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Abstract 
Extended transformation method is applied to find dual and self -dual potentials for a general quantum mechanical 
multiterm potential. Exact bound state solutions of the Schrödinger equation for a specific multiterm potentials are 
obtained in any chosen dimensional space, using extended transformation (ET) method which may find applications in 
atomic, molecular, nuclear and particle Physics. We have found for multiterm power law potentials, under the 
framework of ET that a family relationship emerges among the parent and the newly generated exactly solvable 
potentials (ESPs). The normalizability of bound state solutions of the generated quantum systems is also discussed. 
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Resumen 
El Método de transformación extendida se aplica a los potenciales dual y auto-dual para un potencial mecánico 
cuántico multitérmino. Soluciones exactas de estado acotado a la ecuación de Schrödinger para potenciales 
multitérminos específicos son obtenidas en cualquier espacio multidimensional escogido, usando un método de 
transformación extendida (ET) el cual puede encontrar aplicaciones en Física atómica, molecular, nuclear y de 
partículas. Hemos encontrado que para una ley de potencia para potenciales multitérmino, bajo el esquema ET una 
relación de familia emerge entre los potenciales padres y los potenciales exactos solubles nuevos generados (ESPs). La 
normalización de las soluciones de estado acotadas de los sistemas cuánticos generados es también discutida. 
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I. INTRODUCTION 
 
Considerable efforts have been made in recent years 
towards obtaining exact analytic solution (EAS) of the 
Schrödinger equation for potentials of physical interest [1, 
2, 3, 4, 5, 6]. The EAS of the Schrödinger equation of a 
given quantum system (QS) represents an important 
problem in many fields of physics with much attention and 
with numerous applications as it provides us insight into 
the physical problem in question. However only a very few 
potentials governing physical systems yield analytical 
solutions. The study of integral power potential model has 
relevance in connection with the imaginary time formation 
of quantum mechanics and its relation with diffusion 
theory. It has been found widely used in the atomic and in 
molecular Physics. We have applied the extended 
transformation (ET) method [7, 8] to generate class of new 
exactly solvable potentials (ESPs) in any preassigned 
dimensional spaces in the non-relativistic quantum 
mechanics. The method of generation of ESP is based on 
transformation which includes a coordinate transformation 

(CT) and is followed by a functional transformation (FT) 
and a set of plausible standard ansatz to restore the 
transformed equation to standard Schrödinger equation 
form. The CT alone can generate new ESPs from an old 
one. But it leads the problem regarding dimensionality of 
the Euclidean space of the generated quantum system. The 
FT allows us to have dimensional extension and/or 
dimensional reduction of the generated quantum systems. 
Starting from exactly solved k -term potential, ET can in 
principle generate 12 −k  different new exactly solved 
potentials. A very important property of the ET formalism 
is that the wavefunctions of the generated quantum 
systems are almost always normalizable provided the 
behaviour of transformation function ( )rg B  is smooth. The 
paper is organized as follows: In section II formalism of 
ET is given. In the section III normalizability condition of 
the generated quantum system is discussed. In section IV 
dual and self-dual ESP are generated from the already 
known singular integral power-law potential. Section V 
comprises of findings of our investigations. 
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II. FORMALISM 
 
We have considered a general quantum mechanical 
multiterm potential ( )rVA  in AD -dimensional space and is 
given by:  

( ) i
3

1i
iA rarV α∑

=
=                                 (1) 

 
The parameters of the potential are defined by ai’s and is 
termed as A-quantum system (A-QS). 

The radial part of the Schrödinger equation in AD - 
dimensional space for A-QS ( 12 == m ) is  
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where the normalized eigenfunctions ( )rAΨ  and energy 
eigenvalue AE  are known for the given ( )rV A . Prime 
denotes the differentiation of the function with respect to 
its argument. 

Under extended transformation (ET), which consists of 
a coordinate transformation ( )rgr B→  and is followed by a 
functional transformation of the wave function: 
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B B A Br f r g r−Ψ = Ψ ,                       (3) 

 
the transformation function ( )rgB  and the modulated 
amplitude function ( )rfB  have to be specified within the 
framework of ET. As ( )rAΨ  is the eigenfunction of an 
exactly solved potential, hence ( )rBΨ  also gets specified 
exactly, henceforth called B-QS. 
 The transformed B-QS after implementing ET on A-
QS becomes: 
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To mould the above equation to the standard Schrödinger 
equation form in a chosen BD - dimensional Euclidean 
space, the coefficient of ( )rBΨ′  in the equation (4) is put as: 
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This yield: 
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The transformation function ( )rgB  is at least three times 
differentiable and ( )rfB  is non-singular function of r. 

The corresponding BD -dimensional Schrödinger 
equation for the B-QS is found to be: 
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where 
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is the Schwartzian derivative symbol . 

To implement ET on A-QS, we have to select a term of 
( )( )rgV BA  as working potential denoted by ( )( )rgV B

W
A  

and make the following ansatz: 
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Let the working potential be selected as 
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α= ,                      (12)  
 
which will specify, by equation (9), the functional form of 
the transformation function ( )rg B  and is: 
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obtained by a simple integration. The transformation 
function ( )rg B  has the desirable local property ( ) 00 =Bg  
and asymptotic property ( ) ∞=∞Bg  by putting the 
integration constant equal to zero. 

Equations (10) and (13) lead to: 
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We define the parameters of the potential as 

1

2

1

21

4

2
1

1

B1
A

2
B A

2
2

a
E

2
2EC =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
−=

+

α
α

α

,      (15) 



Generation dual and self-dual quantum mechanical potential systems 

Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009 575 http://www.journal.lapen.org.mx 
 

where 2
BC  is the Characteristic Constant of B-QS and 
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The exponents of the B-QS potential are defined as: 
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The energy eigenvalue of B-QS is obtained from Eq. (15) 
and is: 
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The corresponding BD -dimensional Schrödinger equation 
for B-QS reduces to 
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We have obtained following relations from Eq. (18): 
 

( )( ) 422 11 =++ βα  ,                  (21a) 
 

( )( ) ( )2222 321 +=++ αβα ,            (21b) 
 

( )( ) ( )2222 231 +=++ αβα .            (21c) 
 
These equations specify the jβ s of the dual B-QS from 

the known siα  of A-QS and the generalization of the 
duality relation of the one term potential.  

Referring to equations (21a-21c) one finds that if the 
transformed B-QS is identical to the untransformed A-QS 
for a particular working potential say, 1

1
αra , implies that 

11 βα =  which fixes either 01 =α  or 4− . For non- trivial 
transformation, .41 −=α  

A further consequence is 432 −=+αα . Therefore we 
may conclude that a three term potential will be self -dual 
under ET when the working potential chosen has the 
exponent (-4), and also the sum of the other two exponents 
is again (-4). This immediately rules out of any two term 
self-dual potential. 

III. NORMALIZABILITY OF THE GENERA-
TED QUANTUM SYSTEM 
 
A very important property of the extended transformation 
is that it seems to preserve the normalizability property of 
the wavefunctions of generated quantum systems. The 
normalizability condition for BD - dimensional B-QS is 
can be proved under a fairly general conditions and is 
given by 
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This leads to normalization constant BN  as; 
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The expectation value for a potential of exactly solved 
quantum system is always finite and so a part of it also 
finite. The A-QS eigenfunction ( )rAΨ  is the normalized 
wavefunction of a genuine quantum mechanical system. Its 
existence also implies that ( )rBΨ  are also normalizable for 

0BE ≠ , since the behaviour of ( )rgB  is smooth so far local 
and asymptotic behaviour are concerned. Transformation 
function carries over the normalizability property of the 
parent quantum system (QS) to the daughter QSs. 
 
 
IV. APPLICATION IN INTEGRAL POWER 
SINGULAR POTENTIAL 
 
A. Dual quantum systems 
 
We have considered the following exactly solved quantum 
system [9] to investigate the condition of dual and self-
duality of a potential: 
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The exact analytic solution in 3-dimensional spaces is 
provided by [9] as 
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With a constraint  
 

( ) ( )
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The energy eigenvalue for the potential system is provided 
by [9] and is: 
 



L.Buragohain and S.A.S.Ahmed 

Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009 576 http://www.journal.lapen.org.mx 
 

4A
bE a
c

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
.                   (27) 

 
Selecting ( ) 2arrV W

A = as the working potential and 
utilizing equation (9), yields 
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Applying equation (10), we have found the following 
potential of B-QS as: 
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Where the parameters of the potential are:  
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The relation between the angular momentum quantum 
numbers 

Al  and 
Bl  of A-QS and B-QS are obtained from 

equation (11) as  
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The energy eigenvalue of B-QS comes out from the 
equation (30) as 
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With the constraint equation 
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The exact energy eigenfunction of B-QS obtained from 
equation (3) in D-dimensional Euclidean spaces and is: 
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The normalization constant BN of B-QS is defined as 
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The shape of the potential as well as eigenfunctions and 
corresponding energy eigenvalue for B-QS are shown in 
Figure 1. 

Regarding the values of the parameters of the potential 
we fix them as follows: for a fixed values of 1B  and 1C  the 
value of 1A is determined from the constraint equation as 
given by equation (34). 
 
B. Self-dual quantum system 
 
Selecting the second term of equation (24) as working 
potential 
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and utilizing equation (9), we have found the 
transformation function as 
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Applying equation (10), we have the following self-dual 
potential of C-QS: 
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Where the parameters of the potential are: 
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Energy eigenvalue of C-QS from equation (34) comes out 
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With the following constraint equation between the 
parameters of the potential 
 

( ) 22
2

2

2

2 8222 CADl
C
B

C +−+=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ .     (42)  

 



Generation dual and self-dual quantum mechanical potential systems 

Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009 577 http://www.journal.lapen.org.mx 
 

The relationship between the angular momentum quantum 
numbers 

Al  and Cl  of A and C-QSs are obtained from 
equation (11) as  
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The exact energy eigenfunctions of C-QS is obtained in D-
dimensional Euclidean spaces from equation (3) and is 
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The CN  is the normalization constant of C-QS. 

The shape of the potential as well as eigenfunctions 
and the corresponding energy eigenvalue for C-QS are 
shown in Figure 2. 
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FIGURE 1. The continuous red curves are for the B-EQS with 
the {EBO,VBO(r),ΨB0(r)}, where the parameter set is (EB0=-12.7, 
A1=-17.8, B1=1.5, C1=-8.57, lB=0, D=3) and the blue curves are 
for the B-EQS {EB1, VB1(r), ΨB1(r)}, where the parameter set is 
(EB1=-7.5, A1=-13.728, B1=1.5, C1=-8.57, lB=1, D=3). The graphs 
are drawn in arbitrary scale. 
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FIGURE 2. The continuous red curves are for the C-EQS with 
the {ECO,VCO(r),ΨC0(r)}, where the parameter set is (EC0=4.91, 
A2=1, B2=1.83, C2=4, lC=0, D=3) and the blue curves are for the 
C-EQS {EC1, VC1(r), ΨC1(r)}, where the parameter set is (EC1=7, 
A2=1, B2=6, C2=4, lC=1, D=3). The graphs are drawn in arbitrary 
scale. 

V. CONCLUSIONS 
 
In quantum multiterm potentials it is possible to generate a 
finite set of different exactly solved quantum systems by 
selecting the working potential. In our present work we are 
taking one term working potential. But we are not 
considering two or multiterm working potentials as they 
offer the following practical difficulties: the integral 
specifying the transformation function gB(r) cannot be 
extracted analytically in most of the cases and even if such 
integrals are found they are of the form F(r)= r + c and the 
analytical inverse function F-1(g) cannot be found. The 
daughter along with the parent potential formed family 
relationship (multiplet structure) as one can go form one 
ESP to the other ESPs with the help of ET. The multiplet 
structure however is no related to representation of any 
group, as ET doesn’t form a group in the conventional 
sense. In view Self-duality constraints that only monoterm 
and three terms self dual potential are possible. It is also 
noteworthy that under ET the constraint equation gets 
converted in to the energy eigenvalue expression and the 
energy eigenvalue in to a constraint equation of the parent 
and daughter quantum systems. 
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