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Abstract
We discuss the general solution of a time-dependent Schrodinger wave equation (SWE) with time-dependent linear
potential within the framework of invariant operators. We obtain the Gaussian wave packet evolution by choosing the
—a&ﬁ%

ansatz for the weight factor of the form g(4) = Ae which is the eigen function of this operators.
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Resumen

Se discute la solucion general de una ecuacion de onda de Schrodinger dependiente del tiempo con un potencial lineal
dependiente del tiempo dentro del marco de referencia de operadores invariantes. Se obtuvo la evolucién del paquete

QVO NON ASCENDAM ¢

Gaussiano de onda escogiendo el ansatz para el factor de peso de la forma g(1) = Ae

funcién de este operador.

—a/12+%
4% la cual es la eigen

Palabras clave: Mecanica Cuantica, Oscilador Arménico dependiente del tiempo.

PACS: 01.40.Fk, 01.78.+p

I. INTRODUCCION

In recent time the time-dependent Harmonic Oscillator
(TDHO) continues to have widespread applications in
various branches of Physics [1, 2, 3, 4, 5, 6, 7]. A great
attention has been paid to solving exactly time-dependent
quantum mechanical problems. Among such methods of
solving this problem is the famous quantum invariant
operator by Lewis [8]. Other interesting methods of
solving (TDHO) includes the propagator [7, 9, 10], and
time-space transformation approaches [11]. The study of
TDHO apart from their mathematical interest has many
applications in the fields of quantum transport [12, 13],
quantum optics [14, 15] and quantum information [16].
The analytical solutions of the one dimensional TDHO
with a time-dependent linear potential has attracted
considerable interest recently [17, 18]. Guedes [17] solved
the TDHO with a time-dependent linear potential using the
invariant operator of Lewis and Riesenfeld [19]. Following
the trend, Feng [18] use the space -- time transformation
approach to find the plane-wave type and the Airy --
packet solutions. Bekkar et al however commented that the
Airy packet solutions are just a superposition of the plane-
wave type solution [20].
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Schuch [21] has solved the TDHO using the Riccati
and Ermaker methods for harmonic and the free motion. In
terms of the test-function methods, G. Lu et al. [22] has
constructed an exact wave -- packet train (GWPT)
solution, whose centre moves accelerating along the
corresponding classical trajectory. In addition, the wave
packet solutions in terms of the Wigner Distribution
Functions (WDF) had been constructed by Schuch [23].

Luan and Tang [24] in their paper re-examined the
solution of the TDHO in the presence of a time dependent
linear potential using the invariant operator raised by
Guedes [17].Following the approach raised by Luan and
Tang [24] and Maamache and Sadi [26], we choose a
generalized ansatz for the weight factor and solve the
Schrédinger equation to obtain the general wave function
solution for the TDHO with linear damping potential .The
organization of the paper is as follows. In section 2, we
examine the invariant operator of time dependent
Hamiltonian. In section 3, we evaluate the exact solution
of the SWE and Wave packet evolution of the system. A
brief conclusion is given in section 4.
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Il.  INVARIANT OF TIME-DEPENDENT
HAMILTONIAN

The time-dependent Schrédinger equation describing the
motion of a damped system is given by

.. d ~

|hay/(q,t): Hy(q,t), 1)
where H is the Hamiltonian Operator being induced by
the external time dependent driving force F (t), is define
as

| = ’ﬂpiz_ n 2
Ht)=e o F(t)ge”, )

where p,§ are the canonical momenta and co-ordinate
and y is the damping coefficient.

The solution of Eq. (1) is possible if a non-trivial
Hermitian operator | (t) exists and satisfies the invariant
equation

di(t) _ alt) ;. \a _
ek ?+(m) [I,LH]=0. 3)

The invariant operator I(t) obeys the eigen value
equation

(), (a.t)= 20, (a,t), 4)

where @,(q,t) is the eigen function and A is the
corresponding eigen values. The solution of Eq. (4) takes

the form,
¢.(at)= exp{;[z(ﬂ ‘Cz(t/z?t)‘ Boqz)}}, ®)

where the constants A(t), B, (t) and C(t) are to be
determined later. The general wave function ¥(q,t) of Eq.
(1) is related to y,(q,t) by

w(a.)= [d2 g(2)p, (a,t), (6)

where a,(t) satisfies the eigen value equation for the
Schrédinger equation as

he, (at)a,(t)= i(hjt— H}oi(q,t) : ™)

The time-dependent invariant operator 1(t) is of the form
[24]
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f(t)= Alt)p + B(t)a+Clt), (8)

and taking the time-derivative of Eq. (8) yields

MO~ A+ AP + B0+ BN SO, ©)

where the dot denotes the derivative with respect to time.
The commutation of the invariant operator I(t)and the
Hamiltonian, using Egs. (2) and (8) becomes

[1(t), B ]= inAt)F (t)e +% PB(tle”, (10)

and putting Egs. (9-10) into Eq. (3), we obtain the time-
dependent coefficients as:

Alt)= A —B;{t—ije", (11)

B(t)=B, , (12)

[¢]

C(t):CO—A)F(t)(HlJe"

Y (13)
B,(t?! t t), e
=2 =t t— | ——.
mi4 2 y %

Furthermore, substituting Egs. (5), (11-13) into Eq. (7), we
get

B 2 7t 2
_ _ E 7t 2o L 1 1 n_ &
A [CO %F(t)(k}/je +m[4+2+y]e sz .

2mh{ﬁb—82°(t—}2/j J“T (14)

) S——

Now using Eq. (6), we write the wave function y, (q,t) as

v.(at)=e""p,(at) (15)

and on substituting Egs. (5) and (14) into Eq. (15) yields:
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X

2
1 B.[t2 7t
1 1_( 0_%F<t>(1+y)eyt_ng(;+;_;)eyt_f;2)
dt
2
0 B 2\
2mh|:A0—7°(t—;)e7 :|
2ol 2 c. - F(t)(l+1)e7t—B—° £+ii e7t—£ -B g2
i (o] AO y m\ 4 2 y }’2 q Oq
G S
(16)
Here Bo = F, as defined in Ref [24] and the factor F

A

must satisfy

B
-i| -9 |yt+ia, (0)
By (, 2 [’\nj *
a0 (3 (2

X exp

Im(F,)=0, (17)

to ensure the physical acceptable solution of Eq. (4).

111. WAVE PACKET EVOLUTION

The general solution of the Schrddinger equation is
obtained via Eq. (6) by choosing the appropriate weight
factor. The weight factor chosen in [20] leads to Airy
function solutions while that used by Maamache and Sadi
[26] gives a general wave-packet solution.

For our discussion, we use the ansatz for the weight
factor in the form;

(18)

1
2 —( ai? +£]
e #

[ a
9= (ﬁhAo;z@

where a and b are real constant. We present in figure (1)
and Figure (2) the plot of g (/1) with A for Eqg. (18) and

that of Maamache and Sadi [26].
Substituting, Egs. (18) and (16) into Eq. (6) yields

il g2
y(a,) = | \/51 e ! [%}
\/hA(t)ﬂ(a+iIM%mdt')
q (l C(t) | +il L I
nA(t) Lj"zhmAz(t)' [a J;thAz(t)dt ]b]
exps—
(19)
[ I 2im A2 ]

X exp{—— 2 (0)+iF, ;/t}
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After some simplification, we find

2

Y(a.1)

Xexp

2
t
1 dt
20A(t) a2+ |~
47n%m? {AZ(t )}

From Eqg. (20), it can be observed that; at any time t the
wave packet is peaked at

2
i} [ c® 2,1 |
a=m(0) I2h 2(t) 4m2h2(‘£A2(t')J @

and this result coincides with the expectation value of g.
Denoting the following parameters in Eq.(19) as

. Ja
hA(N27 a+'j.2hmA2( )
0
aOU I(t)2r1mA2(t')+ aH{thAZ() (22)
-1
) Lt
a=14 aHE';thAZ(t')

simplifies it as follows:

y/(q,t) = Nexp{(a[qﬁ] 21 )[C(t)q+Boq2}+ 0‘/1(0) -iF ﬂj}

(23)

Now using Eq. (23), we obtain the expectation value in
momentum as

(%)= a0ffivian)=

(24)
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Similarly, the expectation value in coordinate is

(2) = <W(q,t)‘dz‘w(q,t)>,

t
=hA(t) a+|I
0 2mhA(t)2
(25)
2 t t
wham” | | c®) o+ |2+ ] at bl
0 2mAA(t) 0 2MAA(t)
and this leads to the uncertainty relation in position as
AQ=HA®M) a+i| ———— |, (26)
" ()( 5= hA(t)ZJ

and its momentum uncertainty

relation counterpart
becomes
C(t) BpC(t)

1
R RSN Yo i( _Bo , 2\l |2
v Aq[“+{h % +2ﬂ)+I(A(t)2 a2 ann “)f | @D

Thus the uncertainty product is expressed from Eq.(27) as

ApAq = z|:1+{(ﬂ2 p) 4 E az)ﬂ; (28)

2/ 52 \A(t)
This in general does not attain the minimum uncertainty
value. However, for a time dependent oscillator; we cannot

(t) L BoC®
A(t) aA(t)

h
expect to find strictly coherent state (APAQ) = 7 for all

time t [25]. In addition, the full quantum behavior of the
system is manifested by the change of the width in Eq.

(20):

(29)

- B 1 (¢
o (t) = < 27nA (1- 20( )exp(;/t)|:a T 2(-[/-\(t)2

Here the width of the damped wave packet at y — 0 leads

to exactly the same result obtained by [26] using a
Gaussian like weight function and this width determines
the shape of the spreading wave packets.

IV. CONCLUSION

In this paper we studied the Schrddinger equation with a
time dependent damped linear potential via invariant
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operator .With the choice of our ansatz as Eq. (18),we
obtain the exact solution of the time dependent SWE with
linear damped potential. We also evaluated the wave
packet evolution of the system and we have shown the
uncertainties and their relations to the TDHO.
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