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Resumen 

Se simuló computacionalmente un gran número de pacientes bajo tratamiento de radioterapia, 

mediante un sistema dinámico. De los resultados, se halló un método para cambiar el número de 

sesiones de radiación manteniendo óptimo el tratamiento. Además, se obtuvo que la relación 

entre la fracción sistema inmune-eficiencia tumoral para un paciente dado y la máxima 

probabilidad de éxito del tratamiento sigue una ley de potencias. 
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Abstract 

Using a population dynamics formulation to model radiotherapy treatments a large amount of 

patients under treatment was mimicked. From the obtained results a method to change the 

number of radiation sessions while keeping the optimized treatment is found. Also a power law 

relating immune system - tumor effciency ratio (ISTER) for a given patient and maximum 

success probability of radiotherapy treatment is obtained. 
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1 Introduction   

The relevance of immune system tumor interaction in a radiotherapy treatment (RT) and the 

importance of its study have been highlighted in a previous work [1]. The role of immune system 

in tumor control has been described in [2] and widely discussed in further works [3-8]. However, 

in our opinion, the need of its study and characterization to plan a treatment has not been fully 

understood. 

Mathematical models are widely used to describe tumoral behaviour withor without treatment. 

Such models have been used to explain and to describe immune depression effects [9], the role of 

time delays in immune response [10, 11], radiovirotherapy treatments [12], chemotherapy 

treatments [13] and even surgery [14]. 

There is an increasing concern about finding the suitable planning that maximizes the outcome of 

a radiotherapy (RT) treatment [15]. Generally speaking, the problem of how to apply radiation 

treatments in an optimal way taking into account the influence of external factors is, in our 

opinion, far from being fully solved, specially in what concerns the derivation of general decision 

tools to organize and adopt radiotherapy protocols in actual clinical conditions. 

In the present work we investigate how to apply the optimum dosage and to adapt this optimal 

treatment to other protocols with a different number of sessions. This could be useful to oncology 

services to plan the RT treatments without decreasing treatment performance. Also the 

oncologists could adjust the radiation dosage in order to minimize the damage caused to the 

surrounding tissue. 

 

2 Modeling radiotherapy 

2.1 Model 

We will use a Lotka-Volterra like model to describe the tumor evolution based on some 

assumptions. Tumor cells growth X  (as usual, a dot over a quantity represents its time 

derivative) depends on the current tumor population as  aX and its interaction with lymphocytes, 

-bXY . Lymphocyte population grows due to tumor-immune system interaction, dXY , and 

contribution to exponential decay, -fY , due to natural cell death. The tumor is assumed to secrete 

interleukin which produces an immunity depression effect [16, 17], -kX. In this model a constant 

flow, u, of lymphocytes arrives from the immune system. 

So, we model tumor-immune system interaction using the already known equations [9]: 
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X = aX -bXY

Y = dXY -fY - kX + u
 (1) 

 

 

as a result of RT treatment a fraction of cells of both populations, lymphocytes and tumor cells 

are affected. The lymphocytes population get quickly reduced in a fraction lB  of cells in what is 

called the interphase death. However, affected tumor cells will not die immediately but a fraction 

tB  loses its reproductive capacity and dies in the mitosis process. The fraction of affected cells in 

both populations is the complement of the survival factors t,l t,lS  = 1-B . 

The inclusion of both populations affection brings a new equation for the tumor non clonogenic 

cells [12], Z, originated from radiation damage. We assume that those cells will also stimulate the 

lymphocytes population, as pZY , will decay exponentially as -rZ due to the death of damaged 

cells, and as -qZY due to the interaction with immune system. Finally we arrive to 

 

 

t

l

t

X = aX -bXY - B (T)X

Y = dXY + pZY- fY -k(X + Z) + u -B (T)Y

 Z = B (T)X -rZ-qZY

 (2) 

 

where ( ) ( )t t nB T B t T  and 
l l B (T) = B (T -Tn)  represent the amount of tumor cells and 

lymphocytes affected by radiation per unit time. Tn are the time instants when radiation doses are 

applied and (T -Tn)  denotes Dirac's delta function centered at Tn. 

A dimensionless system can be easily obtained taking the tumor duplication time 1
c a
   (in 

absence of external influences) as the characteristic time, so we introduce the dimensionless time 

c

t


 . Through the substitutions X = ax/d, Y = ay/b, Z = az/d, we get 

 t

t

 x = x - xy - (  )x

y = xy + zy - y - (x + z) + - (  )y

z = (  )x- z- zy

t 

     

   

 (3) 

 

with
2

l l t t(  ) = B (  ), (  ) = B (  ), p/d, = f/a,  = kb/ad,  = ub/a , = ra/d            and  

2= qa /db . All parameters can be estimated and interpreted by a similar procedure as in [11]. 
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A linear stability analysis of the system (3) shows that tumor will vanish to 0L  = (0; ; 0) 


if 

> 1 



and will remain controlled around 1L = (( - )/(1 - ); 1; 0)    if <  < 1 





or >1  [1, 9]. 

Figure 1 shows stable and unstable regions of Eqs. (3) and highlights region III on which this 

work will focus. 

 
Figure 1: Phase diagram of equations 3. This work focuses inside shadowed region ( <  < 1) 





where 

tumor growth is fast and radiotherapy plays an important role. 

 

If the system is L0-stable and initial tumour size is small enough, then the radiation treatment is 

unnecessary, whereas if tumour size is large enough, then the treatment will take it closer to L0. 

The L1 controlled growth state will be reached only if both parameters fulfill the same condition, 

in other words, if 


and  are both greater or smaller than unity at the same time. Any other 

condition makes the first component of L1 < 0, and even when the stable point mathematically 

exists, it can not be approximated from realistic initial conditions (that should remain positive 

along the simulation time). For those patients with 1  and / < 1  , the main effects of the 

tumor will be the depression of immune system, they will perform badly according to Karnofsky 

performance scale [18] and will not fulfill physical requirements to be subject to treatment. 
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However for 1




  , tumor will grow and tumor eradication will be achieved only by bringing 

the system close enough to L0, so that the immune system can get rid of the tumor. 

The chosen characteristic time and the dimensionless parameters allow us to give a very intuitive 

interpretation of the critical parameters of Eqs. (3). We can see /  as the effciency of immune 

system over tumor growth and   as the “deficiency” of the immune system due to tumor growth. 

It is also easy to see that radiation treatments do not change the stability conditions of the system 

(2), since radiotherapy does not change tumor or lymphocytes growth rate, but can drive the 

number of both kind of cells to very small values. This means that, for the chosen region in the 

parameter space, any remaining tumor cells will eventually reproduce and grow after the end of 

the treatment. 

Although Eqs. (3) allow for infinitesimal x values, in real systems when the number of tumor 

cells becomes small enough, immune system may kill them. In other cases, when a few tumor 

cells survive, they can cause tumor regrowth. It is known that this behavior is almost independent 

on tumor size [19]. As an estimation we will assume that if the immune system has a high 

efficiency it will have higher probabilities of kill the tumor remaining cells and if the immune 

system has a low efficiency the probability of kill those tumor cells will be low. The simplest 

linear approximation to deal with this effect is to assume: 

 

 
/       if   / 1 

( / )
1             if   / 1 

P
   

 
 


 


 (4) 

 

as the probability of tumor regression. If no regression occurs, tumor will regrow. We must 

realize that when the immunodepression term -kX of system (1) is larger than the flux of 

lymphocytes u, an unattended method to solve the equations will fail to describe a biological 

system [3]. However, this is a simple way to introduce the immunodepression effect in our 

equations and can be considered as the first order Taylor approximation for a more general 

nonlinear function. Furthermore, it provides us a very simple portrait for the parameter space that 

allows to select the target tumors of radiotherapy treatments. Finally, the chance of lymphocyte 

population to become zero gives us a natural cutoff for our system. Then, whenever lymphocyte 

population becomes zero we will assume the tumor escapes lymphocyte control and grows 

limited only by space and nutrient considerations. At this point, we consider treatment has failed. 
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2.2 Treatment optimization 

A reference protocol was simulated in [1] while coefficients entering equation 3 were varied at 

random among admissible values [11]. The simulation, then, covers a wide range of tumors and 

supply general results useful to clinical practice. 

One million of  “virtual patients” under treatment were simulated. Defining the probability of 

treatment success (Ps) as the fraction of “virtual patients” with no tumor at the end of treatment, it 

could be represented as a function of tumor cell survival factor and the Immune System -Tumor 

Effciency Rate [1], (ISTER), defined as ISTER = /  . 

 

As shown in [1], the long term survival of patients will not improve with higher doses of 

radiation, on the contrary, it is possible to get the maximum success probability for our reference 

protocol at intermediate doses. Our model predicts that higher doses do not improve therapy 

outcomes. 

 

2.3 Simulation 

We can mimic different radiation treatments with Eqs. (3) to simulate tumor evolution. To follow 

radiotherapy treatment in a realistic way, we apply a radiation session every workday (5 

consecutive days) and none in weekends (2 days). All treatments [20, 15] begin the tenth day, and 

apply a variable number of sessions, N, from 20 to 40 for each patient. 

We could take up a sort of tumors, i.e. breast or colon, and use an experimental expression to 

calculate the survival fraction of cells for a 2 Gy dosage. Instead, we preferred to proceed in a 

more general way, and ignoring the radiation dose, we have taken a random value for the survival 

fractions of each patient tumor. We have generated several virtual patients under treatment taking 

different values for the parameter values in Eqs. (3) and use a fourth order Runge-Kutta method 

[21] to integrate them. 

To reproduce tumor evolution resembling that of a clinical case, one needs to calculate the 

correct values of the cofficients appearing in Eqs. (3). Numerical estimation of these coefficients 

was already made in [11] (and also in [8] for a slightly different model), based on clinically 

available data, showing a possible procedure for clinical professionals to estimate their values. 

A statistical study of the dependence of treatment success on the dosage and number of radiation 

sessions was performed. Due to the wide range of possible parameter values in Eqs. (3), their 



General features for optimal radiotherapy planning, the role of immune system 

Revista Electrónica Nova Scientia, Nº 8 Vol. 4 (2), 2012. ISSN 2007 - 0705. pp: 13 – 25 

- 20 -                                            

values have been drawn randomly from a log-normal distribution, to avoid negative values, but 

keeping the immune system efficiency ( /  ) always smaller than 1. Survival factors [19, 22] 

are also taken as random values. As initial conditions we assumed, for simplicity, that the number 

of tumor cells is higher than the number of lymphocytes and that both initial populations are 

distributed as normal random numbers. 

 

3 Results and discussion 

To describe the success probability for a given treatment let us define the effect potential for 

tumor cells as  

ln( )tS    (5) 

 

where tS  is, as before, the survival fraction of cells. This quantity grows monotonously with the 

radiation dose. If an exponential model like the linear or the LQ model is used to describe the 

interaction of radiation with living tissues, then the potential becomes the tissue effect. 

Otherwise, like in the single-hit multi-target inactivation model, it has not a direct interpretation 

but remains useful to describe the radiation damage. 

The treatment success probability, Ps, defined as the fraction of patients with no tumor at the end 

of treatment, is represented as a function of ISTER, N and  . 

 

 ( , , )SP G ISTER N   (6) 

 

As expected, for each value of N we obtained similar results as obtained in [1]. Furthermore, 

when a fixed value of the ISTER is taken, the surface represented in figure 2 is obtained. This 

shows that whenever the value of N increases, the optimized value of PS can be obtained with a 

lower value of   per session. This allows to find the exact values of   that optimize PS, for each 

value of N, as represented in figure 3. 
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Figure 2: PS representation for ISTER = 0,7 as a function of the effect potential and the number of 

radiation sessions. Closer to black means lower, yellow means closer to 0,7 

 

As a result of the simulations a family of hyperbolas determined by the ISTER value are shown 

in figure 3. The  and N values are related by the expression 

 
max

N
R

P


  (7) 

 

where R is constant for a fixed ISTER value and maxP  is the maximum success probability the 

treatment is able to get, given   and N values. Those R values then could be fitted as a power 

law of the ISTER, 

 

m

R A




 
  

 
 (8) 

 

Our simulations allow to obtain m = 1,1 0,1   and A = 17  1 bringing a method to obtain an 

approximate value of the maximum success probability that a radiotherapy treatment could reach 

if the approximate ISTER value is known. 
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Figure 3: Effect potential per session that maximize the success probability Ps for each value of N 

plotted for some values of ISTER parameter. 

 

In order to compare R values and how it could characterize the possible radiotherapy treatment 

outcomes, let us consider a tumor with a very small duplication time compared with the 

lymphocytes production of the patient but with an almost insignificant immune-depression effect. 

All tumors with these characteristics can be grouped in region 1 of figure 4. On the other hand, 

region 2 of the same figure groups tumors with non negligible immune-depression effects but to 

which immune system could fight satisfactorily and slow down tumor growth. 

 
Figure 4: Schematic representation of zones grouping example tumors. 
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The parameter R allows to compare without further information the optimal treatments that could 

be applied. Tumors in zone 1 have a high value of R and even with high radiation doses will not 

get a good success probability. Taking a standard protocol with 30 sessions as a reference, figure 

5 shows that each radiation session must get a value of   = 0,55 and then according to 

expression 7 a treatment will get less than 14% of success probability. 

 
Figure 5: Effect potential per session that maximize the success probability PS for each value of N 

plotted for the zones 1 and 2 of parameter space showed in figure 4. 

 

However an R value between 20 and 30 like in zone 2, guarantee that the final success 

probability will be high if an optimized treatment is applied. The same standard protocol of 30 

sessions must apply a radiation dosage equivalent to  = 0,6 to get the maximum success 

probability. Here R = 24 guarantee that if an optimum treatment is applied, a success probability 

of 75% could be achieved. 

Thus, large values of R mean that the success probability of a treatment is low in comparison 

with the same treatment corresponding to small values of R. The main factor in this analysis is, 

then, the ISTER. This shows how strongly the immune system influences the results of the 

radiation treatments and illustrate the importance of considering it as a main factor for 

radiotherapy. 
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4 Conclusions 

The present work introduces a generalization of [1] to a scenario with a possibly variable number 

of sessions. Starting from a system of equations and introducing a probabilistic cutoff system, the 

simulation allows us to find the corresponding effect potential per radiation session providing the 

maximum value of the success probability. Consider, for instance, that for some time interval the 

radiotherapy machines are not available when a patient needs an urgent treatment; our work 

could guide the radiotherapists to design a parallel treatment as efficient as that initially 

recommended for that patient and adapted to the available time interval. 

Finally, an expression that relates the maximum affordable success probability of a treatment 

with the applied effect potential per session, the number of sessions and the ISTER parameter of 

a patient was obtained. This shows us that the clinical and experimental study of the interaction 

between tumor cells and the patient immune system is crucial for RT planning. 
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