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Abstract

We revisit the well-known weekend anomaly (Gibbons and Hess, 1981; Harris, 1986;
Smirlock and Straks, 1986; Connolly, 1989; Giovanis, 2010) using an established
macroeconometric technique known as spectral analysis (Granger, 1964; Sargent,
1987). Our findings show that using regression analysis with dichotomous variables,
spectral analysis helps establishing the robustness of the estimated parameters based
on a sample of the S&P500 for the 1972-1973 period. As further evidence of cycles in
financial times series, we relate our application of spectral analysis to the recent liter-
ature on low-frequency components in asset returns (Barberis et al., 2001; Grüne and
Semmler, 2008; Semmler et al., 2009). We suggest investment practitioners to consider
using spectral analysis for establishing the ‘stylized facts’ of the financial time series
under scrutiny and for regression models validation purposes. 
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� 1. Introduction

The main purpose of this article is to provide the finance community with an overview

of a method known as spectral analysis that is well known among academic economists

since the mid 60’s (Granger, 1964). Thereafter, it has mainly gained popularity in the

field of economic sciences among specialists in macroeconomics (Sargent, 19871). As a

matter of fact, it has also been a part of the basic curriculum of specialists in economet-

rics and macroeconometrics for quite long time (Dhrymes, 1970; Box and Jenkins, 1977;

Hamilton, 1994); and more recently, in general applied econometrics (Greene, 2000).

Lately, it has also appeared in the field of financial econometrics (Wang, 2003). However,

there is not much research using this method that can be found in the applied finance

literature; where it does not seem to have gained the same popularity as in the field of

economic sciences. 

We thus propose an application well known by financial academics and practitioners

that is the weekend anomaly (Gibbons and Hess, 1981; Harris, 1986; Smirlock and

Straks, 1986; Connolly, 19892; Racicot and Théoret, 2001; Giovanis, 2010). As these

authors have shown, the weekend anomaly can be simply tested by using a basic di-

chotomous regression of the index of the S&P500 for the time period 1970-1973. More-

over, it can be tested for the Monday anomaly by using a Student t test or its associated

p-value (the significance of that variable). According to Connolly (1989), this type of

financial regression may suffer from several types of misspecifications (autocorrelation,

conditional heteroskedasticity3, etc.). Nevertheless, spectral analysis can be used as fur-

ther evidence of a cycle in the time series under scrutiny; even if there is an apparently

misspecified financial regression model that shows a significant variable related to the

problem of the Monday anomaly, as shown in our application. Therefore, we propose

using spectral analysis for regression model validation purposes.

In this article, we also discuss the new strand of literature related to the theory of

low-frequency components in time series of asset returns. The presumption is that

there are important low-frequencies in financial time series of returns (Barberis et al.,

2001; Grüne and Semmeler, 2008; Semmler et al., 2009). We believe that the literature

on this theory could benefit from a judicious use of spectral analysis due to the fact

that it is specifically designed for discovering a priori cycles of unknown length. 

The paper is organized as follows. Section 2 describes the methodology used to identify

the weekend anomaly and presents an introduction on low-frequency components in fi-
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1 Paquin (1979) applied spectral analysis for identifying cycles in regional unemployment time series in Canada.
2 For a discussion of the weekend anomaly and January anomaly and a good list of references on the subject, see Megginson (1997).
3 For an introduction on ARCH modelling and other useful nonlinear specifications in finance, see Racicot (2000a, 2003a).
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nancial time series. In section 3, we present our regression results and spectral density

representation. Finally, section 4 provides a conclusion. 

� 2. Methodology

2.1. Regression Models for the Weekend Anomaly
To estimate the Weekend Anomaly, we follow Connolly (1989) and Racicot and Théoret

(2001) and use dichotomous variables built on the S&P500 index. The method consists

in estimating certain parameters related to the days of the week to evaluate the impact

of those days that have the most significant influence on the returns of the index. This

effect is also known as the day-of-the-week (DOW) effect (Smirlock and Starks, 1986).

As it has been shown by several authors (Gibbons and Hess, 1981; Harris, 1986; Keim,

1983), stock returns tend systematically to fall on Monday, and that is mostly for the

time period of 1970-1973. After that period, the effect presumably vanished due to the

presence of arbitrageurs (Black, 1993). However, some evidence points towards the

fact that there would be also a DOW anomaly in other time period (Giovanis, 2010)4.

Considering this fact, our aim is to simply illustrate the use of spectral analysis on a

well-known ‘stylized fact’, rather than to debate whether or not there would be a DOW

anomaly in other recent financial time series5. In the jargon of macroeconomists, the

‘stylized facts’ are the basic empirical fact (Blanchard and Fisher, 1989) or the Granger

(1964, 1966) ‘typical spectral shape’ of financial time series6. The following financial

regression is used to estimate the Monday anomaly (e.g. Racicot and Théoret, 2001

or Giovanis, 2010)

rt=β1mt+β2tut+β3wt+β4tht+β5 ft+et (1)

where rt= ln(   ) is the return computed using the daily observations of the S&P500

index for the year 72 and 73; mt, tut, wt, tht, and  ft are dichotomous variables which

identifies, respectively, the days of the week: Monday, Tuesday, Wednesday, Thursday

and Friday, and et is, as usual, an error term. To generate our dichotomous variables,

we used the EViews program that appears in Table 1.
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4 Giovanis (2010) uses STAR (Smooth Transition Autoregressive) models to test the DOW effect.  Particularly, he estimates the
following nonlinear regression: rt=π1'wt +β1Dmon+β2Dtue+β3DweD+β4Dthu+β5Dfri+(π2wt+g1Dmon+g2Dtue+
g3DweD+g4Dthu+g5Dfri )f(rt -d ;g,c)+ut where the D’s are defined as in equation (1) and wt = (rt-1… rt-j ) is a vector
of explanatory variables. He considers two transition functions: the logistic one, f (rt-d )= (1+exp[–g (1/σ)(rt-d –c)])-1 and the
exponential one: f (rt-d )= (1–exp[–g (1/σ 2)(rt-d –c)2], g >0; where rt-d is the transition variable, c is the threshold, and g is the
slope of the transition function.  Franses and van Dijk (2000) provide an interesting introduction on this type of regime-switching
models of returns. See also Racicot and Théoret (2001). 

5 Wilmott (2007, pp. 243-245) discusses some evidence of the DOW effect in the VIX volatility index (‘a measure of the implied
volatility of the ATM SPX’). That effect could be tested by means of the method suggested in this article. 

6 The Granger ‘typical spectral shape’ displays a power spectrum with the following characteristics: a smooth peak at low frequency
and an exponential decay afterward (at higher frequencies). Using the words of Sargent (1987, pp. 279), ‘the dominant feature of
the spectrum of most economic time series is that it generally decreases drastically as frequency increases, with most of the
power in the low frequency, high periodicity bands’.  
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� Table 1. An example of EViews Code used to Generate the Dichotomous 
Variables of Equation (1)

source: racicot and théoret (2001)

2.2. The Geometric Brownian Motion (GBM) Model
The Geometric Brownian Motion (GBM) is one of the most popular models used in

quantitative finance. This model is at the heart of the Black and Scholes (1973) option

pricing model. It can be used as a data-generating process and should show the behav-

iour of the random walk model. In the following discussion, we briefly describe how to

obtain a simulated time series of asset returns using this type of financial modelling7.

Assuming that St is the price of a stock S observed at time t, the basic GBM model for

the returns of that stock price is given by

=m dt +σ dz (2)

where m and σ are, respectively, the mean and standard deviation of dS/S. The element,

dz, is the stochastic part of (2). It is known as the Wiener process and defined as 

dz=�e  dt (3)

where e~�n(0,1), is a standard normal distribution and dt, is an infinitesimal time step.
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7 For more information on the subject, see Racicot and Théoret (2001, 2004, and 2006).   

 
  

A E S T I M AT I O
  

smpl 1 503

genr m72=0

genr t72=0

‘ Loop until the last observation for !i=0 to 502 

if day72(!i+1)=1 then 

genr m72(!i)=1 

else

genr m72(!i)=0

endif

if day72(!i+1)=2 then 

genr t72(!i)=1 

else

genr t72(!i)=0

endif

if day72(!i+1)=3 then 

genr w72(!i)=1 

genr w72=0

genr th72=0

genr f72=0

else

genr w72(!i)=0

endif

if day72(!i+1)=4 then 

genr th72(!i)=1 

else

genr th72(!i)=0

endif

if day72(!i+1)=5 then 

genr f72(!i)=1 

else

genr f72(!i)=0

endif

next

dS
S
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To obtain the empirical counterpart the GBM model, (2) must be discretized in an

efficient way. Applying Itô’s lemma on (2) and after discretizing the resulting equation,

one obtains an efficient model to be simulated. The following equations show how

to proceed. For a function G(x, t ) that depends on a stochastic variable x, Itô’s lemma

is given by 

dG= dx+ dt+             σ 2dt (4)

Thus, applying (4) on a function f=ln(S) which does not depend on time t gives

df= dS+ σ 2dt (5)

Replacing the derivatives in equation (5) by their analytical results and dS by (2), we

obtain 

df=dlnS= =(m– σ 2)dt+ σ dz (6)

Then, by integrating both sides of (6), we obtain the following exact discretized ver-

sion of equation (2)

rt= =(m– σ 2)Δt + σ e √Δt �� (7)

To perform our spectral analysis of the data generated by equation (7), we assume a

risk neutral universe so that m can be replaced by the risk-free rate rf . The power spec-

trum resulting from the simulation of (7) is presented in Section 3.

2.3. Low-frequency Components in Asset Returns
In this section we briefly discuss some literature on the theory of low-frequency com-

ponents in asset returns (Barberis et al., 2001; Grüne and Semmler, 2008; Semmler et

al., 2009). The presumption of this approach is that there would be long cycles8 in

asset returns, as it is shown by the following model (Semmler et al., 2009)9

rt
e =β0+β1 sin(w1t)+β2 cos(w1t)+β3 sin(w2t)+β4 cos(w2t) (8)

where w1=2π /5.2857, w2=1π /3.3636. By using the Discrete Fourier Transform (DFT)

filter to estimate the parameters of equation (8) on an annual sample of equity re-

turns (rt
e) for the time period of 1929-2000, Semmler et al. (2009) have found that
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8 ‘A series may be said to possess a “cycle” if its covariogram is characterized by (damped) oscillations. The typical “length” of the
cycle can be measured by 2π/w, where w is the angular frequency associated with the damped oscillations in the covariogram’
(Sargent 1987, pp. 247).  

9 Kaufman (1984, chapter 15) presents a model that shares some similarities with equation (8), that is: 
yt=a1cos(w1t)+b1sin(w1t)++a2cos(w2t)+b2sin(w2t).
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those parameters are equal to: 0.0718, -0.0971, 0.0086, 0.0712 and 0.0135, respec-

tively for: β0 , β1 , β2 , β3 and β4 . They applied the same approach on the real interest

rate time series for the same time period and frequency using the same model, which

is given by

rt
e =a0+a1sin(w1t)+a2 cos(w1t)+a3 sin(w2t)+a4 cos(w2t) (9)

where w1=2π /24.667, w2=2π /5.2857. They have found that a0,a1,a2,a3 and a4 are

equal to, 0.01, 0.0182, -0.014, -0.0133 and -0.0042, respectively.

Our aim here is to make the investment practitioners realize that the studies on low-

frequency components in financial time series are also evidence of potentially inter-

esting application of spectral analysis, because this literature relates to portfolio

management (Semmler et al., 2009). By analogy with some of the empirical works

done by specialists in macroeconomics, spectral analysis techniques could be used

as supplementary tools for the works specialized in empirical finance to help to dis-

cover potentially underlying cycles in the data. In Section 3, we present the power

spectrum of (8) as further evidence of the usefulness of spectral analysis for the in-

vestment practitioners.

� 3. Regression Results and Spectral Density Representation

3.1. Regression Results
By running the EViews code presented in Table 1 and applying ordinary least squares

(OLS) to equation (1), we obtain the results displayed in Table 2.

� Table 2. OLS Estimation of Equation (1)

Variable Coefficient s.d. t-stats p-value

mt -0.0028 0.0009 -3.20 0.0015

tut 0.0007 0.0008 0.89 0.3716

wt 0.0004 0.0008 0.54 0.5871

tht 0.0006 0.0008 0.73 0.4636

ft 0.0003 0.0008 0.32 0.7473

r2 0.02 Akaike crit. -6.76

Adj-r2 0.016 Schwarz crit. -6.72

Sum sqr resi 0.03 Hannan-Quinn crit. -6.74

Log likeli 1702.07

D.W. stat 1.56
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This table shows that the only significant variable is mt with an estimated coefficient of

-0.0028 (or -0.28 if scaled by 100 as often done in this literature). It is significant at 1%

with a p-value of 0.0015 (t-statistic of -3.20). Thus, this regression analysis confirms the

fact that Monday is the only day of the week that presents an anomaly. Taking into ac-

count this result, we can conclude that Stock returns would decline only on Monday–

for that sample of data. It should be noted that the Durbin-Watson statistic gives a

result that is not close to the 2.0 value. This might indicate the presence of autocorre-

lation in the residuals. Furthermore, by running other tests on the residuals, we observe

that there seems to be a problem of conditional heteroskedasticity10. Nevertheless, spec-

tral analysis helps in confirming our results when applied to this sample. A discussion

on this topic is presented in the following section.

3.2. Spectral Analysis
To perform the power spectrum of our data, we use a parametric Yule-Walker algo-

rithm which is based on an estimation of an autoregression of order p, AR(p). More

precisely, the power spectrum can be represented by a Fourier transform of the auto-

covariance function, which is (Hamilton, 1994)

sy(ω)= ∑∞
j=–∞gj e –iwj (10)

where gj =e[(yt–m)(yt-j–m)] is the autocovariance function, e –iwj  is the Fourier trans-

form11, ω represents the frequency, i= –1, a complex number. Applying De Moivre

theorem, the Fourier Transform becomes

e –iwj=cos(wj)–i sin(wj) (11)

Thus, the power spectrum can be simplified to

sy(ω)= [g0+2∑∞
j=1gj cos(wj)] (12)

The power spectrum or the power spectral density (PSD) can be estimated using a

parametric model which could be either a general ARMA(p, q) model or, as in our

case, using an AR(p) model. Thus, the power spectrum for an ARMA(p, q),
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8

10 Giovanis (2010) provides evidence of that fact. Other type of misspecifications might arise when using financial regression
models. Racicot (1993, 2000, 2003), Coën and Racicot (2007), Racicot and Théoret (2010a, b) provide a discussion of
misspecification tests in similar contexts. 

11 The Fourier transform of a time series {x1, x2, x3, …, xn } can be written as: J(λ)=n –1/2 ∑n
t=1xt e –itλ, –∞<λ<∞ (Brockwell and

Davis, 1991). More precisely (Sargent, 1987), the Riesz-Fischer theorem states that for a sequence of complex numbers {cn }∞
n=–∞ ,

there exists a complex-valued function f (ω) defined for real ω’s belonging to the interval [–π, π] such that f (ω)=∑∞
j=–∞ cj e–iωj . The

function f (ω) is called the Fourier transform of the ck . An important property of the Fourier transform is that it is an isometric
isomorphism from l2(–∞, ∞) to L2 [–π, π] where l2, is the space of square summable sequences {xk}∞

k=–∞ and L2 , the space of
square lebesgue integrable functions. Both are linear spaces. According to Sargent (1987), the Fourier transform “is a one-to-one
transformation of points in l2(–∞, ∞) into points in L2 [–π, π] that preserves both linear structure (i.e. it is an isomorphism) and
distance between “points” (i.e., it is an isometric mapping)”. For more information on this subject, see Sargent (1987, chapter XI).
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yt=c+f1 yt-1+f2 yt-2+⋯+fp yt-p+et+θ1et-1+θ2 et-2+⋯+θqet-q (13)

is given by

sy(ω)= (14)

The parameters of equation (13) can be estimated by the method of maximum like-

lihood (or by the two step least squares approach12) and the estimated values substi-

tuted in (14). But in our case, this equation is simplified because we are using the

basic AR(p) process, which implies that all the θ’s are null. A power spectrum is thus

a representation of sy(ω) as a function of the frequencies ω1,ω2,…ωm with ωj =2π j/n
for a given time series of length n.

Figures 1a and 1b show the power spectrum for the sample of the observations used

to estimate equation (1) using, an AR(12) and an AR(52), respectively.

� Figures 1a and 1b. The Monday Anomaly

Table 3 displays the MATLAB®13commands to be run to obtain Figure 1a and 1b. 

� Table 3. MATLAB® Commands for Generating Figure 1

>>load sp500-1970-1973.txt

>>hyulear=spectrum.yulear(12);

>>fs=503;

>>psd(hyulear,sp500_1970_1973, ‘Fs’, fs)
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12 Gourieroux and Montfort (1990, pp. 228-229) describe a very simple method based on OLS that requires only two steps. Firstly,
obtain the estimated residuals from applying OLS of yt on its lagged values: et=yt –∑p

j=1 fj yt–j .Secondly, take the lagged values
of these estimated residuals then to apply OLS on them and the lagged values of the yt :
yt=c+f1yt-1+f2 yt-2+⋯+fp yt-p+et+θ1êt-1+θ2 êt-2+⋯+θt-qêt-q.
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As it can be seen in Figure 1 (Figures 1a and 1b)14, the smooth peak shown approxi-

mately at frequency 0.18/0.25 = 0.7215 is probably an evidence of the Monday anom-

aly, since our regression analysis shows a significant coefficient precisely for that

explanatory variable. Using the formula ωj =2π j/n, we obtain the number of days at

which a cycle might appear; that is:n/j =2π/ωj=8.73 where ωj is approximately 0.72.

This result can be interpreted as follows. At approximately every two stock markets ef-

fective weeks of five days (i.e. 2×5=10≈9), there would be one Monday that shows a sig-

nificant anomaly. From our regression analysis, we have found that there seems to be

an anomaly on Monday. Spectral analysis would thus confirm an anomaly but for one

Monday over three. By combining spectral analysis with our basic regression model, we

are able to provide a more accurate picture of the behaviour of the presumed anomaly.

Figures 2a and 2b also show the power spectrum of the daily S&P500 using a different

time period which range from January 2007 to April 2010. 

� Figures 2a and 2b. Spectrum of the Daily S&P500 Returns 
January 2007 to April 2010

Estimation using an AR(12) Estimation using an AR(52)

What should be seen in Figures 2a and 2b, it is that spectral analysis seems to be able

to capture the financial crisis that was recently raging in the U.S. A simple plot of the

time series would show that there is a sine-wave with high amplitude starting in 2007

moving to mid 2009, which is not the Granger ‘typical spectral shape’ found in several

economic time series. 
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10

13 MATLAB® is a registered trademark of The MathWorks, Inc. Note that in MATLAB, ω =2πf /fs where fs is the sample size.

14 It should be noted that EViews 7.0 also provide a simple procedure to perform spectral analysis. The power spectrum can be
estimated by following the next three steps: 1) estimate an AR(p) process using Quick, Esitmate Equation; 2) in the estimated equation
dialogue box, click on View and select ARMA Structure; 3) choose Frequency Spectrum with Graph selected in the Display option. 

15 We compute this ratio to obtain the relative frequency because we have specified in MATLAB the number of observations using 
fs =503. This implies that the frequencies’ axis is displayed in KHz. That is why we obtained 0.25=(503/2)/1000. Note that we
have also used an AR(12) and an AR(52) to estimate our power spectrum, taking into account the fact that there is 12 months or
52 weeks in a year. When increasing the order of the AR(p), from p=12 to p=52, we observe a small shift in the spectrum (Figure
1a and Figure 1b), which might slightly change our conclusions. 
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In order to help in establishing the stylized facts of that series of observations, we also

performed the spectra of the S&P500 index using a different frequency; specifically,

the monthly returns for the time period of January 1995 to February 2009. The result

appears in Figure 3.

� Figure 3. Power Spectrum of the Montly Returns of the S&P500 
January 1995 to February 2009. Spectrum Estimation using an AR(12)

This figure displays much less slope changes in comparison to Figures 1a or 1b and

it is very close to the strong white noise (as shown in the following figure). However,

we can see a small hump at high frequency (approximately 69 Hz) that seems not to

be significant but could have been related, if it was more pronounced, to the well-

know January effect. We leave this interesting subject for further research.

The figures presented below are also used to help in establishing the stylized facts of

our financial time series. The first of them (Figure 4) shows a stochastic process

known as a strong white noise (Gourieroux and Jasiak, 2001), the second of them

(Figure 5) shows the Gaussian white noise and the last one (Figure 6) represents the

popular lognormal process used in most of the financial applications.

� Figure 4. Spectral Density of a Strong white Noise Series
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16 Granger (1964, chapter 4) shows how to build a confidence interval and its chi-square test. He also provides a table to perform
the test. The two standard deviations rule is a rough approximation that might reject peaks that are in fact significant.

In Figure 4, we can see that the power spectrum of a strong white noise is linear with

a null slope for all frequencies. We can consider this characteristic as reference in

order to help in identifying the data generating process of financial time series; which

could be assumed to be a strong white noise process in the presence of such spectrum.

Thus, these financial time series might present the property of being unforecastable.   

� Figure 5. Spectra of a Normal (0,1) � Figure 6.Spectra of a Lognormal (0,1)

Figures 5 and 6 represent the power spectrums of simulations with, a standard normal

random number generator and a lognormal one, respectively. As seen in Figure 5, the

spectrum of random number, generated from a normal random number generator,

is quite wobbly and even showing some cycles. Since a more linear spectrum could

have been expected, we could conclude that some statistical artifact might be de-

tected by the PSD and that this aspect might be the result of an inappropriate random

number generator. In fact, it is a simple question of scaling. The waves appearing in

figure 5 are not significant at a two standard deviation level16. 

Upon a closer look at the method that is often used to generate normal random de-

viates, we see a nonlinear structure that might cause the generated variables to behave

less smoothly than simple uniform random deviates. For instance, the Box-Muller

(1958) transformation (Press et al., 1989 or Benninga, 2008) is a very efficient pro-

cedure often used to generate normal deviates based on uniform random variable

generator. The following discussion gives a brief description of how to generate nor-

mal deviates based on u(0,1) deviates. Assume that we want to generate two normal

deviates y1 and y2 based on x1 and x2 .

lo
w

-f
re

qu
en

cy
 c

om
po

ne
nt

s 
an

d 
th

e 
W

ee
ke

nd
 e

ffe
ct

 r
ev

isi
te

d:
 e

vi
de

nc
e 

fr
om

 s
pe

ct
ra

l a
na

ly
sis

. R
ac

ic
ot

, F
. E

.

12
 

  

A E S T I M AT I O
  

Power Spectral Density Estimate via Yule-Walker

Frequency (kHz) 

P
ow

er
/f

re
qu

en
cy

 (
dB

/H
z)

-22

-22.5

-23

-23.5

-24

-24.5

-25

-25.5

-26
0               0.05             0.1              0.15              0.2             0.25

Power Spectral Density Estimate via Yule-Walker

Frequency (kHz) 

P
ow

er
/f

re
qu

en
cy

 (
dB

/H
z)

0

-2

-4

-6

-8

-10

-12

-14

-16

-18

-20
0         0.05        0.1        0.15        0.2       0.25        0.3       0.35

03. 02-19. RACICOT cc_Maquetación 1  15/09/11  09:54  Página 12



y1= –2lnx1 cos2πx2 (15)

y2= –2lnx1 sin2πx2 (16)

where x1 and x2 are two  u (0,1) deviates. As equation (15) and (16) show, the Box-

Muller transform uses sine and cosine functions. These functions could explain the

waves obtained in Figure 5 which are a priori unexpected. Finally, to obtain our nor-

mal deviates, based on (15) and (16), write x1 and x2 as a function of y1 and y2 and

then apply a Jacobien transformation. For instance,

p(y1)dy1=| |dy1= e –y2
1 / 2dy1 (17)

this equation is the obtained probability density function (p.d.f.) of the well-known nor-

mal density based on y1. Analogously to the Kuznets’s transformation (Sargent, 1987),

it is possible that the generated data could be some statistical artifact detected by the

power spectrum. However, this is not the case here. In fact, it could be argued that this

is a desirable property as it generates what is generally observed in financial time series.

In the same way, we might relate Figure 6 to the Kuznets’s transformation due to the

fact that it shows some similarities. Applying a Kuznets’s transformation to a white

noise process, one can generate a time series that shows large peaks at low frequencies

and small peaks at high frequencies; hence, the time series under scrutiny would seem

to be characterized by long swings. These swings might be statistical artifacts that

are sometimes induced by the transformation and not a characteristic of the data.

Here again, if we compute a two standard deviations band, the apparently large

swings are not significant. It is just a question of scaling. 

In addition, this power spectrum will be use as a base of comparison of any other

type of financial time series. We provide the power spectrum as a base of comparison

to a simulated Geometric Brownian Motion (GBM), since it is at the hearth of basic

option pricing models (e.g. the Black and Scholes, 1973, formula’s). The spectrum

of this simulated stochastic process is shown in Figure 7. 

In this figure, we can observe that the GBM generates lot of waves at different fre-

quencies showing many cycles, resembling Figures 5 and 6. These cycles could also

be tested using a two standard deviation band, the result might be that they are not

significant. Note that the popularity of this type of modelling in applied finance is

probably due to its ease of implementation. Moreover, it can be easily modified in

order to account for other stylized facts like stochastic volatility, jumps, etc. These

modifications of the GBM would consequently generate a power spectrum that might

show some peaks at some frequencies that could correspond to the financial cycles

observed in financial time series. 
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� Figure 7. Spectra of a Geometric Brownian Motion (GBM) – Equation (7)

� Figure 8. Spectra of a Low-Frequency Model – Equation (8)

Figure 8 shows the power spectrum of equation (8). This exercise intends to help the

financial practitioners to have an idea of the different shapes of spectrums that one

can obtain from financial time series. This type of model generates returns with in-

duced sine-waves, so the resulting spectrum should show some peaks at some fre-

quencies, as we can observe in this figure.

The figure shows two pronounced peaks, one approximately at frequency 11 Hz and

another one at 14 Hz. We can compute the numbers of years at which the cycle seems

to appear using: n/j =2π/ωj=21 where, ωj is approximately 0.3 = 11/36 for the first peak

and, n/j =2π/ωj=17 where, ωj  is approximately 0.38 = 14/36 for the second one (36 =lo
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72 observations divided by 2). This can be interpreted as follows. For the first peak,

we obtain a cycle of approximately 21 years and for the second one, a cycle of ap-

proximately 17 years. The first of these cycles can be identified as one of the Kuznet’s

long wave (20 to 30 years) and, the second as one of the building cycle (15 to 20

years) (Granger, 1966). For this reason, we could conclude that the model proposed

by Semmeler et al. (2009) generates some well-known stylized facts. Subsequently (see

Figure 9), we observe similar patterns repeating themselves with the higher peaks at

a higher frequency and then, the lower peaks at a lower frequency. 

� Figure 9. Equity Returns Generated by Equation (8)

In addition, Figure 9 shows the two peaks identified in Figure 8 which seem to be po-

sitioned at similar range of frequencies. 

� 4. Conclusion

In this article, we try to show the usefulness of some of these techniques for the fi-

nancial analysts and investment community by proceeding analogously as in Granger

(1964, 1966) and Sargent (1987). We intent to establish the ‘stylized facts’ and the

Granger ‘typical spectral shape’ using popular distributions as base of comparison

to the standard financial time series. This exercise was conclusive. Consequently, by

using the well-known Monday anomaly (Gibbons and Hess, 1981; Harris, 1986; Smir-

lock and Starks, 1986; Connolly, 1989; Racicot and Théoret, 2001; Giovanis, 2010),

we could confirm that our result from a basic regression with dichotomous variables

is in fact significant for the Monday anomaly even if the regression is in itself ques-

tionable. Thus, spectral analysis can be seen as supplementary tool for helping to

confirm some results; for example, in our case, the presence of a cycle for a particular
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subsample of returns: the S&P500 index for the period 1970-1973. The January anom-

aly is another well-known stylized fact in the financial literature (Keim, 1983; Tinic

and West, 1989; Maloney and Rogalski, 1989; Fama, 1991, Black, 1993). This anom-

aly could also be tested by the technique of spectral analysis using an approach similar

to the one proposed in this paper. Furthermore, after studying the behaviour of the

low-frequency components in equity returns (Semmler et al., 2009), we found spectral

analysis quite useful for detecting cycles in data generated by the estimated low-fre-

quency model. Therefore, we conclude that this model is able to generate not only

cycles of relevant frequencies, but also two cycles of different length. 

Actually, some work has been done by researchers (Racicot and Théoret, 2008) to

dynamize Jensen’s alpha and beta, using the Kalman filter (Racicot and Théoret,

2007, 2010a) and the conditional models in the context of hedge fund returns. This

work intends to improve the basic static models of returns frequently used by invest-

ment practitioners and academics to establish the performance of these funds. How-

ever, further research might be done on how to use spectral analysis to help identifying

the cyclical behaviour of important performance and risk parameters, for instance,

in the hedge funds industry. 

Finally, another possible avenue of research could be based on the use of the coherence

measure; which is the analogue of the correlation measure (e.g. Pearson or Spearman

correlation coefficient) between pairs of financial time series. Indeed, coherence be-

tween hedge funds indices or coherence between the Gross Domestic Product (GDP)

and hedge funds indices could be computed to help understanding the co-movements

of these important indices. Investment practitioners, like portfolio managers who re-

allocate their portfolios based on sometime unreliable forecasts, could benefit from

a better understanding of these measures in order to help establishing leading or lag-

ging indicators of their financial time series.
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