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ABSTRACT: Even though Patrick Suppes has many important contributions in the logic, methodology, and philosophy
of economics (not to mention economics itself) his work in this area is, surprisingly, not well known within the
community of economic methodologists. The aim of the present paper is to contribute to fill this lacuna. After
presenting his general views on philosophy of science, the paper discusses at length his important notion of
model of data, in connection with his famous learning experiments. His views on fundamental measurement
are also discussed in connection with such experiments. The article contains a comprehensive bibliography of
Suppes on the subject.
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RESUMEN: Aunque las contribuciones de Patrick Suppes en el ámbito de la lógica, la metodología y la filosofía de la economía (por no
mencionar a la propia economía) hayan sido importantes, los metodólogos de la economía apenas las conocen. El propósito de este
artículo es cubrir este vacío. Presentaremos su concepción general de la filosofía de la ciencia y analizaremos después con detalle
su noción de modelos de datos, surgida de sus famosos experimentos sobre aprendizaje. Discutiremos también su concepción de la
medición fundamental en relación con tales experimentos. El artículo incluye además una amplia bibliografía de los trabajos de
Suppes sobre el tema.

Descriptores: Patrick Suppes, metodología económica, modelos de datos, teoría representacional de la medida, filosofía de la ciencia.

1. Introduction

There is no doubt that Patrick Suppes is one of the eminent figures in the history of
the philosophy of science. For no less than fifty years Suppes has produced not only
a very influential methodology for the empirical sciences but, on top of his influential
views on the nature of scientific theory and fundamental measurement, he has made
scientific or philosophical contributions to probability theory, space and time theory,
physics, language theory, psychology, robotics and economics. His book Representation
and Invariance of Scientific Structures (Suppes 2002) presents an overview of many of these
contributions but for some reason omits his work on economics, even though his work
in this field is no less impressive than in the others. The present paper intends to present
an outline of Suppes’ contributions to economics and its methodology in their systematic
interaction. I will rely heavily on (Suppes 2002), since most of the philosophical views
expressed in his many papers are summarized there.

A bibliography of Suppes’ contributions to economics or its methodology (approved
by him and included here) contains no less than fifty six items, which can be classified
as follows:

THEORIA 72 (2011): 347-366



348 Adolfo GARCÍA DE LA SIENRA

1. General Methodology and Philosophy of Science
2. Fundamental Measurement
3. Utility and Expected Utility
4. Rational Choice Theory
5. Experimental Economics
6. Welfare Economics
7. Economics of Science
8. Theory of Consumer Demand.

Since his production is concentrated in the other topics, I shall not deal with 6 and
7 here; for these topics the reader is referred to the bibliography. The other themes
except 8 can be included in 1 and 2. After considering his general methodology and
philosophy of science, I will attempt to present a systematic reconstruction of his theory
on consumer demand.

2. General Methodology and Philosophy of Science

Even though Suppes is a serious practitioner of statistics, and has published his philo-
sophical reflections on the different interpretations of the concept of probability, his
methodology proceeds almost always in connection with scientific theory. Theories are
the product of creative scientific work, as well as the reference point of any further
scientific work: measurement, experimentation, testing, application, analysis. For Suppes
statistical, in particular econometric hypotheses, presuppose some theoretical model,
even if implicitly. This, of course, raises the question of what a scientific theory is.

In the Introduction of (Suppes 2002) this question is addressed but, in contradis-
tinction to questions for which we can expect a clear and definite answer, like “What is
a rational number?” or “What is a nectarine?”, Suppes warns that this question

fits neither one of these patterns. Scientific theories are not like rational numbers or nectarines.
Certainly they are not like nectarines, for they are not physical objects. They are like rational
numbers in not being physical objects, but they are totally unlike rational numbers in that scientific
theories cannot be defined simply or directly in terms of other nonphysical, abstract objects.
(Suppes 2002, 2)

Since the question we are considering cannot be answered directly in simple terms,
philosophers have intended to address it from different angles. One approach has
been what Suppes calls “the traditional sketch” (also known as the “statement view”),
according to which

a scientific theory consists of two parts. One part is an abstract logical calculus, which includes the
vocabulary of logic and the primitive symbols of the theory. The logical structure of the theory is
fixed by stating the axioms or postulates of the theory in terms of its primitive symbols. For many
theories the primitive symbols will be thought of as theoretical terms like ‘electron’ or ‘particle’,
which cannot be related in any simple way to observable phenomena.
The second part of the theory is a set of rules that assign an empirical content to the logical calculus
by providing what are usually called ‘co-ordinating definitions’ or ‘empirical interpretations’ for at
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least some of the primitive and defined symbols of the calculus. It is always emphasized that the
first part alone is not sufficient to define a scientific theory; for without a systematic specification
of the intended empirical interpretation of the theory, it is not possible in any sense to evaluate
the theory as a part of science, although it can be studied simply as a piece of pure mathematics.
(Suppes 2002, 2-3)

Observe here Suppes’ use of the term ‘science’: it is not pure mathematics, but “we mean
by science, as opposed to mathematics, the development of theory and the confronting
of theory with quantitative data” (Suppes 1968a, 651)

Suppes finds the traditional sketch so sketchy that it “makes it possible to omit both
important properties of theories and significant distinctions that may be introduced be-
tween different theories” (Suppes 1967a, 57). This calls for a different way of conceiving
scientific theories.

Even though the question “What is a scientific theory?” cannot be answered in a
straightforward way, a very common practice has been to think that any particular theory
can be identified through a set of sentences formulated in a formal language. But it is easy
to see that formulation of real-life scientific theories in such a way is utterly impractical,
particularly when the theory under analysis presupposes more than first-order logic (for
in such a case it becomes necessary, in order to formulate the theory, to include first-
order formulations of all those presupposed theories: set theory, real analysis, etc.). Since
complex scientific theories “are similar to the theories studied in pure mathematics in
their degree of complexity”,

in such contexts it is very much simpler to assert things about the models of the theory rather
than to talk directly and explicitly about the sentences of the theory, perhaps the main reason for
this being that the notion of sentence of the theory is not well defined when the theory is not
given in standard formalization. (Suppes 1967a, 58)

Here the relevant notion of model is precisely the one that Bourbaki (1968) defined
under the label ‘mathematical structure’. These structures are introduced by Suppes
through the definition of a set-theoretic predicate, like ‘A is a topological space’ or ‘A is a
game’.1

Suppes proposes to characterize or identify any scientific theory through a certain
class of structures since, even if it appears formulated intrinsically — by means of
a certain set of statements (not necessarily capable of being formulated as sentences
of first order logic) —, the question of whether such a formulation is adequate, or
whether a formulation in first order logic is feasible, can only be answered after an
extrinsic characterization of the same is given. Even though Suppes thinks that it is not
important to provide precise definitions of the concept of scientific theory in terms
of necessary and sufficient conditions, of the form “X is a scientific theory if and
only if so-and-so”, and has a certain tendency to shy away from grand schemes about
scientific theories and their relations, he recognizes that an essential ingredient of any
sophisticated scientific discipline is a hierarchy of theories, starting with models of data
and culminating with what he calls a fundamental theory. Before attempting a general,

1 For a rigorous formulation of Suppes’ notion of set-theoretic predicate, see Da Costa and Chuaqui
(1988).
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abstract characterization of such a hierarchy, and in order to illustrate Suppes’ view of a
“sophisticated” scientific discipline, I shall reconstruct here the hierarchy he presented
in his famous paper “Models of Data” (Suppes 1962b). The “fundamental” theory is
linear response theory (LRT), whose potential models can be described as follows.

Definition 1. A is a possible model of LRT iff there exist A, E, X ,F , P and θ such that
A, E are sets each with two elements and

0. A = 〈X, F , P, θ〉;
1. X = ×∞n=1Xn, where Xn is a replica of A× E for each n < ω;
2. F is the smallest Borel field containing the cylinder sets of X ;
3. P is a a probability measure overF ;
4. θ is a real number in the interval [0, 1].

Thus, a possible model of LRT is a structure of the form 〈B, θ〉, whereB is a probability
space 〈X, F , P 〉 as described. A possible interpretation of such an abstract structure
is as follows. A is the set of possible responses a1 or a2 of an ideal subject who wants
to anticipate in which of two panels in front of him a light will appear. Pressing the left
button (a1) means that the subject expects the light will appear in the left panel; pushing
the other (a2) that it will appear in the one at the right. The appearing of the light in the
left is reinforcing event e1; the other is e2. The subject sits there forever, responding
again and again to the reinforcements given on succesive trials. ai,n will denote the event
of response ai on trial n; ej,n the event of reinforcement ej on trial n, where i, j = 1, 2.
If we let Xn be A× E for each n < ω, the measure space 〈X, F 〉 can be built as the
product of the replicas 〈Xn,Fn〉.X is defined just as the Cartesian product of theXn,
namely the set of all sequences x = (x1, x2, . . . ) where xn ∈ A × E, and F is the
σ-algebra generated by the cylinder subsets of X . θ is the learning parameter and xn

denotes the equivalence class of all sequences in X which are identical with x through
trial n. Clearly, xn is a pair of the form (ai, ej) (i, j = 1, 2) for each n.

The fundamental laws of LRT assert that the probability measure P and the learning
parameter θ are related in a special way. The triple (xn−1, ai,n, ej,n) denotes a sequence
(a possible history) in which xn = (ai,n, ej,n) occurs on trial n; i.e. in which event
ej,n takes place after ai,n. If j = i, response ai,n is reinforced at that trial; otherwise,
a different response is reinforced. A history x ∈ X is feasible if P (xn−1, ai,n, ej,n) is
positive for each n, where P (xn−1, ai,n, ej,n) is the probability of cylinder set

{x ∈ X|an(x) = (x1, . . . , xn−1, (ai,n, ej,n))} ∈ F

an(x) being the initial history of x, up to trial n. If (xn−1, ai,n, ej,n) is feasible, the
laws of LRT cover two cases. If j = i, response ai,n is reinforced; if j 6= i, then
the other response, aj,n, is reinforced. The first law asserts that, if initial history (or
path) (xn−1, ai,n, ei,n) is feasible for i = 1, 2, and response ai,n is reinforced, then
the probability of making that response on the next trial is increased by a simple
linear transformation. The second law asserts that, if (xn−1, ai,n, ej,n) is feasible for
i, j = 1, 2, and response ai,n is not reinforced, then the probability of making that
response on the next trial is decreased by a second linear transformation. Through the
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definition of a set-theoretic predicate characterizing the models of LRT these laws can
be formulated as follows.

Definition 2. A is a model of LRT iff A is a possible model of LRT and the following two
axioms are realized in A:

1. If (xn−1, ai,n, ei,n) is feasible for i = 1, 2, then

P (ai,n+1|(xn−1, ai,n, ei,n)) = (1− θ)P (ai,n|xn−1) + θ;

2. if (xn−1, ai,n, ej,n) is feasible for i, j = 1, 2 and i 6= j, then

P (ai,n+1|(xn−1, ai,n, ej,n)) = (1− θ)P (ai,n|xn−1).

As I have argued elsewhere (García de la Sienra 2009a) axioms like 0–4 of Defini-
tion 1, and 1, 2 of Definition 2, make no empirical claim whatsoever, but rather can
be used to make empirical claims. In (Suppes 1962b) Suppes only considers (implicitly)
empirical claims that can be made through controlled experiments. The empirical claim
would be something like: “under certain controlled situations, healthy agents with a
certain education and intelligence, but not necessarily statistically sophisticated, will act
in such a way as to approximately obey the laws”. For instance, a particular class of ex-
periments to which LRT was applied was one in which simple contingent reinforcement
schedules were introduced. This means that the reinforcement mechanism is designed
in such a way that if in any trial response a1 is made then the probability of an e1

reinforcement is π1, while if it is a2 the probability of reinforcement e2 is π2, in both
cases independently of the previous history. Hence, the probabilities of reinforcements
are characterized by means of the following two equations:

P (e1,n|a1,n) = π1 = 1− P (e2,n|a1,n),
P (e2,n|a2,n) = π2 = 1− P (e1,n|a2,n).

This is a first step toward a testing of the theory. But “the first step down from the abstract
level of the linear response theory itself ” is the theory of the experiment. Supposing
that the experimenter has decided to run 600 trials for each subject, the experiment
will consider only initial histories of the sequences in X up to trial 600, namely the set
X ′ = a600(X). Since X ′ is finite, the corresponding family of events F ′ is just the
power set ofX ′. A possible realization will require also a probability measure P ′ onF ′.
Thus, formally,

Definition 3. B′ is a possible realization of the theory of the experiment iff there exist
X ′,F ′ and P ′ such that

0. B′ = 〈X ′,F ′, P ′〉;
1. X ′ = a600(X);
2. F ′ is the set of all subsets of X ′;
3. P ′ is a probability measure overF ′.
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The specification of P in terms of simple contingent reinforcement schedules yields
a special class of models of LRT which can be seen as potential games of one personal
player responding to natural states that may occur with a certain probability, in which the
following, specific behavioral strategy profile

(
{b0t}600

t=1, {b1t}600
t=1

)
has been specified.

At o, the beginning, the personal player is conditioned to one of the two responses, say
a1,1, a fact that can be conceptualized in terms of the player choosing a pure strategy; i.e.
strategy a1,1 with probability b11(1,o) = 1. At node a1,n, for any n, nature may present
reinforcement e1,n with probability b0n(1, (xn−1, a1,n)) = π1, or reinforcement e2,n

with probability b0n(2, (xn−1, a1,n)) = 1 − π1; at node a2,n nature may present
reinforcement e2,n with probability b0n(2, (xn−1, a2,n, )) = π2, or reinforcement e1,n

with probability b0n(1, (xn−1, a2,n)) = 1−π2. The probability with which the personal
player chooses his strategies at node ein, for n 6= 1, depends upon the previous
history. Given partial history (xn−1, (ai,n, ej,n)), the agent chooses action a1,n+1 with
probability b1n+1(1, (xn−1, (ai,n, ej,n))) = (1 − θ)P (ai,n|xn−1) + θ if j = i = 1;
with probability b1n+1(1, (xn−1, (ai,n, ej,n))) = (θ − 1)P (ai,n|xn−1) + (1 − θ) if
j 6= i = 1. He chooses action a2,n+1 with probability b2n+1(2, (xn−1, (ai,n, ej,n))) =
(1−θ)P (ai,n|xn−1)+θ if j = i = 2; with probability b1n+1(1, (xn−1, (ai,n, ej,n))) =
(θ− 1)P (ai,n|xn−1) + (1− θ) if j 6= i = 2. This means that there are certain profiles
({b0t}∞t=1, {b1t}∞t=1) of behavioral strategies (for expediency, I think of nature’s actions
as a given in behavioral “strategies”, even though nature has no utility function) that
induce the probability measure P (for details, see García de la Sienra 2009b). Thus, a
model of the theory of the experiment is a potential game (potential because no utility
function has been explicitly assumed for the personal player) in which the probability
measure P ′ is induced by the profile

(
{b0t}600

t=1, {b1t}600
t=1

)
of behavioral strategies. The

experiments devised by Suppes can be seen as methods of determining this profile
through the determination of the learning parameter, θ.

In order to perform these experiments it should be noted that an experiment with
even a large number of trials will produce a number of sequences small compared to that
of the model of the experiment, even though the models of the theory of the experiment
are finite:

The finite sequences that are elements of X ′ may indeed be used to represent any possible
experimental outcome, but in an experiment with, say, 40 subjects, the observed 40 sequences
are an insignificant part of the 4600 sequences in X ′. Consequently, a model closer to the actual
situation is needed to represent the actual conditional relative frequencies of reinforcement used.
(Suppes 1962b, 255)

Before passing to consider a model still closer to the actual situation, it is important
to point out that the relation between the theory of the experiment and the fundamental
theory can be characterized in terms of embeddings of partial models: structure B′ =
〈X ′,F ′, P ′〉 is embedded in structureB = 〈X, F , P 〉. The embedding is given by the
correspondence φ : X ′ → X , which maps event (x1, . . . , x600) ∈ X ′ into cylinder set

A = {x ∈ X|a600(x) = (x1, . . . , x600)} ⊆ X,

with P (A) = P ′({(x1, . . . , x600)}). This implies that laws 1 and 2 of Definition 2
are also satisfied by structure A′ = 〈B′, θ〉, and so one wonders why Suppes does not
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introduce also parameter θ in the definition of the theory of the experiment. Doing so
would maintain structures A = 〈X, F , P, θ〉 and A′ as being of the same similarity
type, making easier and more elegant the characterization of their relationship (namely
a lawful embedding of A′ into A).

A possible realization of the model of the data is quite another story, since it is just
the record of the trials of the experiment for all the subjects, numbered N (40 in the
previous example). Thus, it consists of an N -tuple

b = (x1, . . . , xN )

of elements from X ′, so that (in the example),

xp = (xp
1, . . . , x

p
600).

These sequences are to be used to determine a statistical value of parameter θ and, in
this way, of probability measures P ′ and P .

The next question is, When is a possible realization of the data a model of the data? The complete
answer, as I see it, requires a detailed statistical theory of goodness of fit. Roughly speaking, an
N -tuple realization is a model of the data if the conditional relative frequencies of e1 and e2

reinforcements fit closely enough the probabilistic measure P of the model of the experiment.
(Suppes 1962b, 256)

More precisely,

Definition 4. b is anN -fold model of the data for experimentB′ iff B′ = 〈X ′,F ′, P ′〉
is a model of the theory of the experiment, and b is an N -tuple of elements of X ′, and b satisfies
the statistical tests of homogeneity (the conditional relative frequencies of reinforcements (CRF) are
approximately π or 1− π, as the case may be), stationarity (the CRF of reinforcements are constant
over trials) and order (the CRF of reinforcements are independent of preceding reinforcements and
responses).

Suppes and R.C. Atkinson present and discuss a large number of methods to de-
termine parameter θ in (Suppes and Atkinson 1960, Chapter 2). The method consists,
roughly, of the following: given parameters π1 and π2, which are controlled by the
experimenter, and a model of the data, the problem is to find a “linear response model
with learning parameter θ̂, which will maximize the probability of the observed data, as
given in the model of the data” (Suppes 1962b, 259). In order to determine the condi-
tions of homogeneity, stationarity and order, Suppes uses a methodology based upon
χ2 tests. The way he uses in general this methodology is described in (Suppes 2007).
Applications of the same to economic situations are provided in the just mentioned
book as well as in “Experimental Analysis of a Duopoly Situation from the Standpoint
of Mathematical Learning Theory”, written with J.M. Carlsmith (Suppes and Carlsmith
1962). The book considers partial games of the following sorts: zero-sum, bipersonal;
nonzero-sum, bipersonal; symmetric, nonzero; bipersonal, of communication and dis-
crimination; three-personal, with majority; with displayed payoff matrix; with monetary
payoffs and noncontingent reinforcement schedules.

Theoria 72 (2011): 347-366



354 Adolfo GARCÍA DE LA SIENRA

From the point of view of orthodox game theory, the determination of parameters
π1, π2 and θ is tantamount to determining a particular profile of behavioral strategies
b = ({b0t}∞t=1, {b1t}∞t=1) as stated above. Thus, under very stringent experimental
conditions Suppes and his collaborators actually specified a partial model of game
theory. The question is whether the given profile b maximizes some expected utility
function of the personal player, as it is standardly defined (for instance in García de
la Sienra 2009b). The answer is no: Suppes’ concept of game deviates from the usual
notion in that its utility concept is rather different. While the expected utility function
U is defined in game theory as

U(b) =
∫

F
u(h) dµ[b],

where F is the set of feasible histories, u : F → R is the usual utility function of the
player, b is a profile of behavioral strategies, and µ[b] is the probability measure induced
by b over the space of feasible histories of the game, Suppes defines a “stochastic” utility
function “which may be used to predict the actual behavior of all but the statistically
sophisticated few” (Suppes 1961a, 196). I shall discuss this concept in the next section,
devoted to fundamental measurement; I just want to finish the present one discussing
the relevance of Suppes experimental work on economics for the application of eco-
nomic theories to economic phenomena at large. Indeed, What is the import of these
experiments for economic theory? What have Suppes and his collaborators established
through them? What is the point, indeed, of testing a theory intended for phenomena
that cannot be controlled by experiment — the phenomena of real economic situations
or processes — by means of very controlled experimental situations?

As Suppes himself points out, in particular in connection with his analysis of duopoly,
the success of the theory in these situations is no guarantee that it will be succesful in real
economic situations, even though “so far as the experimental situation bears resemblance
to a real economic situation, the theory is directly relevant to economic theory” (Suppes
and Carlsmith 1962, 60). Suppes seems to place the problem in the lack of information:

it is very unlikely that economic data exist for a duopoly of fifty years’ duration; and even if
such data do exist, gross perturbations like major depressions or war would seriously affect their
interpretation. (Suppes and Atkinson 1960, 266)

Even if such data existed, however, it is not clear why the fact that the experimental
situation bears resemblance to a real economic situation makes the theory directly
relevant to economic theory. At any rate, the intent of applying the theory to a certain
situation (represented by a model of economic data) may or may not be succesful on
its own right, independently of its success in experimental conditions. Perhaps Suppes
is thinking that the confidence in the theory grows if it has experimental success. What is
clear, anyway, is that such a success establishes that the domain of intended applications
of the theory is not empty. To put it in Kuhnian terms: experimental success increases
the confidence that the promise harbored by the theory makes worthwhile devoting time
and resources to use it in order to produce knowledge of certain classes of phenomena.
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3. Fundamental Measurement

Suppes seems to suggest that derived measurement, even in developed scientific disci-
plines, must be anchored, in the final analysis, to some fundamental measurements.

In developed scientific disciplines the role of fundamental measurement is usually behind the
scene, so to speak, for the fundamental measurement needed has already been established. What
will be in question in a current experiment is a derived measurement, possibly to great accuracy,
of a quantity that depends on other fundamental measurements. (Suppes 1988b, 27)

It is easy to imagine why this is so for instance in classical physics. We can produce
fundamental measurement structures to measure the mass or length of bodies within
our perceptual range that we can manipulate with our hands or tools, thus relating them
to certain observable standards. Then we can use the laws of physics to calculate the
masses or sizes of larger bodies like planets or even the sun, relating such masses or
sizes to the fundamental measurements performed over those bodies closer to us. But
it is not at all clear whether or how a similar procedure might be described for the
social sciences. Rather, at least for the case of utility measurement, Suppes sounds very
skeptical about the possibility of measuring utility of given agents by showing that their
preference structures satisfy certain axioms. He relies instead on experimental methods
that might, applying response theory, go beyond “the individual preference orderings
to the environmental and constitutional conditions that produced them” (Suppes and
Atkinson 1960, 233). The role of such axioms is to regulate the concepts, so to say,
exhibiting the conditions that define them. The properties of preference structures
defined by different sets of axioms are given mainly in Foundations of Measurement.

Almost any result in the three volumes of his monumental Foundations of Measurement,
written in collaboration with R. Duncan Luce, D.H. Krantz and A. Tversky, might have
a surprising and interesting application in economics. But all of Chapters 8 (volume
I) and 17 (volume II) is clearly relevant, since they deal, respectively, with conditional
expected utility and choice probabilities. Other results that have immediate application
in economics are the proofs of the existence of numerical representations for countable
simple orders (Theorem 1, vol. 1, p. 39), simple orders with countable order-dense
subsets (Theorem 2, vol. 1, p. 40), positive-difference structures (Theorem 1, vol. 1, p.
147), algebraic-difference structures (Theorem 2, vol. 1, p. 151), cross-modality orderings
(Theorem 4, vol. 1, p. 165), finite, equally spaced difference structures (Theorem 5, vol.
1, p. 168), absolute difference structures (Theorem 6, vol. 1, p. 173), additive conjoint
structures (Theorem 2, vol. 1, p. 257), and n-component, additive conjoint structures
(Theorem 13, vol. 1, p. 302).

In point of actual fact, however, in order to determine the utility of the experimental
subjects, Suppes does not use directly fundamental measurement methods, but rather
shows that, in the limit, the subjects behave as if they were maximizing a certain “sto-
chastic” utility function which is computed out of the asymptotic limit of the transition
probabilities. The general procedure consists of deriving this utility function, for finite
sets of alternatives, from the axioms of stimulus sampling theory. Then it is shown that
such function actually satisfies the axioms characterizing the concept of a stochastic
utility function, which is defined as follows, if we let p(a, b) denote the probability that
a is chosen over b.
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Definition 5. A stochastic utility function for a set A of alternatives is a function u : A → R
such that

u(a)− u(b) ≥ u(c)− u(d) iff p(a, b) ≥ p(c, d) .

If setA and probabilities p(a, b) satisfy the following axioms, there exists a stochastic
utility function which is unique up to positive linear transformations.

U1. p(a, b) + p(b, a) = 1.
U2. 0 < p(a, b) < 1.
U3. If p(a, b) ≥ p(c, d) then p(a, c) ≥ p(b, d).
U4. There is a c in A such that p(a, c) = p(c, b).
U5. If p(c, d) > p(a, b) > 1/2 then there is a e in A such that p(c, e) > 1/2 and

p(e, d) ≥ p(a, b).
U6. (Archimedian Axiom). If p(a, b) > 1/2 then, for every probability q such that p(a, b) >

q > 1/2, there is a positive integer n such that q ≥ p(a, c1) = p(c1, c2) = · · · =
p(cn, b) > 1/2.

For instance, for the class of Markovian specializations of LRT, Suppes derives a stochas-
tic utility function in general and then, clearly, if in a particular experiment the transition
probabilities are determined, the actual values of that utility function are also determined
thereof. The details are as follows. Define a Markovian LRT model as a structure A that,
in addition to axioms 1 and 2 of Definition 2, satisfies the following two “independence
of path” assumptions:

1. The probability θ that a sampled stimulus element will be conditioned to a
reinforced response is independent of the trial number and the preceding pattern
of events.

2. Given the set of stimulus elements available for sampling on a trial, the probability
of sampling a given element is independent of the trial number and the preceding
pattern of events.

In a structure that satisfies these axioms the transitions from one state to another
can be depicted by means of a diagram, as shown in the figure, and the transition matrix
for the Markov chain is the following:

a1 a2

a1 1− θ(1− π1) θ(1− π1)

a2 θπ2 1− θπ2

If pn(ai) is the probability that the agent be in state ai at stage n, the probability
that it will be in state a1 at n + 1 will be

pn+1(a1) = p11 · pn(a1) + p21 · [1− pn(a1)]
= [1− θ(1− π1)] · pn(a1) + θπ2 · [1− pn(a1)] .
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and so

P1(a1) = [1� �(1� �1) ℄ � p1(a1) + ��2 � [1� p1(a1) ℄
The solution to this linear equation is

p1(a1) = �2

1� �1 + �2

;
which is independent of parameter �. An analogous argument shows that

p1(a2) = 1� �1

1� �1 + �2

= 1� �2

1� �1 + �2

:
Action a1 (say) having a higher asymptotic probability than action a2,

p1(a1) > p1(a2) , indicates a “revealed” preference of a1 over a2; i.e. p(a1; a2) >
p(a2; a1) . Clearly, p1 itself is one utility function for such a simple, trivial rela-
tionship. But utility functions satisfying axioms U1–U6 can also be obtained
in less trivial cases in much the same way (for details, see “Behavioristic Foun-
dations of Utility”, pp. 193–199; also Chapter 11 of Markov Learning Models for
Multiperson Interactions) . The stochastic utility functions so obtained are not like
the usual expected utility functions characteristic of game theory (as defined
above), but are rather characterized by the theory of choice probabilities. Sup-
pes own economic theory is based upon choice probabilities and not upon the typical
utility function. We shall review this theory in the final section of this paper.

Figure 1: Typical transitions in Markov structures.

At asymptote,
pn+1(a1) = pn(a1) = p∞(a1),

and so
P∞(a1) = [1− θ(1− π1)] · p∞(a1) + θπ2 · [1− p∞(a1)] .

The solution to this linear equation is

p∞(a1) =
π2

1− π1 + π2
,

which is independent of parameter θ. An analogous argument shows that

p∞(a2) =
1− π1

1− π1 + π2
= 1− π2

1− π1 + π2
.

Action a1 (say) having a higher asymptotic probability than action a2, p∞(a1) >
p∞(a2), indicates a “revealed” preference of a1 over a2; i.e. p(a1, a2) > p(a2, a1).
Clearly, p∞ itself is one utility function for such a simple, trivial relationship. But utility
functions satisfying axioms U1–U6 can also be obtained in less trivial cases in much
the same way (for details, see (Suppes 1961a, 193–199); also (Suppes and Atkinson
1960, Chapter 11)). The stochastic utility functions so obtained are not like the usual
expected utility functions characteristic of game theory (as defined above), but are rather
characterized by the theory of choice probabilities. Suppes own economic theory is based upon
choice probabilities and not upon the typical utility function. We shall review this theory in the
final section of this paper.
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4. Suppes’ Theory of Consumer Demand

Suppes set as a scientific research program the development of an economic theory
based upon the notion of stochastic probability: “It would be desirable to develop the
utility theory begun in Chapter 11 into a new theory of consumer demand” (Suppes and
Atkinson 1960, 265). We shall reconstruct here such a theory, as developed by Suppes
himself.

Walrasian demand theory explains the observed behavior of the consumer — his
demand function — in terms of utility: the consumer behaves as he does because
there exists a utility function that rationalizes his choices. Any application of this theory
presupposes that the consumer has consistent preferences over time (that his preferences
remain fixed for some relevant interval of time) and, moreover, that he has unlimited
computational powers that allow him to keep maximizing his utility all of the time. After
arguing that such a theory

is utterly mistaken as a psychological account of how any of us go about making decisions about
practical problems or solving theoretical ones. (Suppes 2001, 140)

Patrick Suppes has proposed a different theory to explain the observed behavior of the
consumer, one based upon the notion of free association, habits, and random utilities.
According to Suppes, far from spending his time with complicated computations aimed
at maximizing a rigid utility function,

[t]he rational individual, who is choosing gladly and happily, is one who is freely associating and
choosing that one of the available set that seems most attractive, because of the depth of past
associations that are brought up, as can be the case in buying a house, or, in other instances, by
the association to anticipated events. (Suppes 2001, 149)

The distinction between the observational explanandum and the theoretical (relative
to the Walrasian theory) explanans is better seen from the point of view of the concept of
choice structure. This concept will facilitate also the comparison between Walras’ theory
and the one proposed by Suppes.

Roughly speaking, a choice structure is a set of “situations” in which a given agent
must make some choice among a certain set of possible options or “actions”. The set
of possible actions is designated as X and the family of situations is just a collection
B of nonempty subsets of X . The choices made by the agent are described by a
correspondence ν that assigns to each situation B ∈ B a nonempty set ν(B) of X ,
namely the set of those points of X any of which is fine for the agent under such a
situation. For the sake of the record, the formal definition of a choice structure is as
follows.

Definition 6. C is a choice structure iff there exist X ,B and ν such that

0. C = 〈X, B, ν〉;
1. X is a nonempty set;
2. B is a family of nonempty sets of X ;
3. ν : B → X is a correspondence that assigns to each B ∈ B a nonempty set ν(B) of X ;
4. ∀B ∈ B: ν(B) ⊆ B.
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One important application of the concept of a choice structure is as follows. Having in
sight the behavior of a consumer,X is interpreted as a subset of nonnegative vectors of
RL (called ‘consumption menus’), the price systems that he may face are thought of as
L-dimensional real positive vectors p = (p1, . . . , pL), while the income levels that he
may enjoy are seen as nonnegative real numbers w. If so, a choice structure can be
used to represent the choices made by the agent under conditions of prices-income
(p, w) if the elements B of B are thought of as “budget sets”; i.e. sets of the form
Bp,w = {x ∈ X | px ≤ w}. For every combination of prices and income level (wealth)
(p, w), the choice correspondence ν describes the choice of consumption menus that
the consumer actually makes in set Bp,w . Under this interpretation, correspondence ν
is in fact a demand correspondence.

AWalrasian demand correspondence, on the other hand, is a correspondence which
is derived from a given preference relation. The gist of classical demand theory is to
approximate the observed demand correspondence ν by means of a Walrasian demand
correspondence µ generated by a regular (connected and transitive) preference relation
that satisfies certain properties, specifically those enlisted in the following definition.

Definition 7. P is a classical preference structure iff there exist X and % such that

0. P = 〈X, %〉;
1. 〈X, %〉 is a regular preference structure;
2. % is strictly convex;
3. % is locally unsatiated;
4. % is differentiable.

These axioms guarantee the existence of a strictly quasiconcave, locally unsatiated, C1

utility function u representing %. But the existence of a utility function with such
properties generates a Walrasian demand correspondence (structure), in the precise
sense of the following theorem.

Theorem 8. Let P = 〈X, %〉 be a classical preference structure and u a strictly quasiconcave,
locally unsatiated,C1 utility function representing C. Moreover, let µ : B → X be the correspondence
that assigns to each Bp,w ∈ B the optimum vectors with respect to u within set Bp,w . Then µ is a
Walrasian demand correspondence and 〈X, B, µ〉 is called the Walrasian demand structure generated
by P.

(The proof is omitted.)

Classical demand theory takes as empirical structures, i.e. as structures given empiri-
cally and to be accounted for, demand structures 〈X, B, ν〉 obtained out of the relevant
observations. It then postulates a preference relation % and corresponding utility func-
tion (with the properties given in the theorem) and generates with the latter a Walrasian
demand structure 〈X, B, µ〉. The empirical claim is that µ “approximates” ν “fairly
well”. Notice that ν is obtained out of empirical observations, while µ is derived from
a postulated preference relation. More concisely, the structure of the theory is given in
the following definition.
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Definition 9. C = 〈X, B, ν,%〉 is a classical demand structure iff

1. 〈X, B, ν〉 is a demand structure;
2. 〈X, %〉 is a classical preference structure;
3. 〈X, B, µ〉 is generated by 〈X, %〉.
4. ∀B ∈ B: ν(B) ≈ µ(B).

Axiom 4 expresses the fundamental law of classical demand theory, to wit, that the
consumption choices of the agent are “approximately rationalizable”, in the sense that
they maximize some preference relation. An empirical claim of the theory is a sentence
expressing that certain empirical data can be embedded in a demand function ν that
satisfies approximately the fundamental law.

What is the difference between classical demand theory and Suppes’ demand theory?
Concisely stated, it seems to me that the difference is twofold. First of all, habits play
a central role in Suppes’ theory. Since habits function as filters that discard certain
possible choices, I suggest that the concept of habit can be represented as a certain
restriction upon the sets within B: Bp,w would be the set of all choices within budget
set {x ∈ X | px ≤ w} not discarded by the habits. Second, momentary associations
are more likely to influence choice behavior than a fixed, rigid preference relation over
X . In order to theorize over these associations, Suppes introduces the concept of a
random utility structure, which would perform a role analogous to the one played by
classical preference structures in classical demand theory.

Before considering random utility structures, it may be useful to see that the empirical
structures to which this theory is applied are no longer choice structures, but rather
structures of choice probabilities, a concept that can be defined as follows.

Definition 10. C is a structure of choice probabilities iff there exist X ,B and ν such that

0. C = 〈X, B, ν〉;
1. X is a nonempty set;
2. B is a family of nonempty sets of X ;
3. ν : X × B → [0, 1] is a function that assigns to each x ∈ X and B ∈ B a number

ν(x, B) such that
∑

y∈B ν(y, B) = 1, and ν(x, B) = 0 if x /∈ B.

Number ν(x, B) is the probability that x be chosen if conditionsB obtain. Now, just as
the Walrasian demand correspondence µ, devised to approximate ν, was obtained out of
a utility function, a probability function µ is obtained out of a random utility structure. In
order to introduce its precise definition, consider first a finite setX with cardinalN and
the set R of all possible preference rankings of elements of X . The ranking with more
indifference classes containsN (when no two members ofX are indifferent), and so we
may take set U = {1, . . . , N} as the image of any utility function representing a ranking
in R. In contradistinction to what happens in classical preference structures, where one
element r ∈ R is singled out as the preference ranking of the agent, “the subjective value
of each alternative fluctuates, and the alternative with the highest momentary value is
selected” (Suppes et al. 1989, 421). Hence, for each x ∈ X we have a random variable
Ux that may take any of the values in U . The formal definition is as follows.
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Definition 11. R is a random utility structure iff there exists a nonempty setX and a collection
U = {Ux | x ∈ X} of jointly distributed random variables such that R = 〈X,U〉.

Just as a choice structure is generated by a regular preference structure, a structure
of choice probabilities is generated by a random utility structure, if a given family of
“budget sets”B is given. This is the gist of the following obvious theorem.

Theorem 12. Let R = 〈X, {Ux | x ∈ X}〉 be a random utility structure andB a family of
nonempty sets of X . Let µ be a function such that

µ(x, B) = Pr(Ux = max{Uy | y ∈ B}).

Then 〈X, B, µ〉 is a structure of choice probabilities, called the structure of choice probabilities
generated by R.

The theorem is obvious because, by construction, 〈X, B, µ〉 satisfies the random
utility model R. Quite another problem is whether, given a structure of choice proba-
bilities C = 〈X, B, ν〉, there exists a random utility structureR such that C is (approx-
imately) the structure of choice probabilities generated by R. In such a case we would
have an analogue of what is usually called a “rationalization” of a choice structure. An
“observable” condition called ‘nonnegativity’ is necessary and sufficient for a closed
structure of choice probabilities to satisfy a random utility model (cf. Definition 17.14
and Theorem 17.10 in Suppes et al. 1989, 423) This condition is an analogue of what in
classical demand theory is known as Samuelson’s strong axiom of revealed preference.
Within the framework of his doctrine on freedom (see Suppes 1996, 1987b, 1997), Sup-
pes has developed also a measure of the freedom of markets, based upon the concept
of entropy. Basically, the idea is that the amount of options, as well as the degree of
uncertainty in the choices of the agent, are a measure of freedom. For instance, if there
are n goods and pij is the probability that any agent will change his choice from good
of type i to good of type j, then a measure of the freedom of the market of these goods
is −

∑
pij log pij . The larger this number, the freer is the market. A study of transition

data observed six times for 264 buyers choosing one of eight soft-drink brands (Bass
1974) quoted in (Suppes 2001) shows that the markets of Coke and Pepsi are the most
stable. The total entropy rate of the soft-drink market — the pi weighted average of the
row entropies — is 1.85 (see the table).

In general terms, given a stochastic process, an indexed family r = {Xn} of random
variables over a set X with n = 1, 2, 3, . . . , the entropy rate H(r) of r is defined as

H(r) = lim
n→∞

1
n

H(X1, . . . ,Xn)

where H(X1, . . . ,Xn) = −
∑n

i=1 pi log pi is the entropy of the first n random vari-
ables. The data on soft-drink choices are also experimental, but Suppes (also in Suppes
2001) includes a study on car choices taken from the U.S. car industry statistics. It is
interesting that the total entropy of the national sample is 1.84, a figure quite close to the
one obtained under the more controlled conditions of the soft-drink experiment! This
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n/(n + 1) Coke 7-Up Tab Like Pepsi Sprite D-Pep Fresca p∞ Entropy
Coke 0.61 0.11 0.01 0.03 0.13 0.06 0.01 0.04 0.29 1.45
7-Up 0.19 0.45 0.00 0.06 0.14 0.10 0.01 0.05 0.18 1.82
Tab 0.08 0.12 0.16 0.36 0.08 0.04 0.08 0.08 0.03 2.38
Like 0.09 0.15 0.09 0.15 0.24 0.04 0.13 0.11 0.06 2.55
Pepsi 0.18 0.13 0.01 0.03 0.51 0.07 0.03 0.04 0.23 1.68
Sprite 0.11 0.18 0.03 0.07 0.16 0.33 0.03 0.09 0.10 2.27
D-Pep 0.09 0.05 0.18 0.09 0.12 0.09 0.26 0.12 0.04 2.52
Fresca 0.22 0.09 0.05 0.11 0.15 0.11 0.07 0.20 0.07 2.37
Total entropy 1.85

Transition matrix for soft-drink choices

brings Suppes’ methodology out of the laboratory into real-life markets, suggesting that
carefully planned experiments might yield results that are close to the ones that obtain
in the open waters of the economy. It also suggests that the notion of random utility
structure might be more plausible than the usual utility concept in the scientific analysis
of consumer demand. For an interesting example of its application in real-life markets,
the reader is referred to (McFadden and Train 2000).
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