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Resumen 

Introducimos aquí un nuevo modelo teórico para describir la dinámica de transmisión a que 

responden algunas enfermedades infecciosas bacterianas. El mecanismo de propagación 

considerado es el de contacto personal directo. La presencia de factores de inmunidad es 

ignorada, pero el modelo incorpora la existencia de un período de incubación para la enfermedad. 

Los posibles efectos de campañas educativas de salud pública, orientadas a controlar la 

propagación, son incluidos y se introduce un cierto parámetro ε para cuantificar la eficiencia de 

ese tipo de recurso. 

 

Palabras clave: enfermedades infecciosas, ecuaciones no lineales de retraso, comportamiento 

asintónico 
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Abstract 
We introduce a new theoretical model to describe the dynamics of transmission for a certain class 

of bacterial infectious diseases. The propagation mechanism considered is the one concerning 

direct personal contact. Immunity factors, if present, will be ignored, but in our calculations is 

included the existence of an incubation period for the contagious infection. The effects of public 

health campaigns on the spread of the disease are also considered and the inclusion of a certain 

parameter ε to measure the effciency of such attempts is proposed. 
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1. Introduction 

Infectious diseases represent not only a kind of social problem but also a source of eco-nomically 

harmful effects. Expenses with medical assistance as well as with prophylactic actions are usually 

the best-known negative effects, although the loss of productivity equally plays an important role. 

Because of these and other reasons, a lot of papers and books have been devoted during the last 

decades to obtain and describe mathematical models capable to reproduce, in a relatively reliable 

form, the dynamics of transmission for different types of contagious diseases (see, for instance 

[6,8,10,12,13,14,15,16,17] and the references therein). From the historical point of view it is fair 

to emphasize at this point that the pioneer in the formulation and application of deterministic 

models to the study of contagious diseases, was the Dutch-Swiss mathematician Daniel 

Bernoulli. In 1760, he developed a mathematical method to investigate the effectiveness of 

variolation (also referred to as inoculation) against smallpox [1]. Smallpox is an infectious 

disease, unique to humans, of viral origin. 

 

In this paper we won’t deal with viral diseases, but with a certain kind of infectious bacterial 

illness like pneumonia or tuberculosis, for instance, subjected to an adequate outpatient treatment. 

Such kinds of diseases are transmitted only by direct contact (without the participation of any 

kind of vector) and, in order to construct our sim-plified model, we shall start considering that the 

sample resembles a geographically homogeneous and dense population distribution. To ensure 

that all potential physical contacts among individuals be equally likely to occur, we assume that 

the population is concentrated in a small enough spatial region. We also assume that there exists a 

maximum time interval T0 (the same for all infected individuals) during which an indi-vidual can 

withstand without medical assistance being a carrier of the infection. After this time, any 

recovery attempt is doomed to failure and, in general, the patient dies. For shorter times, 

however, the cure, following a proper treatment, is guaranteed. It is just for this reason that we 

shall consider that all the infectious individuals will be subjected to an adequate medical 

treatment, at most up to T0. This maximal time can be reduced, in the best of the cases, to the 

value T1 < T0 by means of adopting more effcient health politics: for example, through 

campaigns to alert the population, with the objective to seek for medical help as soon as the first 

symptoms of the disease appear. 
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The infection process begins with a contact between a susceptible individual and an infectious 

one. From this moment, the first individual is contaminated (infected, but not yet infectious) 

remaining in such a state during a time t0 < T1 after which he becomes a disease transmission 

agent. Such an interval is called the incubation period [1]. Under these considerations and 

including some additional hypothesis, we construct in Section 2 a mathematical model to study 

the dynamics of transmission in the presence of proper medical assistance. In Section 3, a 

mathematical analysis of the system of integral equations, which represents the model previously 

obtained, is performed. To conclude, in Section 4 an alternative to reduce endemic levels is 

proposed and some conditions under which the disease can be definitively eliminated from the 

population (here considered as a closed system by hypothesis), are described. Numerical results 

and final comments are also included in this section. 

 

2. Developing the mathematical model 

The main hypothesis that we shall use here can be summarized as follows. 

 

On  the  other  hand,  our  universe  is  constituted  by  three  different  co-existing  classes: 

 

a) the  class  S of  susceptible  people  (neither  infected  nor  infectious),  

 

b) the class I of infectious or infective individuals (those capable to transmit the infection) and  

 

c) the class C of contaminated individuals, which are infected but can’t transmit the infection 

yet.  

 

Using the total size N of closed host population as a normalization factor, one can associate to the 

classes declared above the probabilities S0(t), I0(t) and C0(t), respectively; where 
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represents the probability to find an infected individual in the population and S0(t) + D0(t) = 1. 

Let us also introduce a function of two variables P0(t, τ ), P0 : Λ → [0, 1], where 

 

which represents the probability that someone infected at τ remains infected at t. This function is 

supposed to have the following heuristic properties: 

 

Remark  2.1: In  most situations we can consider the probability P0 in the form 

P0(t, τ ) = φ0(t − τ ),  where  φ0  : [0, +∞) → R  satisfies 

 

An  adequate  contact-propagation  equation  can  be  written  as  [2,3]: 

 

where g(τ ) is the rate of the infection process (number of new infected individuals per unit time, 

at the instant τ , divided by N ). Notice, from Eq. (2.5), that if one wants to describe the 

probability to find an infected individual at time t, the integration should be performed only along 

the interval [t − T0, t], just because of the existence of a maximum recovery time T0. Taking into 

account that among all the possible contacts the only ones that could transmit the infection are 

those involving infective and susceptible individuals, the probability of an infectious contact to 

occur is I0(t)S0(t) = I0(t)[1 − D0(t)]. Then, denoting by α(τ ) the capacity to infect, which we shall 

define in this case as the probability per unit time that a susceptible in contact with an infectious 

becomes infected, we obtain g(τ ) = α(τ )I0(τ )[1 − D0(τ )], where α(τ ) is a positive function on 

[−T0, +∞). 
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Under these considerations, the contact-propagation equation Eq. (2.5) adopts the form 

 

On the other hand, taking into account that any individual contaminated at t must remain in such 

a state only up to t + t0 (probability 1) before becoming infectious, we have 

 

The equations (2.1), (2.6) and (2.7) now should be written as the system which describes de 

dynamics of the disease, namely 

 

Notice that if t0 = 0, D0(t) = I0(t) and the system (2.8) reduces to an equation for D0(t), which 

coincides with the one proposed by Cooke-Yorke [5] in their model for gonorrhea. Furthermore, 

it is important to point out that the infectious individuals can also contaminate susceptible ones 

even when they do not stay together at the same place and at the same time (a situation not 

considered in the present model). This is possible if the bacteria involved can remain active in the 

environment during certain time interval large enough. This situation could be identified as an 

indirect contact and, to describe it, we need to introduce new time delays in the integral 

equations, as it has been done in [4,9] 

Observe that to obtain meaningful solutions for the system (2.8), it is necessary to guarantee 

that 
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As  the  above  inequalities  imply  that 

 

it  is  easy  to  see  that 

 

is  a  suffcient  condition  for  solutions  which  actually  represent  probabilities. 
 
 
 

3.  Mathematical  Analysis  of  the  Model 
 
In this section we present some results on the dynamic of the solutions for the system (2.8). 

Before proceeding with the analysis, it is convenient to write this system as a vector integral 

equation. Let                            be the characteristic function of the interval  [0, t0],  i.e., 

 

 

Then, omitting for the moment the subscripts to simplify the notation, the equation (2.7) can be 

written as 

 

 

 

Moreover, since C  = D − I ,  we  have 
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where  Q(t, τ ): = P (t, τ ) − χ(t − τ ).  So, we  have  the  system 

 

Now, we are in position to write (3.1) as a vector equation. Let us consider the vector 

functions 

 

With  this  notation,  the  system  (3.1)  can  be  written  as 

 

Let L
∞
(−T, +∞) be the space of Lebesgue measurable and bounded functions on [−T, +∞) 

endowed with the usual norm k kL
∞
, namely, 

 

 

We denote                                                                             which is a Banach space for the norm  

  

In view of the model we have in mind, it is natural to restrict our analysis to the solutions E ∈ V, 

E (t) = (D(t), I (t)) such that D(t), I (t) ∈ [0, 1] for all t ≥ −T . Moreover, since D(t) ≥ I (t), we can 

consider the following set of “admissible functions”. 
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It  is  clear  that  A is  a  bounded  and  closed  subset  of  V 

 

In what follows, we consider the set Λ defined by (2.2) and the vector function P : Λ → [0, 1] × 

[0, 1], P = (P, Q) as defined in (3.2). We also assume that α is a positive and locally Lebesgue 

integrable function in (−T, +∞): 

 

Definition: Let E init ∈ V. We will say that a function E ∈ V is an admissible solution of Eq. (3.3) 

generated by E init if E ∈ A and 

 

The following propositions establish uniqueness and existence of solutions for the Eq. (3.3). 

Their proofs are based on standard methods involving Gronwall inequality and Banach Fixed 

Point Theorem and will be omitted. 

Proposition 3.1: Let α satisfying (3.5) and E init ∈ V. If E1 and E2 are admissible solutions of Eq. 

(3.3) generated by E init, then E1(t) = E2(t) for all t > 0. 

For the existence  of solutions,  we consider  the functions  rD (t) and  rI (t) defined  by 

 

In the particular case where α  is constant and P (t, τ ) = φ(t − τ ), these  two functions 

are constant with values given by 
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respectively. 

Proposition  3.2: Assume  that α satisfies (3.5) and rD (t) ≤  4 for all t ≥  0.  For  each 

E init  ∈  A, there exists E , a unique admissible solution of Eq. (3.3) generated by E init . 

 

Remark 3.3: To prove Proposition 3.2 we consider  the set 

which is a closed and bounded subset of V and we apply Banach’s Fixed Point Theorem to 

the operator Φ : A(E init) →  A(E init) defined as Φ[E ](t) = E init(t) almost everywhere in 

[− T , 0] and, for t > 0, 

By this  approach,  the condition  rD (t) ≤  4 becomes necessary  because,  otherwise,  the 

set  A(E init)  defined in (3.8)  may not be an invariant  set  for the operator  Φ.  Indeed, 

consider  for instance E (t) = (c1 , c2 ) for all t ≥  − T , where 0 ≤  c2  ≤  c1  ≤  1. Then, 

 

 

and we have Φ[E ] ∈/ A if we choose c1   and c2   such that c2 (1 −  c1 ) ≥  1/4. 
 

 

Remark 3.4: As an immediate consequence of the absolute continuity of the Lebesgue 

integral, it follows that E  is continuous on the interval ]0, +∞ [.  In order  to assure  its 



Cipolatti, R. et al. 

Revista Electrónica Nova Scientia, Nº 8 Vol. 4 (2), 2012. ISSN 2007 - 0705. pp: 42 – 65 

- 52 -                                            

 
 

 
 

 
 

 
 

 
 

 
 

continuity in [− T , +∞ [, it is sufficient to assume that E init  is continuous on [− T , 0] and 

satisfies the following compatibility condition: 

 

• Asymptotic  Behavior: 
 

In this subsection we shall study the asymptotic behavior of the solutions assuming 

that rI (t) ≤  1 for t large enough. 
 

Theorem 3.5: (a)  Assume  that α  satisfies  (3.5)  and  rD (t) ≤  4 for all t ≥  0.   Let 

E = (D, I ) be the unique admissible  solution of Eq. (3.3) generated by E init  ∈  A.  If 

 

 

 

 

 

then there exist C, M, L > 0 such that 

 

(b)  Moreover,  if α is constant, P (t, τ ) = φ(t −  τ ) and they are such that 

Proof:  (a)  We assume  that the condition  (3.11) holds.  Then,  there  exist  0 ≤  ρ < 1 

and M > 0 such that rI (t) ≤  ρ for all t ≥  M . If we denote E (t) = (D(t), I (t)), we have 
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If we define ϕ(s): =   

 

 

 

 

 

Now, by noting that ϕ(s) is a decreasing  function,  it follows that sup{ϕ(s) ; s ≥  t} = 

ϕ(t). Hence, taking the supremum  for t ≥  s in (3.15), we obtain 

 

 

 

 
By considering  successively s = M + T , M + 2T , . . ., we have 

 

 

 

 

 

 

 

 

 

Therefore,  for t > M and k ∈  N such that t ∈  [M + kT , M + (k + 1)T ), we have 

 

 

 

 

where c: = e−(M +T )L ϕ(M ) and L: = −  ln ρ/T . Moreover,  
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and we obtain kE (t)k = D(t) ≤  C e−Lt , ∀ t ≥  M , where C : = 4ceLT . Being so, the proof of 

part (a) is complete. 

(b)  Now, we assume  that α is constant, P (t, τ ) = φ(t −  τ ) and that they are such that 

(3.13) holds. We notice, first of all, that I (τ ) ≤  D(τ ) implies 

 

 

 

 

 

In particular, since 0 ≤  I (t) ≤  1, we have  the following inequalities that will be useful 

in the sequel: 

In order  to obtain (3.14),  we shall prove  by mathematical induction the following 

inequality: 

 

 

 

Step 1 : Let n = 1. From (3.13) and (3.17)2, it follows that 

 

 

 

from which we deduce that 
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Step 2 : Now, we assume  that (3.18) holds for n = k. Then,  from (3.17)1, we have 

 

 

 

 

so kI (t) ≤  1 −  I (t) for all t ≥  kT .  Substituting  in Eq. (3.16) and remembering  that 

I (τ ) ≤  D(τ ), we have for t ≥  (k + 1)T, 

 

 

 

 

 

 

 

and conclude that (3.18) holds for n = k + 1. 
 

Notice that (3.18) and (3.17)1   implies that I (t) ≤  (n + 1)−1  for all t ≥  nT . Hence, for nT 

≤  t ≤  (n + 1)T , we have 

 

 

On the other hand,  since 0 ≤  D(τ ) ≤  1, we obtain for t > T , 

 

and the proof is complete. 
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t0 

•  Stationary solutions: 
 
As we will see now, under  certain  conditions,  the system  (3.1)  admits  nontrivial 

stationary solutions, i.e., nonzero solutions that do not depend on time.  Notice that the 

trivial vector E (t) = (0, 0) is always  a solution.  Moreover,  if α(t) = α > 0 is constant 

and P (t, τ ) = φ(t −  τ ), where φ satisfies (2.4), then, assuming  that E (t) = (D∞ , I∞ ) is a 

constant solution, we have from (3.1), 

 

 

 

 

 

 

So, for I∞ = 0, we get from the second equation of (3.19), 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important  to point  out that if ρ :=  α 
R T  

φ(τ ) dτ  < 1, the above  stationary 

solutions  are  inadmissible  for  the problem  we are  considering,   i.e.,  (D∞ , I∞ )  ∈/  A. 

Nevertheless,  in this  case, any  admissible  solution  converges  to zero exponentially,  as 

proved  in  Theorem 3.5.  Moreover,  I∞  = D∞   = 0 if ρ = 1 and,  again,  Theorem  3.5 
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assures  that any  admissible solution  converges  to zero.   Besides,  if ρ > 1, numerical 

experiments  lead  us to expect  that  the following global  asymptotic  behavior  for any 

solution E (t) holds: 

 

 

 

 

4. Reduction of endemic levels, numerical results and conclusions 
 

The  probability function P0 (t, τ ) described  in Eq. (2.3) depends,  among other fac- tors,  on 

the time between  the instant at which infectious  individuals  begin to feel the symptoms 

of the disease and the one when they will seek and obtain medical assistance. This  

individualized  response  time, as noted in  Section  1, can not be greater  than T0 because,  

if so, the patient will die.  On the other  hand,  the  response  time  has also a lower bound 

t0  (the incubation time).  Let us now suppose that we develop an intensive educational 

campaign  directing people to seek for medical care as soon as they perceive the symptoms 

of the disease.  If the affected people respond favorably  to that effort, in a greater  or lesser  

extent,  a new probability  Pγ  : Λ →  R, instead  of P0 (t, τ ), must  be considered.  Like Eq. 

(2.3), we assume  that 

 

where  T1    ≤  Tγ    ≤  T0    is  a  new  maximum   recovery  time  for  each  case.  Moreover, new 

probabilities to find contaminated,  infective  and  susceptible  individuals must be 

introduced  and  we  shall  denote  them  by  Cγ (t), Iγ (t) and  Sγ (t), respectively;  being Dγ 

(t) = Iγ (t) + Cγ (t) and Sγ (t) + Dγ (t) = 1. Being so, equations (2.8) now should  be 

written as 
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In fact, the system (4.2) can be regarded  as a family of systems depending  on the 

parameter  γ  ∈  [0, 1], where γ  = 0 corresponds  to the case in which no public health 

campaign  is carried  out. 

 

It is obvious that all the results  obtained  in Section  3 also hold in this  situation. Notice  

that  under  the hypothesis  mentioned  above,  the value of the integral  rI (t) in- troduced  

in (3.7),  should be  smaller  for P  = Pγ  than for P  = P0 . This  fact  allows to reduce the 

“standard” endemic levels of the disease in the affected population or, even, it could 

contribute to eliminate the illness itself, as we shall see below. 

At this point, to characterize in a certain sense the efficiency of the efforts invested in order  

to reduce the number  of people infected, it would be reasonably  to define the function 

ǫ(γ) as 

 

 

 

where 
 

 

 

 

and T0 , T1   as already  introduced in Section 1. 

Notice that if α is constant and Pγ (t, τ ) = φγ (t −  τ ), we have 
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In particular, if Φ : (0, 1) →  [0, 1] is a decreasing  function and if we define 

 

 

 

 

 

then (4.3) reduces to 

 

 

 

and we obtain Tγ  = T0  + ǫ(γ )
 
T1  −  T0 

 
. 

 

It would be useful to point out that this last formula works only in the case Tγ  < T0 (γ 

> 0), while Eq.  (4.3)  also includes the case Tγ   = T0   for all γ , at which, in spite  of the 

efforts developed,  some people insist to seek for medical  assistance only when they are 

very sick. 

 

• Numerical simulations: 
 
In order to illustrate the time evolution behavior  of the infection process governed by our 

model, we shall perform some numerical  simulations.  As it can be seen from the system 

(4.2), computational calculations in this direction demand a previous knowledge of part of 

the history of the illness evolution:  more specifically, the history corresponding to the 

interval  − T0   ≤  t ≤  0.  Taking  into  account  that our present  purpose  is only to exemplify  

and  not to reproduce  real  situations,  we may  look at arbitrary functions to 

characterize  Iγ (τ ) and  Dγ (τ ) in the above  mentioned  interval.   Furthermore, the 

capacity of infection α will be considered  as a constant. 

 

For  the numeric  simulations,  we consider  T0   = 10, T1   = 5, t0  = 4 and E init(t) = (0.5, 

0.4).  In  each of the Figs. 1-4, corresponding  to the values α = 0.5, 0.7, 1.0, and 1.3, 

respectively,  we present  the graphics of Dγi 
(t), (i = 1, 2, 3), for γ1   = 0, γ2   = 0.4, γ3   = 

0.8, Tγi   
= T0  + γi (T1  −  T0 ) and Pγi 

(t, τ ) = φγi 
(t −  τ ), where 
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Fig.1:Probability of finding an infected individual, as a function of time, D(t), using the  
parameters T0 = 10, T1 = 5, t0 = 4 and α = 0.5. The three  curves shown in the figure 

correspond to the values  γ = 0.0, 0.4 and  0.8, respectively. We considered E init  = (0.5, 

0.4), Tγi   
= T0  + γi(T1  −  T0 ) and  φγi   

as described in Eq.  (4.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Probability of finding  an infected individual, as a function of time, D(t), using the  
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parameters  T0  = 10, T1  = 5, t0 = 4 and  α = 0.7.  The  three  curves  shown  in the figure 

correspond to the values  γ = 0.0, 0.4 and  0.8, respectively.  We considered E init  = (0.5, 0.4), 
Tγi   

= T0  + γi(T1  −  T0 ) and  φγi   
as described in Eq.  (4.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Probability of finding  an infected individual, as a function of time, D(t), using the  
parameters  T0  = 10, T1  = 5, t0 = 4 and  α = 1.0.  The  three  curves  shown  in the figure 

correspond to the values  γ = 0.0, 0.4 and  0.8, respectively.  We considered E init  = (0.5, 0.4), 

Tγi   
= T0  + γi(T1  −  T0 ) and  φγi   

as described in Eq.  (4.4) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Probability of finding  an infected individual, as a function of time, D(t), using the  

parameters  T0  = 10, T1  = 5, t0 = 4 and  α = 1.3.  The  three  curves  shown  in the  figure 

correspond to the values  γ = 0, 0.4 and  0.8, respectively.  We  considered E init  = (0.5, 0.4), 
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Tγi   
= T0  + γi(T1  −  T0 ) and  φγi   

as described in Eq.  (4.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Probability of finding  an infected individual, as a function of time, D(t), using the pa-
rameters T0  = 10, t0 = 4 and  α = 0.5.  The  three curves  shown  in the figure correspond to 

the values  γ = 0.0, 0.4 and  0.8, from  top to bottom, respectively.  We considered E init  = 
(0.5, 0.4) and  φγi   

as described in Eq.  (4.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Probability of finding  an infected individual, as a function of time, D(t), using the 

parameters T0  = 10, t0 = 4 and  α = 1.0.  The  three curves  shown  in the figure correspond 

to the values  γ = 0.0, 0.4 and  0.8, from  top to bottom, respectively.  We considered E init  = 
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(0.5, 0.4) and  φγi   
as described in Eq.  (4.5) 

 

Conclusions: 
 
In this paper we develop a model constituted by a system of delay integral equations, in order 

to perform a systematic study of the spread  in time of some infectious bacterial diseases. It 

is supposed  that  the type  of illness  we deal  with  in the present  article has  a  finite  

time  to be  successfully  treated  but also  that, if this time is exhausted and the patient 

continues without medical  assistance, he will  unavoidably  die.  Other fundamental as well 

as simplifying working hypothesis are also listed in Sections 1 and 2.  As  a  first  attempt in  

understanding  the dynamics  of transmission,  the possible presence  of  immunity  factors  

was  ignored  (compatible  with  diseases  like pneumonia and  tuberculosis  rather than  

with  diphtheria  and  whooping  cough,  for example,  for which there already  exist 

vaccines),  but the presence  of a certain latent period  for the illness is included, resembling 

a more realistic situation.  Once the model was developed, we carried out the analysis  

concerning  the assymptotic  bahavior  of solutions  and  we present numerical  simulations 

to illustrate the trends of the spread  of the disease over time.  Some important  properties  

were found and the ones we consider  more relevant are summarized  below. 

 

An interesting feature of this model is that it is possible to extinguish the infection process 

and, consequently, the disease itself, as can be seen in the figures above.  Indeed, from 

Theorem 3.5 one concludes that all solutions of Eq. (3.3) decay  to zero if ργ  ≤  1 

(exponentially  if ργ  < 1).  Hence, ρ1   < 1 is a sufficient  condition  for the existence  of 

some 0 ≤  γ  <  1  which  ensures  the abortion  of the transmission  process  and  with  it the 

extinction of the disease.  Furthermore, one also intuit from these figures that when there  

are no conditions  to extinguish  the disease, the functions  D(t) (I (t)) tends  to a constant 

value characterizing an endemic situation.  The introduction in this work of the parameter  

ǫ, which can be  obtained  experimentally  by indirect  measurements,  allows estimating an 

index connected  with the  efficiency of the efforts  displayed  to eliminate the disease or, at 

least, to reduce the corresponding endemic levels. 

 

Studies considering  space-time spreading  are also now in progress and will be published 
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elsewhere. 
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