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Abstract 
In this paper, we derived some equivalent expressions between both, escape velocity and orbital velocity of a body that 

orbits around of a central force, from which is possible to derive the Newtonian expression for the Kepler’s third law 

for both, elliptical or circular orbit. In addition, we found that the square of the escape velocity multiplied by the 

escape radius is equivalent to the square of the orbital velocity multiplied by the orbital diameter. Extending that 

equivalent expression to the escape velocity of a given black hole, we derive the corresponding analogous equivalent 

expression. We substituted in such an expression the respective data of each planet in the Solar System case 

considering the Schwarzschild radius for a central celestial body with a mass like that of the Sun, calculating the speed 

of light in all the cases, then confirming its applicability. 
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Resumen 

En este trabajo, derivamos algunas expresiones equivalentes entre la velocidad de escape y la velocidad orbital de un 

cuerpo que orbita alrededor de una fuerza central, de las cuales se puede derivar la expresión Newtoniana para la 

tercera ley de Kepler para un cuerpo en órbita elíptica o circular. Además, encontramos que el cuadrado de la 

velocidad de escape multiplicada por el radio de escape es equivalente al cuadrado de la velocidad orbital multiplicada 

por el diámetro orbital. Extendiendo esa expresión equivalente a la velocidad de escape de un agujero negro dado, 

derivamos la expresión equivalente análoga correspondiente. Substituimos en tal expresión equivalente los respectivos 

datos de cada planeta en el caso del Sistema Solar considerando el radio de  Schwarzschild para un cuerpo celeste 

central con una masa como la del Sol, calculando la velocidad de la luz en todos los casos, confirmando así su 

aplicabilidad. 

 
Palabras clave: Velocidad de escape, Velocidad orbital, Gravitación Newtoniana, Agujero negro, Radio de  

Schwarzschild. 

 

PACS: 02.10.De, 04.70.Bw, 96.12.De                                                                                                    ISSN 1870-9095 

 

 

 

I. INTRODUCTION 

 
Several mathematical relations in physics and their variables 

can be related between them by equivalent expressions, 

which link comparatively different aspects of physical 

phenomena, such as the escape velocity and the orbital 

velocity of a body orbiting around of a massive celestial 

body, which constitutes the central force of a gravitational 

system as a planet, the Sun, a star and even a black hole, 

where both velocities are related with the gravitational 

potential energy and with the conservation of energy in a 

gravitational system. Such equivalent expressions have 

served as mathematical tools that allow to improve a 

detailed comparative analysis between parameters which 

describe the physical phenomena, such as the fields, the 

forces and the interactions, among others; reason for which 

we can raise the importance of the equivalent expressions 

and their contribution in the analysis and the theoretical 

development that explain the dynamic interaction between 

the bodies, even though some of these expressions have 

been derived from algebraic equivalences and sometimes 

they have not an intrinsic physical referent or meaning 

nothing more than be a tool which relates the physical 

phenomena and their variables in a numerical or 

comparative way. 

In this paper we review both, classical escape velocity 

and orbital velocity of a body that orbits around of a central 

force. Such a review allows one to derive some equivalent 

expressions between both velocities, from which is possible 

to derive the Newtonian expression for the Kepler’s third 

law for a body in both, elliptical or circular orbit. We derive 

some equivalent expressions between both velocities, 

finding that square of escape velocity multiplied by the 

escape radius is equivalent to the square of orbital velocity 
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multiplied by the orbital diameter. Extending that equivalent 

expression to the escape velocity in a given black hole, 

which is related with the Schwarzschild radius, we derived 

corresponding analogous equivalent expression between 

both, the escape velocity of a black hole (it is, the speed of 

light) and the orbital velocity of a circular orbit around of 

such a black hole. In order to confirm the applicability of 

such an equivalent expression, by substituting in that 

expression the respective data of each planet in the Solar 

System case considering the Schwarzschild radius for a 

celestial body with a mass like that of the Sun, we calculate 

the speed of light in all the cases. Thus, considering that the 

algebraic expressions are equivalents if their final values 

obtained by substituting the respective values of the 

variables always are the same, we confirm their 

applicability. Even though some of the here derived 

equivalent expressions do not have an intrinsic physical 

referent or meaning, the terms related in the here derived 

equivalent expressions can be also applied by substitution to 

calculate new equivalent expressions of the known 

mathematical expressions, including those expressions 

which relates the speed of the light in a gravitational system 

of two bodies. 

 

 
II. THE CLASSICAL ESCAPE VELOCITY 

REVISITED 
 

The escape velocity is considered the minimum speed in a 

radial direction that a body or projectile would have to be 

moving when it reaches a point in space at a radial distance 

from the center of mass of a celestial body in order to 

escape of the gravitational force of such a celestial body [1, 

2]. That means that the body or projectile which is sent up 

with such a speed will not return to fall on such a celestial 

body, being in rest with a null velocity to a sufficiently great 

distance (infinite in principle) of such a celestial body [1]. 

Since relative velocity is the velocity of one body with 

respect to another, relative escape velocities is related only 

in systems of two bodies. 

As known, the phenomenon of escape velocity is a 

consequence of conservation of energy of a body being 

projected upward against the downward gravitational force, 

from the center of mass of a cosmological body point of 

view. Thus, the escape velocity does not depend on the mass 

of the body or projectile, but it depends on the form of the 

gravitational potential energy of the body at any radial 

distance from the center of mass of a celestial body. For a 

body in motion with a given total energy, which is moving 

subject to conservative force it is only possible for the body 

to reach combinations of places and speeds which have that 

total energy, and places which have a higher potential 

energy than this cannot be reached at all. 

The Law of conservation of energy states that the total 

of the body’s potential and kinetic energy is a constant. In 

the rotating coordinate system, the expression of total 

energy [1] on the orbital plane is defined as 

 

),(rVEE K                              (1) 

 

where EK is the kinetic energy and V(r) is the potential 

energy. 

For a gravitational system, EK corresponds to the 

Newtonian kinetic energy of a body of mass m and V(r) 

corresponds to the gravitational potential energy of such a 

mass at any radial distance r from the center of mass of the 

celestial body. By comparing the potential and kinetic 

energy values at some given point with the values at 

infinity, it is possible to determine the escape velocity 

equation. Thus, when total energy is zero, it gives the 

minimum energy required for the body to escape to an 

infinite distance from the gravity of the celestial body of 

mass M. From expression (1), by conservation of energy, we 

get 
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where v is the velocity of the body of mass m and G is the 

gravitational constant. Solving equation (2) for square of 

velocity, then gives 
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where ve is the escape velocity and re is the escape radius 

from the center of mass of the celestial body. 

 

 

III. THE ORBITAL VELOCITY AND SOME OF 

ITS EQUIVALENCES WITH THE ESCAPE 

VELOCITY 
 
If a body attains escape velocity, but is not directed straight 

away from the celestial body (or such a body arrives from 

outside and is captured by the gravitational force), then it 

will follow a curved path. Although that curved path does 

not form a closed shape, it is still considered an orbit whose 

focus is located at the center of mass of the celestial body. 

Assuming that gravity is the only significant force in the 

system, this body’s velocity at any point in the orbit will be 

proportional to the escape velocity at that point due to the 

conservation of energy. Thus, when total energy is minor 

than zero, by his respective balance with the kinetic energy 

and the gravitational potential energy in the gravitational 

system, as well as by its constant of the angular momentum, 

then the body remains orbiting around of the celestial body 

[1]. 

According to the first Kepler’s law [3], the orbit of every 

planet is an ellipse with the Sun at one focus.  

We can generalize the first Kepler’s law for any celestial 

body which constitutes the central force of a gravitational 

system with its center of mass at the focus. Thus, 

considering that a body is orbiting around of a celestial 

body, the distance of maximum approach from the center of 

mass is r1 and the one of maximum distance is r2, where r1 < 

r2, so that the velocities which the body has in these two 
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extreme positions are v1 and v2, respectively, where v1 > v2. 

The constant of angular moment and of the energy allows 

one to relate these four magnitudes, giving 
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and  
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Dividing both expressions (4) and (5) by the mass m, then 

finding out the velocity v1 from equation (4), substituting in 

(5) and rearranging, yields 
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In the same way, dividing both expressions (4) and (5) by 

the mass m, then finding out the velocity v2 from equation 

(4), substituting in (5) and rearranging, yields 
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According to the equation (5), each one of the two extreme 

positions (r1 and r2) has a particular potential energy, which 

changes in relation to the distance during the motion of the 

body along of the elliptical trajectory. A graphic of the 

potential energy is commonly performed [4] to show the 

kind of motion that a body can take along to the elliptical 

trajectory according to their particular energy value.  

From expressions (4) and (5), we can derive the velocity v2 

in function of radius r1 and its respective velocity v1, giving  
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Thus, applying the equivalence from equation (3), we can 

express the velocity v2 in terms of the escape velocity, 

giving  
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Substituting equivalence (9) in expression (4), we get 
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and finding out for square of escape velocity multiplied by 

the radius r2, yields 
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Deriving the ratio between v1 and v2 from equivalence (9) 

and replacing in expression (4), we can obtain the radial 

distance r2 from the center of mass, giving  
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Furthermore, the addition of the radial distances r1 and r2 is 

equal to the major axis of the elliptical orbit, so that dividing 

the major axis by two, semi-major axis is obtained as 
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Thus, substituting expression (13) in equivalence (11), and 

then equaling to the equation (2), we get 

 

,222
1

2 GMavrv ee                        (14) 

 

where finding out for the orbital velocity, yields 

 

.
a

GM
v                                  (15) 

 

which is the orbital velocity of a body in elliptical orbit 

around of a celestial body. 

The transverse orbital velocity is inversely proportional 

to the distance to the central body because of the law of 

conservation of angular moment, or equivalently, Kepler’s 

second law which affirms that an imaginary line joining a 

planet and the Sun sweeps out equal areas during equal 

intervals of time, this states that as a body moves around its 

orbit during a fixed amount of time, the line from the center 

of mass to the body sweeps a constant area of the orbital 

plane, regardless of which part of its orbit the body traces an 

ellipse during that period of time. This means that the body 

moves faster near its perihelion than near its aphelion, 

because at the smaller distance it needs to trace a greater arc 

to cover the same area. For elliptical orbits with small 

eccentricity, the length of the orbit is close to that of a 

circular one, and the mean orbital velocity can be 

approximated either from observations of the orbital period 

T and the semi-major axis of its orbit. Approximated orbital 

velocity for elliptical orbits with small eccentricity is given 

by 
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Thus, equaling expressions (15) and (16), we get the 

Newtonian equivalence of GM term with respect to the 

period T for an elliptical orbit, defined as 
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which contains the third Kepler’s law, that affirms that the 

square of the orbital period of a planet is directly 

proportional to the cube of the semi-major axis of its orbit. 

Nevertheless, due to the nonzero planetary masses and 

perturbations in the planet orbits, Kepler’s laws apply only 

approximately and not exactly to the motions in the Solar 

System. 

Furthermore, although most orbits are elliptical in 

nature, a special case is the circular orbit. In this case, we 

can consider the orbital motion of a body in a circular orbit 

around a central force, rather than elliptical orbit; it is when 

the radius of the circumference is ro = r1 = r2, and its 

respective velocity is vo = v1 = v2. Thus, substituting in 

equation (8), yields 
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and finding out from (18) for square of the velocity, then 

square of orbital velocity for a circular orbit is given by  
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where vo is also called circular velocity of a body at a given 

point of a circular orbit around a central force in Newtonian 

gravitation [1], and the radius ro is the radial distance from 

the central force. In the circular motion, circular velocity is 

given by 
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and having the Newtonian equivalence of GM term with 

respect to the period T for a circular orbit, defined as 
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we can substitute square of velocity from expression (20) in 

equation (21), then square of orbital velocity of a body in a 

circular orbit around of a central force is once again given 

by expression (19). 

For a circular orbit, where the radius of the 

circumference is ro = r1 = r2, equivalence (11) takes the 

form 

 

,2)( o
2
oo

2
ooo

2
o

2 Dvrvrrvrv ee            (22) 

 

where Do is the diameter of the circular orbit. Thus, 

expression (22) indicates that square of escape velocity 

multiplied by the escape radius is equivalent to the square of 

orbital velocity multiplied by the orbital diameter. In order 

to confirm the applicability of this equivalent expression 

(22) by evaluating its variables, we find out expression for 

escape radius, giving 
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Thus, having the data of the Sun-Earth system [5, 6], for 

instance, where Earth’s mean orbital velocity equals to 29.8 

km/sec, mean Sun-Earth distance equals to 149.60 10
6
 km, 

and Sun escape velocity equals to 617.7 km/sec, then 

substituting such data in equivalent expression (23), 

calculated escape radius equals to 696,368.17 km, which is 

approximately the mean Sun radius, confirming the 

applicability of this equivalent expression. 

 

 

IV. THE ESCAPE VELOCITY OF A BLACK 

HOLE AND ITS EQUIVALENCE WITH THE 

ORVITAL VELOCITY 

 
As background, a black hole is a phase in the evolution of a 

star that has collapsed on itself, such that its gravitational 

force is so strong that not even light can escape its pull [7, 

8]. Thus, it is called a “black hole” because light cannot 

escape from it, and it is as appears to telescopes. The idea of 

a body so massive that even light could not escape was first 

proposed by John Michell in 1783. In 1796, Laplace 

promoted the same idea of the so-called “dark star” [9]. In 

1916, Karl Schwarzschild derived what is called the 

Schwarzschild radius from Einstein’s gravitational field 

equations in the General Theory of Relativity [10]. It 

represents the event horizon of a black hole or the limiting 

radius. The event horizon or Schwarzschild radius is the 

defining size of a black hole with respect to its mass and it 

can be determined from the escape velocity equation. 

Schwarzschild radius is the magnitude of radius inwich the 

mass of an spherical celestial body should be concentrated 

to the speed of light corresponds to the escape velocity. The 

Schwarzschild radius [11] is defined as 
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where c is the speed of light in vacuum (equals to 

299,792.458 km/s
2
) and M is the mass of the black hole. 

Considering the mass of Sun, for instance, the corespondent 

Schwarzschild radius is approximately of 2.95 km. 

The Schwarzschild radius is also linked to gravitational 

colapse as the black holes formation, but hopoteticaly, a 

body can be orbiting a black hole at some given distance far 

enough of the event horizon. Thus, from expression (24), 

correspondence between escape velocity in Schwarzschild 

radius and escape velocity of any celestial body described in 

expression (3), is commonly defided as 
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where escape velocity corresponds to the speed of light and 

escape radius corresponds to the Schwarzschild radius. 
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Although, this defined escape velocity equation for a given 

black hole is based by comparison on the classical equation 

(3) and not the relativistic, it is still valid [11]. 

According to this given correspondence in equivalence 

(25), extending expression (22) for a circular orbit around of 

a black hole, the equivalent expression is given by 
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and finding out for speed of light from equivalence (26), 

yields 
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Considering the Schwarzschild radius for a celestial body 

with a mass like one of the Sun, in the Solar System case 

Table I is built by substituting correspondent planetary data 

[5, 6] in equivalent expression (27), where speed of light 

amount is obtained respectively, then confirming the 

applicability of this equivalence between the related 

velocities and their respective radius in such an expression. 

Deviation is due to the accuracy of the data. 

 
TABLE I. Data of planets with calculated speed of light. 

 

Planet 

Mean Sun-

planet 

distance 

(ro) 

(106 km) 

Mean 

orbital 

velocity (vo) 

(km/sec) 

Calculated 

equivalence 

with speed of 

light 

(km/sec) 

Deviation 

(%) 

Mercury 57.91 47.87 299,767.89 0.008 

Venus 108.208 35.02 299,785.05 0.002 

Earth 149.60 29.80 299,934.88 0.047 

Mars 227.963 21.97 299,795.77 0.001 

Jupiter 778.60 12.44 300,108.08 0.105 

Saturn 1,433.50 0.09 301,903.04 0.704 

Uranus 2,872.50 6.29 300,346.13 0.184 

Neptune 4,495.10 5.37 299,581.11 0.070 

 
 

V. CONCLUSIONS 

 
By reviewing both, the classical escape velocity and orbital 

velocity of a body that orbits around of a central force, we 

can derive some equivalent expressions between both 

velocities. Specifically, one of these equivalent expressions 

indicates that square of escape velocity multiplied by the 

escape radius is equivalent to the square of orbital velocity 

multiplied by the orbital diameter, which we can extend to 

the black hole case in order to relate both, the escape 

velocity of a black hole and the orbital velocity of a body in 

a circular orbit around of a black hole. 

Although some equivalent expressions have been 

derived from algebraic equivalences and sometimes they 

have not an intrinsic physical referent or meaning, 

equivalences here derived can be applied in education to 

extend the explanation of the motion of the bodies under a 

gravitational force and to show the existing relation between 

the escape velocity and the orbital velocity, which comes 

from a common expression of conservation of total energy 

in a gravitational system.  

Such equivalences can be also applied in education to 

derive the Newtonian expression for the Kepler’s third law 

for both, elliptical or circular orbit, through to their relation 

between the velocity of a body and its position with respect 

to the central force. Extending the equivalences to the case 

of a central force as a black hole, it is possible to improve 

the understanding of the Kepler’s laws in a gravitational 

system of two bodies and their relation with the 

Schwarzschild radius.  
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