables given in 
table I. Specifically, the variables are Te from equation (8), 
Rp from equation (12), Tp from equation (13) and Pp = 

2
pi Rp. The significances of equation (10) include 

determination of surface area of the heat emitting filament 
through the parameter C1. 

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

ln
(P

e )

6.3 6.4 6.5 6.6 6.7 6.8
ln(Re )

 
FIGURE 3. Graph of ln Pe (emitted power) against ln Re 
(filament resistance) to determine γ. See table I for calculations of 
Pe and Re. 

We first sought to compute the Planck’s constant, h, using 
the procedure of reference [4]. By equation (5), the 
implication of instruction given in, [4], is that Ij ≡ ipj so that 
we have 

⎟
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where ν = c/λ with c meaning the speed of light, λ, the 
wavelength of filter in use as given with the data of table I, 

and kB is the Boltzmann constant of which value used here, 
[12], (IOP, 1999/2000), is 1.38065812 ×10−23 JK-1. 

In equation (17), it should be noted that Te1 was taken as 
the reference temperature of the filament so that a plot of 
(1/Tej – 1/Te1) along the horizontal axis against ln(ip1/ipj) 
along the vertical axis should yield a straight line; the slope 
of this line obtained by the least squares fit should be 
equivalent to hν/kB. Using the data given in table 1, the 
plotted points give straight line. In fact the least squares 
equation is  

1
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1 1ln 13031.64 0.264413 ,p
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where j = 2, 3, 4,…, 9. The graph is not shown here for one 
obvious reason that Ij ≠ ipj. The correct relation is Ie = 

2
pji Rp/A where A is the filament surface area. 

The gradient value 11585.34 from equation (18) yields 
h = 3.468905 ×10−34 Js. Other equally carefully collected 
data yielded values in the range of 4.9 × 10-34 Js to 5.65 × 
10-34 Js. 

We next used equation (5) with the incorrect Ie — ip 
relation. Equation (5) would then be 
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It appears that equation (19) should be soluble with anyone 
standard numerical methods [8], in which, h, becomes the 
unknown variable to be found. However, there are 
problems. First, the resulting value in the exponent, 
obtained by evaluating ν/kBTej is too large for any hand 
calculator. Use of FORTRAN 95 gives floating point; the 
progarmmes could not be executed. It was supposed that 
the problem could be overcome by writing equation (19) as 

( ) ( ) 01expexp
11

1 =−+−
p

pj
ej

p

pj
e i

i
Tx

i
i

Tx ,         (20) 

so that x = hν/kB. Still due to the exponent, there is another 
problem when the Newton’s method [8], was used in 
FORTRAN coding. Equation (20) has several solutions that 
closely depend on the input values.  

Here, we report most interesting results when the 
simple statement of Mathematica FindRoot [13] was used 
(see Appendix A). One notices that the FindRoot statement 
works by the principle of Newton’s method of solving 
equations. The non-unique solution still persists for either 
equation (19) or (20). However, Mathematica is able to 
return a solution. By inputting a value such as 6.6 ×10−34 
which is close to the standard value [12], one could get a 
solution. Once more, it was found that the incorrect Ij— ipj 
relation affects the results of equation (19). 

We now focus attention on equations (15) and (16) 
which resulted from the use of RTFE on the heat emitted 

ln (Pe) = 2.998129 ln (Re) – 15.94766 
 γ = 0.7495323 
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by the filament. With the data in table I, equation (16) 
becomes 

⎟
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Fig. 4 shows the plot of (1/Tpj – 1/Tp1) along the horizontal 
axis against ln(Ppj/Pp1) along the vertical axis. The least 
squares line yielded is 

168903.111166409.4ln
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The value obtained for h here is 1.109061 ×10−35 Js. 

0

1
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3

4

5

-ln
(P

p1
 /P

pj
 )

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-(1/Tpj - 1/Tp1 )

 
FIGURE 4. Plotting of equation (17) with a linear fit to 

calculated data using the RTFE. Note that Ipj =
2
pji Rpj/A ≡ Ppj/A 

and Ipl = 2
pli Rpl/A ≡ Ppl/A, where A is the filament surface area. 

See text and table I for further explanation. Equation (22) is the 
least squaures line. 
 

When equation (15) was used the results are satisfactory 
using the Mathematica statement given in Appendix A. The 
analysis is in the following. With the data in table I, 
equation (15) becomes 
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where 1

2
1

2
pppjpjpj RiRir ≡ in equation (23). 

As an example, if j = 3, equation (23) is 

exp(7.43404 × 1037x) 

- 8.02535exp(4.41127 × 1037x) + 7.02535 = 0.   (24) 
 
Mathematica is able to return 6.62588 ×10−34 Js with a 
starting value of 6.6279 ×10−34 Js. Mathematica returns the 
same, h, values for j = 2, 3, 4,…, 9. When the reciprocals of 
the ratios of intensities are used, i.e., instead of Ipj /Ip1, one 
used Ip1/Ipj, by correctly rewriting the resulting equations 
the same results were obtained. 

All procedures above were for the case of yellow filter. 
Data were collected and similarly analyzed for green and 
blue filters. See table II.  
 
TABLE II. Results obtained for Planck’s constant using the setup 
of Figs. 1 and 2 for the three filters for the same ambient 
conditions and with the same numerical experiments explained in 
the text. 
 

Filter 
Colour 

Filter 
Wavelength (nm) 

   Planck’s constant, h    
   (Js) × 10−34           

Blue          436.00    6.62605 ± 0.00019 
Green          546.00    6.62588 ± 0.00019 
Yellow          578.00    6.62588 ± 0.00019 

 
 
V. RESULTS AND DISCUSSION 
 
Based on the simple Mathematica FindRoot statement (see 
Appendix A), our results are given in table 2. The result 
obtained for the blue filter is of interest for one reason: the 
range of the multimeters used did not permit more than two 
data points, and the microammeter used for measurement 
of photocurrent is analogue. If we used a digital 
microammeter, or even better a digital nanoameter, it 
would be possible to divide the interval into, at least, five 
or more data points. In deed, under the same conditions of 
ambient temperature, T0 = 310K, the Planck’s constant 
value, h, obtained for the yellow and blue filters is the 
same. It could be observed that the quoted absolute error is 
tolerable. (table II). 
 
 
VI. CONCLUSIONS 
 
Figures 1 and 2 depict the laboratory setup used for the 
determination of the Planck’s constant, h. Here, the applied 
law is the Planck radiation equation. The efforts so far have 
been directed towards presentation of detailed procedures 
of numerical experiments. If laboratory precautions are 
emphasized for didactics, it is now clear that experimental 
situations abound where numerical precautions are 
inevitable. 

We circumvented systematic errors that affected 
previous results [4, 9, 10]. It was realized that errors 
resulted from misleading approximations in the governing 
equation. It was found, for an example, that the 
approximations appear to be improved when variables Tpj 
were used in exp(hν/kBTpj) >> 1 instead of variables Tej in 
exp(hν/kBTej) >> 1, where j = 1, 2, 3,.., 9; 9 being the 
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number of data points in the laboratory measurements for 
the case of yellow filter. That is because the emitted 
temperatures, Tej are not of equal magnitude with the 
phototemperatures Tpj. In another words if iej ≠ ipj, it is 
reasonable to expect Tej ≠ Tpj. Empirically, we find that Tej 
> Tpj. It would be recalled that Tpj define temperatures 
calculated using equation (14) which is one of the results of 
RTFE already explained in the text. Tej are the temperatures 
of the emitted heat by the filament, which would 
consequently be filtered to produce Tpj. It was observed that 
the filtered currents (i.e., the photocurrents) ipj would 
always be less than the emitted currents, iej, (i.e., iej > ipj).  

For final analysis, it was found to be corrective by 
developing and solving equation (15) numerically with a 
simple Mathematica FindRoot (see Appendix A). The 
equation has several solutions each depending on the input 
or starting value. Alongside the correct relation between 
photointensities, Ipj, and photocurrents, ipj, which is Ipj ≡ 

2
pji Rpj/A; A being the surface area of the filament enclosed 

inside the bulb, we found that (see table II) the 
recommended value of the Planck’s constant, h, is one of 
the series of the solutions of equation (15). In particular, if 
it is assumed that the Planck’s constant permissible for 
applications is in the range of 6.60 × 10-34Js to 6.63 × 10-

34Js, then, our results for yellow and green filters have 
absolute error of 0.0029% compared to the standard value, 
[12], (IOP, 1999/2000). For the blue filter, the absolute 
error is 0.0003%. 
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APPENDIX A 
 
Essential statement of Mathematica FindRoot are given 
here as equation (A1). Data for computation are obtained 
from table I. We use the parameters of equation (24). 
Answers returned by Mathematica are numbered. 
 
       E^ (c1*x) – ((I2/I1)*(E^ (c2*x))) + ((I2/I1) – 1.0)  
        /. {c1 → 7.434038 * (10^37), c2 → 4.411266 * 
       (10^37), I1 → 1.84968 * (10^ -13), I2 → 1.484433 * 
       (10^ -12)} 
       FindRoot[% == 0, {x, 6.6279 * (10^ -34), 4.2 * 
       (10^ -34,), 7.44 * (10^ -34)}],                                 (A1) 
 
    ( )x371041127.4exp02535.802535.7 ×−  

      ( )x371043404.7exp ×+ ,                                  (A2) 
 
                {x → 6.62588 × 10-34}.                                 (A3) 

 
The final answer is given by equation (A3). It should be 
noticed in the Mathematica statement [13], that 6.6279 
×10−34 Js is the starting value that was chosen and the other 
two values correspond to an interval within which results 
are desired. After giving a notice of accuracy Mathematica 
returns only one value as the answer given by equation 
(A3). Equation (A2) is the transcendental exponential 
equation (24) returned by the Mathematica statement.  
 

 


