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Resumen 

Usando el método de la matriz de transferencia y la ecuación de Ben Daniel y Duke para 

propagación de electrones con masa variable, calculamos la transmitancia para una superred 

lineal finita simétrica que tiene variación lineal del ancho de las barreras de potencial. El ancho 

de las barreras decrece del centro hacia los extremos de la superred. La dependencia en la energía 

de la transmitancia presenta intervalos de bandas de rechazo y de bandas bastante planas de 

transmisión. Realizamos los cálculos de transmisión para varias alturas de barreras y varios 

anchos de pozos. Comparamos con la transmisión de una superred regular en la cual todas las 

barreras tienen el mismo ancho. También comparamos con la de una superred lineal invertida en 

que el ancho de las barreras crece del centro hacia afuera, así como con la de una estructura 

donde la variación de los anchos de barreras sigue un perfil gaussiano. 
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Abstract 

Using the transfer matrix method and the Ben Daniel-Duke equation for variable mass electrons 

propagation, we calculate the transmittance for a symmetric finite superlattice which has a linear 

dependence for the width of the potential barriers. The width of the barriers decreases from the 

center toward to the ends of the superlattice. The energy dependence of the transmittance presents 

intervals of stopbands and quite flat passbands. We calculate the transmission for several heights 

of barriers and widths of wells and compare with the transmission of a regular superlattice where 

all the barriers have the same width. We also compare with an inverted linear superlattice where 

the barriers width increases from the center to the ends, as well with the transmission produced 

by a superlattice with a Gaussian variation of the barriers width. 
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Introduction   

The subject of propagation of any kind of waves in layered structures is very important. One of 

their important applications is as reflector structures and as filters. The search for energy, 

electronic, optical and acoustic filters is an interesting and active field. There have been proposals 

of energy passband filters using quantum superlattices with a Gaussian potential profile (Tung, 

1996 and Gómez, 1999). These layered structures allow the incident electrons to be nearly totally 

transmitted when the impinging electron energy is in the passband energy region. Also, a 

complete reflection occurs when the impinging energy is in the stopband energy region. The idea 

behind using these types of structures is that a Gaussian profile provides a slowly varying 

potential for the layers, which can improve the transmission of electrons through the multilayer 

system. Following the idea of the superlattices with a Gaussian potential profile, layered 

omnidirectional optical mirrors have been proposed where the refractive index varies according 

to the envelope of a Gaussian function, using only normal materials (Arriaga, 2006) and using 

also metamaterials (Saldaña, 2008). These systems were proposed only as omnidirectional 

mirrors but their properties as optical filters were not investigated. However, there is a proposal 

of a multilayer optical filter where the refractive index of the layers is modulated by a Gaussian 

function (Madrigal, 2009). Likewise, there is a proposal of a layered acoustic filter where the 

characteristic acoustic impedance of the layers is modulated by a Gaussian distribution 

(Madrigal, 2008). In this work we propose a symmetric structure where the width of the potential 

barriers follows a linear profile. The widest barrier is at the center of the superlattice and the 

narrowest ones are at the ends. For the calculations we use the transfer matrix method and the 

Ben Daniel-Duke equation for variable mass electrons (Ben Daniel, 1966). The spectrum of 

transmittance of the structure presents stopbands and nearly flat transmission bands of energy. 

We compare this transmittance with that produced by a superlattice where the barriers width have 

a Gaussian modulation, as well as for a structure where all the barriers have the same width, and 

also for a superlattice where the barriers width increases from the center to the ends. In the next 

section we introduce the theoretical background, then we present some of our results and 

discussion of the behavior of the transmittance and finally we give some conclusions.                         
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Method 

The propagation of the electrons in the structure is described by the Ben Daniel-Duke equation, 

appropriate for electrons with variable effective mass m
*
. 

 

        (1) 

 

The boundary conditions are the continuity of  and . In order to solve the 

previous equation we use the theory for transfer matrix of (Pérez, 2004). We consider a system of 

n coupled differential equations of second order with variable coefficients, 

 

              (2) 

 

With 

                                                       (3) 

And ,  y  are   matrices,  is the identity matrix,  are the  unknown functions of 

the system. We also use the notation: 

                                                                                                    (4) 

 

The system can be changed to another system of 2n equations of first order F’=PF where 

 

                             (5) 

 

                                                          (6) 
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 is a column vector of  components, and  is a  matrix. The system  has  

independent solutions , with . Every solution  of the system can be expressed 

as a linear combination 

                                                     (7) 

The matrix M of complete transfer is defined as: 

 

                                            (8) 

 

or also 

 (9) 

 

 

Where the  are  blocks of the transfer matrix . This matrix transfers the solution 

at  to another point .  is called a complete transfer matrix because it transfers  and also , 

in order to distinguish it from the matrix that transfers only . 

 

We consider the electrons as plane waves. The transmittance T is given by the ratio of the 

transmitted probability current density to that of the incident one, and is given in terms of the 

transfer matrix by 

      (10) 

 

Where k is the wave vector for zero potential. 

 

 

Results 

 

We consider a superlattice made of N layers, the barriers are the layers with odd numbering, 

while the wells have even numbering. The width  of the barriers follows a symmetric linear 

profile while the wells width is constant. hmax is the width of the widest barrier considered at the 
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center of the structure and hmin the width of the narrowest ones at the ends of the structure. The 

superlattice is shown schematically in Fig. 1.  

 

 

Figure 1. Schematic potential profile of the structure. 

 

We consider that the multilayer structure is constructed changing the mole fraction of the 

semiconductor alloy AlxGa1-xAs. The wells are made of pure GaAs whereas the barriers are made 

of AlxGa1-xAs. In order to calculate the electron effective mass m for the alloy, we use the virtual 

crystal approximation (Singh, 1993), with 

   

                          (11) 

 

mA and mG being the electron effective masses for pure AlAs and GaAs. We consider a maximum 

concentration x of 0.45, for which the alloy AlxGa1-xAs has still a direct gap of 1.98 eV. For GaAs 

we take a gap of 1.42 eV and a band offset of 0.6 for the conduction band at the interface GaAs / 

AlxGa1-xAs. With these values, the maximum height for the barriers V0 which can be considered is 

0.33 eV and the concentration is given by x = V / 0.733, where V is the height of the barriers for 

the superlattice. We present results for a superlattice of 25 layers, for which 13 are barriers and 

12 are wells. The width of barriers and wells is given in monolayers (ML), one ML has a 

thickness of 2.825 Å. The width hmin for the barriers is 1 ML and hmax, the widest barrier at the 

center of the superlattice, is 7 ML. We show in Fig. 2 the transmission for a structure with a wells 

width of 22 ML and height of the potentials V=0.15 eV.  
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Figure 2. Transmittance versus energy. Thirteen barriers, hmax= 7 ML, hmin= 1 ML, well width = 22 ML, V=0.15 eV. 

 

In Fig. 3 the transmission is for a superlattice where the height of the barriers is 0.25 eV and the 

wells also have a width of 22 ML. For fixed width of barriers and wells, when the height of the 

potential barriers increases, the electrons are more confined, the lifetime Δt of the eigenstates 

increases, and by the uncertainty principle ΔE Δt≥ ħ/2, the bandwidth ΔE of the resonance curves 

decreases. Since the passband is the envelope of the resonance curves this reduction causes the 

passband to be narrower for an increase of the potential. These two cases 
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Figure 3. Transmittance versus energy. Thirteen barriers, hmax= 7 ML, hmin= 1 ML, well width = 22 ML, V=0.25 eV. 

 

 

Figure 4. Transmittance versus energy. Thirteen barriers, V=0.20 eV, wells width = 20 ML. For curve 

in black hmax= 7 ML, hmin= 1 ML. Curve in red is the transmittance for a regular structure with the 

same width of 7 ML for all the barriers. 
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of Figs. 2 and 3 present a quite flat passband. We present in Fig. 4 in black the transmission for a 

superlattice with barriers height of 0.20 eV and wells width of 20 ML. For comparison we also 

present in red, the transmission of a regular superlattice where the 13 barriers have the same 

width of 7 ML.We stress the flatness of the passband for the superlattice with a linear variation of 

the barriers width in opposition to the transmission for the regular structure. The passband for the 

regular superlattice presents oscillations which are the peaks or curves of resonance for the 

eigenenergies due to the 12 wells of the superlattice. A regular structure does not have flat 

passbands. The decrease of the barrier width from the center toward the sides of the structure 

causes a drop of the lifetime Δt for the eigenstates, due to the fact that the electrons tunnel more 

easily. For the above mentioned uncertainty principle, the resonance bandwidth ΔE increases and 

the passband, which is the envelope of the resonance curves, becomes flatter.  

 

Figure 5. Transmittance versus energy. Thirteen barriers, V=0.20 eV, wells width = 20 ML. Curve in 

black is transmittance for the inverted linear superlattice with hmin= 1 ML at the center of the structure 

and hmax= 7 at the ends. Curve in red is transmittance for the regular superlattice of Fig. 4. 

 

Also for comparison, we present in Fig. 5 the transmittance for the regular structure of Fig. 4 and 

the transmittance for an inverted superlattice with an opposite linear variation of the barriers 

width, where the narrowest barrier is at the center of the structure while the widest ones are at the 
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ends. For this last structure the electrons are more confined that in the regular structure and the 

resonance peaks are narrower. Finally, we compare the transmittance for our superlattice with 

linear variation of the barriers width with that produced by a superlattice with a Gaussian 

variation. This type of variation has been used before for producing also flat passbands for the 

transmission of a superlattice (Tung, 1996 and Gómez, 1999). We generate the barriers widths for 

a Gaussian structure with 13 barriers using the function hi=hmaxexp(-i
2
/2σ

2
), where σ is the 

standard deviation and i=0, 2, …, 6. hmax is the widest barrier at the center of the Gaussian 

superlattice. For a Gaussian variation we need to consider a larger value of hmax than for a linear 

variation. We calculate σ and the minimum hmax which produce the best flat passband for a 

superlattice with hmin=1 ML and wells width of 20 ML. Our results give σ =2.66 and hmax=13 ML. 

We carried out the calculations for hmax in angstroms and round off the widths hi in ML. We show 

in Fig. 6 our results. 

 

Figure 6. Transmittance versus energy. Thirteen barriers, V=0.20 eV, wells width = 20 ML. Curve in 

red is transmittance for a Gaussian structure with hmax= 13 ML, hmin= 1 ML.Curve in black is 

transmittance for the linear superlattice of Fig. 4.  

 

We see that the flatness for both types of superlattices is comparable, but the passband for the 

Gaussian superlattice is narrower. Besides that, is more difficult to work with a Gaussian 
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structure because one has to calculate σ, hmax and the wells width in order to reproduce hmin and a 

flat passband, while for the linear structure one simply provides hmax and hmin and make a 

variation of the wells width in order to search for a flat passband. 

 

Discussion 

Using the one-band effective mass framework together with the Ben Daniel-Duke equation for 

variable effective mass and a method of transfer matrix which transfer a function and its 

derivative, we have made studies of the electrons transmittance for a finite superlattice where the 

width of the potential barriers follows a linear distribution, with the widest barrier at the center of 

the superlattice and the narrowest at the ends. The transmittance presents a quite flat passband 

which can not be obtained with a regular structure where all the barriers have the same width. 

Moreover, the structure with linear variation of barriers width produces a flat passband wider 

than that produced by a structure with a Gaussian variation.  Besides that, a superlattice with a 

linear variation of barriers width is easier to construct than a structure with Gaussian variation. A 

superlattice with linear variation of barriers width can have applications as an energy filter for 

electrons, allowing electrons of selected intervals energies to pass through. 
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