
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
Available online at www.inia.es/sjar
http://dx.doi.org/10.5424/sjar/2012102-611-11

Spanish Journal of Agricultural Research 2012 10(2), 521-531
ISSN: 1695-971-X
eISSN: 2171-9292

A simulation of soil water content based on remote sensing  
in a semi-arid Mediterranean agricultural landscape

N. Sánchez1,*, J. Martínez-Fernández1, M. Rodríguez-Ruiz1, E. Torres2 and A. Calera2

1 Centro Hispano-Luso de Investigaciones Agrarias (CIALE). Universidad de Salamanca. 
Río Duero, 12, 37185 Villamayor (Salamanca), Spain 

2 Instituto de Desarrollo Regional (IDR). Universidad de Castilla-La Mancha, Campus Universitario s/n, 
02071 Albacete, Spain

Abstract
This paper shows the application of a water balance based on remote sensing that integrated a Landsat 5 series from 

2009 in an area of 1,300 km2 in the Duero Basin (Spain). The objective was to simulate the daily soil water content 
(SWC), actual evapotranspiration, deep percolation and irrigation rates. The accuracy of the application is tested in a 
semi-arid Mediterranean agricultural landscape with crops over natural conditions. The results of the simulated SWC 
were compared against 19 in situ stations of the Soil Moisture Measurement Stations Network (REMEDHUS), in order 
to check the feasibility and accuracy of the application. The theoretical basis of the application was the FAO56 calcu-
lation assisted by remotely sensed imagery. The basal crop coefficient (Kcb), as well as other parameters of the calcula-
tion came from the remote reflectance of the images. This approach was implemented in the computerized tool 
HIDROMORE+, which integrates various spatial databases. The comparison of simulated and observed values (at 
different depths and different land uses) showed a good global agreement for the area (R2 = 0.92, RMSE = 0.031 m3 m–3, 
and bias = –0.027 m3 m–3). The land uses better described were rainfed cereals (R2 = 0.86, RMSE = 0.030 m3 m–3, and 
bias = –0.025 m3 m–3) and vineyards (R2 = 0.86, RMSE = 0.016 m3 m–3, and bias = –0.013 m3 m–3). In general, an un-
derestimation of the soil water content is noticed, more pronounced into the root zone than at surface layer. The final 
aim was to convert the application into a hydrological tool available for agricultural water management.

Additional key words: crop coefficient; evapotranspiration; Landsat 5; NDVI; water balance.

Resumen 
Simulación del contenido de agua del suelo mediante teledetección en un contexto semiárido mediterráneo

Este trabajo muestra la aplicación de un balance de agua basado en teledetección que integra una serie Landsat 5 de 2009, 
en una zona de 1.300 km2 de la cuenca del Duero (España). El objetivo fue la simulación diaria de contenido de agua del 
suelo, evapotranspiración real, percolación profunda y tasas de riego. La precisión fue comprobada en el contexto agrícola 
mediterráneo, en cultivos bajo condiciones naturales. Los resultados acerca del contenido de agua en el suelo se compararon 
con 19 estaciones de la Red de Estaciones de Medición de Humedad de Suelo (REMEDHUS). La base teórica de la aplica-
ción es FAO56 combinado con imágenes de satélite. El coeficiente de cultivo basal y otros parámetros del cálculo se obtu-
vieron mediante la reflectividad de las imágenes. Todo ello se implementó en una herramienta informática, HIDROMORE+, 
capaz de gestionar las bases de datos espaciales. La comparación del contenido de humedad simulado con el observado a 
diferentes profundidades y distintos usos de suelo, muestra un buen ajuste global (R2 = 0,92; RMSE = 0,031 m3 m–3; 
y bias = –0,027 m3 m–3). Por usos de suelo, el mejor descrito fue el de cereales en régimen de secano (R2 = 0,86; 
RMSE = 0,030 m3 m–3; y bias = –0,025 m3 m–3) y la viña (R2 = 0,86; RMSE = 0,016 m3 m–3; y bias = –0,013 m3 m–3). 
En general, el contenido de agua en el suelo fue subestimado, lo que es más evidente en la zona de raíces que en la capa 
superficial. El objetivo final es convertir la aplicación en una herramienta hidrológica para la gestión del agua en agricultura.

Palabras clave adicionales: balance de agua; coeficiente de cultivo; evapotranspiración; Landsat 5; NDVI.
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López-Urrea et al., 2009; Campos et al., 2010; Liu & 
Luo, 2010; Torres & Calera, 2010) and spatially dis-
tributed (Zhang & Wegehenkel, 2006; Er-Raki et al., 
2010; Sánchez et al., 2010). The use of a linear rela-
tionship of NDVI-Kcb (Normalized Difference Vegeta-
tion Index-basal crop coefficient) instead of the tabu-
lated values of Kcb improves the accuracy of the results, 
even over woody crops, as shown in Campos et al. 
(2010). Another promising aspect for using the NDVI-
based Kcb is its ability to provide a direct approach to 
determining actual evapotranspiration (AET) conditions 
when crop growth and water use deviate from optimum 
conditions (Hunsaker et al., 2005). 

The second basic approach in the application is using 
a map of land use/land cover extracted from an image 
classification method. The map can produce spatial 
distributions of some calculation parameters assigned 
to each of its classes. 

In areas where irrigation rates must be controlled 
precisely, where it is essential to prevent water loss, 
one approach to check if the supply is adequate to meet 
the demand is to account for the respective components 
in the water balance (Singh et al., 2010). In this sense, 
irrigation advisory systems show increasing success in 
different regions of Spain and the world based on cli-
mate information, crop status, and agricultural prac-
tices (Martín de Santa Olalla et al., 2003).

This work aims to demonstrate the reliability of the 
combination of remote sensing with a hydrologic balance 
model to obtain hydrological variables in a distributed 
manner. For this proposal, this work compares the results 
of SWC simulated against in situ measured values. A 
second objective is to demonstrate the accuracy of this 
straightforward method so that it can be implemented 
as a query tool for farmers and managers of water, who 
in the future could use it to obtain near real-time data of 
crops and water requirements. Here, the water balance 
is implemented in a spatially distributed tool, HIDRO-
MORE+, which was previously tested in the same area 
in 2001 and 2002 (Sánchez et al., 2010). 

Material and methods

Brief description of the study area  
and the climatic conditions 

The Soil Moisture Measurement Stations Network 
(REMEDHUS) is made up of 19 stations for the meas-
urement and monitoring of soil moisture and three 

Introduction

Soil water content (SWC) is a highly dynamic eco-
logical variable, but it is also one of the most sensitive 
factors in agricultural yield. In semi-arid Mediterranean 
areas, where water scarcity is a common situation, SWC 
is the limiting factor for agriculture, and crop evapotran-
spiration is the main factor of water consumption. Ac-
curate information on SWC is crucial for practical agri-
cultural water management at various scales (Ju et al., 
2010). Point measurements of SWC are frequent in 
agricultural areas for controlling irrigation scheduling 
and water reserves (Bonet et al., 2010), either with meas-
urements at different depths or with a water balance 
using the crop coefficient-reference evapotranspiration 
(Kc-ET0) approach (Allen et al., 1998). However, the 
spatial heterogeneity of soil properties makes it difficult 
to scale up measurements from points to large scales, 
and spatial monitoring designs are costly and time-
consuming (Western & Grayson, 2000). This is a diffi-
cult problem for agricultural water management, and 
several remote sensing spatial missions (such as AMSR-E, 
ERS, SMOS, and SMAP) have attempted to fill this gap, 
even though improved process understanding and algo-
rithms are needed to enable the use of these data in the 
future (Wagner et al., 2007a). 

The application of hydrological models to simulate 
SWC with adequate accuracy in heterogeneous and 
complex areas remains challenging, and the utmost 
efforts should be made to exactly determine fine-scale 
meteorological data and to build a spatial skeleton to 
improve soil moisture modeling (Rößler & Löffler, 
2010). The possibility of producing maps of hydro-
logical variables by combining a mass balance ap-
proach and remotely sensed data to calculate a water 
budget is a useful tool for watershed-level hydrologic 
models (Earls et al., 2006) because the water balance 
provides high temporal resolution, whereas the remote 
sensing approach provides high spatial coverage. It is 
thus possible to monitor crop status and water use 
through remotely sensed crop coefficients in a dy-
namic manner for every plot. The crop coefficients 
derived from the vegetation index (Bausch & Neale, 
1987; Neale et al., 1989; Calera et al., 2004; Gonzalez-
Dugo & Mateos, 2008; Er-Raki et al., 2010) account 
for any situation out of pristine growing conditions of 
climate, management or vegetative vigor.

The FAO56 water balance (Allen et al., 1998) has 
been used in recent works both at point scale (Allen, 
2000; Hunsaker et al., 2005; Er-Raki et al., 2007; 
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automatic weather stations among other equipment for 
hydrological and climatic monitoring (Martínez-Fern-
ández & Ceballos, 2003, 2005). These stations are 
located in an area of approximately 1,300 km2 (41.1° 
–41.5° N; –5.1° –5.7° W) in a central semi-arid part of 
the Duero Basin (Fig. 1). This area is nearly flat, rang-
ing from 700 to 900 m a.s.l. The climate is continental 
semiarid Mediterranean. The land uses are mainly 
agricultural: rainfed cereals in winter and spring (78%), 
irrigated crops in summer (5%), and vineyards (3%). 
There are also some patchy areas of mixed forests and 
pastures (13%). The most abundant soils are Luvisols 
and Cambisols with a predominantly sandy texture 
(mean sand content, 71%) (Martínez-Fernández & 
Ceballos, 2003).

In the year of study (2009), the rainfall was 332.1 mm, 
and the ET0 (FAO56-Penmann-Monteith method) was 
1,147.6 mm. The monthly data (Fig. 2) show a water 
deficit for all months except December and January. 
ET0 is especially high in the summer period.

Input data and pre-treatment

The simulation was performed along 2009 at daily 
interval. Three datasets were needed for the calcula-
tion: meteorological information (i.e., daily precipita-
tion and ET0), imagery (i.e., NDVI time series and a 
map of land use-land cover), and spatially distributed 
soil information.

Daily precipitation and ET0, were computed from 
the automatic weather stations (Fig. 1). HIDRO-
MORE+ performs a spatial interpolation based on the 
Inverse Distance Weighting method (Shepard, 1968). 

The imagery came from Landsat 5 TM (scene 202-
031). In 2009, three images were selected after dis-
carding cloudy images: March 23, June 11, and Au-
gust 30. These dates covered the most significant 
periods of the crop growing cycles under study, i.e., 
spring for rainfed cereals and summer for irrigated 
crops and vineyards. The images were orthorectified 
and registered by a rigorous model (Toutin, 2004) with 
20 ground control points, plus the elevation digital 
model and the orbital information. This process guar-
antees the spatial coincidence of the three scenes. 
Radiometric calibration and atmospheric correction 
were also performed by means of the standard values 
of the atmosphere and the dark object subtraction 
method (Chavez, 1989). The NDVI (Rouse et al., 
1974) was calculated as the normalized difference 
between infrared and red physical units, i.e., the 

Figure 1. Study area location and REMEDHUS network (soils grid, soil moisture 
network, and weather stations).

Figure 2. Climatic characteristics of 2009 averaged from the 
three weather stations in the study area. P, precipitation; ET0, 
reference evapotranspiration; T, temperature. 
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reflectance at-surface resulting from the radiometric 
and atmospheric treatment. The composite image of 
the three NDVI become the input for the classification 
process and the basis for computing Kcb as well as the 
fraction of vegetation cover and other parameters of 
the calculation. 

For the classification, a hybrid method was used that 
mixed the Geographic Information System (GIS) for 
Agricultural Plots of Castilla y León Region (SIGPAC) 
with the NDVI composite. This process comprised two 
steps. First, the SIGPAC plots of water, urban, forest-
pasture and vineyards were clipped from the image. 
Second, to separate the mixed category ‘arable land’, 
a segmentation procedure of the NDVI levels was per-
formed (Vincent & Pierre, 2003), which allowed the 
segmentation of rainfed, irrigated and fallow areas, 
taking advantage of the opposite growing cycle of all 
of them. The union of the results of both steps became 
the land use/land cover map (Fig. 3). The accuracy 
assessment with ground truth areas showed a coinci-
dence of 100% for water, 85.7% for forest-pasture, 
76.5% for vineyard, 84.6% for rainfed cereals, 100% 
for irrigated crops and 90% for fallow. The average 

accuracy was 86.8%. This map established some pa-
rameters of the water balance for each class (or restrict 
some others), such as root depth, plant height, and 
thresholds of Kcb.

Finally, for the soil database required for the calcu-
lation, soil samples at surface level (0-5 cm) were col-
lected in a grid basis (cells of 3 km × 3 km). The SWC 
at field capacity (SWCFC) and at wilting point (SWCWP) 
were determined for the center of 146 cells. The water 
retention curve was obtained in laboratory measure-
ments on these undisturbed soil samples (100 cm3 
monoliths) taken at the surface layer in the center of 
each cell. The method combines tension boxes (sand 
box method) for potentials close to zero and membrane 
pressure method for low tension conditions. Using this 
combined method nine experimental points (soil mois-
ture vs. tension pairs) of the soil retention curve were 
obtained at 0, 0.2, 1, 3, 10, 30, 100, 300, and 1,500 kP. 
After the adjusting to an empirical model (van Ge-
nuchten, 1980) one can obtain the entire curve and then 
obtain parameters as field capacity (–33 kPa for 
SWCFC), wilting point (–1,500 kPa for SWCWP), satura-
tion or so on. 

Figure 3. Land use/land cover map. 
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Calculation basis 

The Kc-ET0 approach uses meteorological data and 
crop coefficients to calculate crop evapotranspiration. 
The dual form of Kc was chosen (Wright, 1982), as is 
developed in FAO56: 

	 AET = ET0 (KsKcb + Ke)	 [1]

The term ET0KsKcb represents the transpiration 
component from the plants, and the term ET0Ke, 
represents the evaporation component from the soil. 
Kcb is the transpiration coefficient at a potential rate, 
i.e., when water is not limiting transpiration, and it 
is usually obtained from tabulated values; here, it 
was calculated as a linear form of the NDVI (Bausch 
& Neale, 1987):

	 Kcb = 1.36 NDVI-0.03	 [2]

Ks describes the effect of water stress, and it is calcu-
lated according the water content in the root layer, 
estimated from the daily water balance. The soil 
evaporation coefficient, Ke, is calculated from the 
daily water balance on the upper soil surface layer (10 
cm). Thus, the calculation accounts for the effective 
root zone, but the upper topsoil is considered during 
the non-growing periods or over bare soil conditions 
(i.e., fallow). This daily balance, the coefficients cal-
culation, and the limits of available soil water content 
are described by Allen et al. (1998) and Allen (2000).

SWC can be calculated as the residual of the daily 
water balance. It is expressed in volumetric units and 
is analyzed in terms of plant available water. FAO56 
establishes the SWCFC as the upper limit, and the re-
maining SWC is calculated as the difference between 
the water at field capacity and the water deficit or de-
pletion (the residual of the balance). HIDROMORE+ 
establishes the SWCWP as the minimum SWC. 

Comparison methods and alternatives

Hydrological models are mainly calibrated and 
validated using runoff (Rößler & Löffler, 2010) or 
evapotranspiration (Allen, 2000; Eitzinger et al., 
2002; Er-Raki et al., 2007). However, because runoff 
processes do not provide much insight into internal 
processes (Grayson et al., 1992a,b) soil moisture 
simulations also need to be validated. Regarding this 
validation purpose, the REMEDHUS network per-
forms a continuous measurement of 0-5 cm soil 

moisture in 19 stations with one Hydra Probe (Ste-
vens® Water Monitoring System, Inc.), and at differ-
ent depths with an EnviroSMARTTM soil water profile 
(Sentek Technologies) installed in 12 stations. The 
EnviroSMART probes can include several sensors 
that measure soil water at multiple depths, custom-
ized for individual applications by adding sensors at 
user-specified measurement. In REMEDHUS, three 
probes at 25, 50 and 100 cm depths were installed. 
Hydra and EnviroSMART are capacitance probes which 
measure soil dielectric constant to calculate soil mois-
ture content. At each station sensors are connected to 
a CR200 (Campbell Scientific Ltd.) datalogger where 
soil moisture data are stored at hourly intervals. As 
stated before, there were 19 Hydra stations in that pe-
riod; among them, 12 also had EnviroSMART profiles. 

The hydraulic properties were obtained in the labora-
tory in a similar procedure as the soil grid, i.e., after tak-
ing undisturbed soil samples at the different depths in each 
station. SWCFC, SWCWP and SWC at saturation (SWCsat) 
were determined. For the validation process, taking into 
account that water balance considers the SWC at root 
depth, profile-average values were considered as well as 
the root depth for each land use/land cover (Table 1).

The alternatives considered for the SWC validation 
were the following: a) using the surface SWC observed 
in the Hydraprobe stations (SWChyd); b) using the 
profile-averaged SWC resulting from the Enviro
SMART profiles (SWCenv); c) using the profile-aver-
aged SWC of all sensors (one at surface and three along 
the profile), SWCall.

Six stations under rainfed cereals, five under vine-
yards, five under fallow and three under forest-pasture 
were used. The validation strategy consisted in compar-
ing simulated and observed values using the coefficient 
of determination (R2), bias, and the root mean square 
error (RMSE), namely:

	 bias SWC SWCSIMi OBSi= −

	
RMSE

N
SWC SWCSIMi OBSi

i

N

= −
=

∑1 2

1

( )

where the bias represents the deviation or difference 
between the simulated SWC and the observed series of 
SWC (SWChyd, SWCenv, and SWCall) for each day i; and 
the RMSE represents the cuadratic mean of these differ-
ences along the time series. These statistics were applied 
for each station, as well as for the land use-averaged 
SWC and total-averaged SWC of the whole area. 
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Results

The simulated SWC was compared against the ob-
served following the three alternatives of validation 
(Fig. 4, only one station representative of each category 
is shown). The vineyard soils took small SWC values 
along the year (Fig. 4a). These soils have more content 
of sand and thus less retention capacity, and there are no 
differences among the observed values along the profile. 
The simulated SWC curves and the observed curves 
matched perfectly. Therefore, for the other categories, 
there are greater differences between SWChyd, SWCenv, 

and SWCall. Among these differences, as expected, the 
behavior of SWChyd fluctuates more because it is a sur-
face layer content; this fact is more evident in the rainfed 
cereal (Fig. 4b). The failure of the simulation of fallow 
lands is noticeable (Fig. 4c). Because the calculation 
does not consider plant activity, but only the evaporation 
layer, the depletion is the maximum and SWC equals 
the minimum value, SWCWP.

For the simulated SWC, a slight underestimation 
compared with the observed values can be seen in all 
categories, especially if comparing SWChyd with the 
forest-pasture cover (Fig. 4d). The observed SWC is 
greater in forest-pastures due to their location in the 
valley bottoms, where the water table is shallow in 

winter, floods sometimes occur, and there is a higher 
content of clay in the soils. It should be pointed out 
that the calculation establishes the upper limit of the 
simulated SWC as SWCFC, but the curve indicates that 
the actual SWC on the soils exceeds this limit in at least 
two situations: a) among the deep profile values (SW-
Call and SWCenv) and b) among the surface values 
(SWChyd) during the rainy periods.

The results of the comparison (Fig. 5) were consid-
ered satisfactory in terms of coefficient of determination 
(R2 > 0.6) for all stations except for the fallow category 
and one isolated station (I6). There are no meaningful 
differences between the three alternatives of validation 
in terms of determination coefficient (Fig. 5a). There-
fore, we can conclude that the simulation is useful for 
correctly characterizing the mean profile SWC as well 
as the surface level SWC. But the higher RMSE at Fig. 5b 
indicated a worse fitting with the surface values in most 
of the stations, and the fluctuating sign of the bias at 
this level (Fig. 5c) indicates that the simulation may 
barely predict the higher variability at the surface, 
whereas the bias for the profile-averaged content is 
always a dry bias. 

The estimation improved if the simulated SWC was 
averaged for each land use/land cover and for the whole 
area (Table 2). The area-averaged simulation agrees bet-

Table 1. Profile-averaged hydraulic soil parameters (SWCFC, soil water content at field capacity, SWCWP, 
soil water content at wilting point, and SWCSAT, soil water content at at saturation) at the REMEDHUS 
stations. Land uses and type of soil moisture sensor are also indicated

Station Type1 Land use2 SWCFC 

(m3 m–3)
SWCWP 

(m3 m–3)
SWCSAT 

(m3 m–3)
Zr

(m)

E10 H + E V 0.157 0.074 0.386 1.00
F11 H R 0.093 0.035 0.387 0.10 to 0.90
F6 H + E V 0.167 0.096 0.329 1.00
H7 H + E V 0.085 0.043 0.386 1.00
H13 H + E F 0.124 0.070 0.438 0.10
H9 H + E F–P 0.235 0.153 0.461 2.00
I6 H + E V 0.085 0.052 0.347 1.00

J12 H + E F 0.227 0.121 0.443 0.10
J3 H V 0.053 0.022 0.367 1.00

J14 H + E F 0.163 0.075 0.420 0.10
K10 H R 0.070 0.027 0.369 0.10 to 0.90
K9 H F–P 0.189 0.095 0.446 2.00
L7 H R 0.290 0.176 0.511 0.10 to 0.90
M5 H + E R 0.095 0.051 0.408 0.10 to 0.90

M13 H F–P 0.344 0.195 0.438 2.00
M9 H + E R 0.238 0.146 0.512 0.10 to 0.90
N9 H + E F 0.268 0.146 0.530 0.10
O7 H + E R 0.118 0.060 0.459 0.10 to 0.90
Q8 H F 0.194 0.125 0.467 0.10

1 H, Hydra; E, EnviroSMART. 2 V, vineyard; R, rainfed cereals; F, fallow; FP, forest-pasture, root depth (Zr).
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ter with both the mean observations at surface level 
(R2 = 0.94, RMSE = 0.041 m3 m–3, and bias = –0.002 m3 m–3) 
and the profile-average (R2 = 0.86, RMSE = 0.037 m3 m–3, 
and bias = –0.034 m3 m–3 for SWCenv; and R2 = 0.92, 
RMSE = 0.031 m3 m–3, and bias = –0.027 m3 m–3 for 
SWCall). As stated before, the underestimation is still 
clearer for the profile-averaged than for the surface 
values. Regarding the categories best characterized, 
the simulation is slightly better for vineyards and for 
rainfed cereals. The comparison cannot be done over 
forest-pasture because only one EnviroSMART profile 
is located in this land use (H9), which represents an 
isolated value. However, the error for this category at 
surface level is the largest (RMSE = 0.117 m3 m–3).

Discussion

Many researchers have studied the relationship be-
tween root growth and soil water (Quanqi et al., 2010) 
because uncertainties come mainly from the high 

variability of soil properties and root depth (Ju et al., 
2010; Sánchez et al., 2010). These parameters of soil 
properties and root activity have shown to be the most 
important parameters affecting the SWC on a small 
scale. The dependence of root activity in this model is 
verified here through the failure of the simulation over 
fallow or bare soil plots. The present work used SWC 
as control variable of the water balance in a profile-
based observation. Since the in situ observations were 
made at different depths, the single value of simulated 
SWC can be checked against the vertical profile; in 
particular we used the upper topsoil values and the 
profile-averaged. The simulation represents fairly well 
the SWC dynamics compared with both the surface 
curve and the soil profile, but the bias is reduced when 
comparing the simulated SWC with the profile-aver-
aged SWC (SWCall). The underestimation observed in 
Sánchez et al. (2010) was also detected in this case 
because the profile-averaged SWC is clearly underes-
timated in eight of the twelve stations. As suggested 
there, there is a need to redefine the limits of the plant 
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Figure 4. Simulated water content (SWCsim), and observed soil water content in the three alternatives, SWChyd; SWCall and SWCenv, 

for vineyards (a), fallow (b), forest-pasture (c), and rainfed cereals (d). 
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available water used in the calculation, which in turn 
depends on the field capacity and the wilting point. 
However, the RMSE obtained here, ranging between 
0.011 and 0.149 m3 m–3, is in line with similar works 
(Diekküger et al., 1995; Vanclooster & Boesten, 2000; 
Jalota & Arora, 2002; Zhang & Wegehenkel, 2006), 
and with remotely sensed estimations of soil moisture, 
such as SMOS (Soil Moisture and Ocean Salinity from 
the European Space Agency) and SMAP (Soil Moisture 
Active-Passive from NASA), targeted in an RMSE of 
0.04 m3 m–3.

It is necessary to note the higher RMSE values in 
the case of the three forest-pasture stations at surface 
layer. The RMSE was 0.149, 0.085 and 0.164 for H9, 
K9 and M13, respectively. These errors can be ex-
plained for the specific location of these stations in 
the bottoms of the valleys, near the stream water, 
where the water table is shallow in winter, flooding 
occasionally occurs, and there is a higher content of 
clay in soils. In these cases, the actual SWC could 
reach higher values than the SWCFC in some periods, 
and these conditions cannot be explained by the 
standard calculation of FAO56. Another explanation 
is that the FAO56 method is generally limited to ap-
plications with crops, although it can be applied to 
natural vegetation with greater uncertainty in the crop 
coefficient (Allen & Bastiaanssen, 2005) or woody 
crops such as vineyards (Campos et al., 2010). How-
ever, experience suggests that the most influential 
parameter in the water balance is the water retention 
capacity, expressed in terms of SWCFC, and the root 
depth. In the application of a distributed, physically 
based model, Rößler & Löffler (2010) found that soil 
moisture was especially sensitive to changes of soil 
parameters, and here, the most critical parameter 
seemed to be the SWCFC, the upper limit of plant 
water availability.

In previous experiments of soil moisture estima-
tions in REMEDHUS (Ceballos et al., 2005; Wagner 
et al., 2007b; Sánchez et al., 2010), the soil moisture 
was observed every two weeks, whereas a daily aver-
aged interval was used here. This new interval match-
es the time interval of the calculation and improves 
the reliability of the validation process because the 
potential variability of both curves is expected to be 
similar. In the present study, the simulated soil mois-
ture shows a good agreement (total-averaged SWC 
with R2 = 0.94, 0.86 and 0.92 for SWChyd, SWCenv and 
SWCall, respectively), whereas the values are mostly 
underestimated (bias negative), especially in the 
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the three alternatives of validation.
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forest-pasture areas (RMSE = 0.117 m3 m–3 and 
bias = –0.038 m3 m–3). This underestimation is in gen-
eral clearer when comparing the simulated SWC with 
the whole profile average due to its higher water con-
tent. For the same reason, the underestimation was 
more pronounced during the wet season, i.e., winter; 
reaching bias above –0.40 m3 m–3 for forested stations 
such as H9 in this period (Fig. 4). High values of 
water content may have been hindered by the limit of 
the SWCFC established in the simulation. 

It can be concluded that the simulation better de-
scribed the dynamics of surface SWC, in terms of R2, 
than at the deeper layers, but the errors are higher 
(Table 2) and more variable (Fig. 5). The best simula-
tion took place for vineyards and rainfed cereals. One 
limitation is that the relationship between remote VI 
and crop coefficients were based on the basal crop 
coefficient Kcb, which is defined when the soil surface 
is dry but transpiration is occurring at potential rate 
(Allen et al., 1998). These conditions are particularly 
present in herbaceous crops (e.g., cereals), due to this 
high fraction of coverage (minimum soil evaporation), 
and during the growing cycle (i.e., March to June), 
free of water stress in the root zone. This fact could 
explain the good results of the approach in this area, 
due to the predominance of this coverage, and the poor 
agreement over the fallow areas. These conditions 
are not present over vineyards, on the contrary, 
there is a wide area of bare soil among plants, with 
scarce water supply during their development stage. 
Even though, the simulation seems to be quite ac-
curate for these stations in average (R2 = 0.92, 
RMSE = 0.031 m3 m–3, bias = –0.027 m3 m–3). It could 
be possible that the low water contents in these sandy 
soils would mask the errors of the estimation. Work-
ing under non-stressed and reduced evaporation con-
ditions, Campos et al. (2010) obtained a good agree-
ment of simulated AET over vineyards using a linear 
relationship NDVI-Kcb. These findings support the 

possibility of an accurate application of the remotely 
sensed Kc-ET0 methodology, and it opens the suite of 
crops for which its application is suitable.

The hypothesis of the suitability of HIDROMORE+ 
and the NDVI-Kcb approach for the distributed calcula-
tion of hydrological variables, particularly SWC, has 
been tested using the database of the REMEDHUS 
network (Duero basin, Spain). The results have been 
very satisfactory, especially in agricultural areas (vine-
yard and rainfed cereals), in terms of averaged SWC 
for the whole area. In the fallow areas, where the root 
activity is absent or limited, the calculation failed. 
Indeed, the critical parameters of the SWC calculation 
have proven to be the root depth and the upper limit of 
the SWC considered by the model. This limit, estab-
lished as the water content at field capacity, prevents 
higher values of SWC in the simulation. Hence, the 
forest-pasture cover showed an underestimation of the 
surface SWC, and a general underestimation around 
–0.030 m3 m–3 is detected for all the stations in the root 
zone, more clear during the wet period. 

The procedure described in this paper for estimat-
ing soil water content and other components of the 
water balance opens the possibility of combining the 
measured point-data with imagery products from 
other optical, thermal or radar bands and sensors to 
increase the accuracy of the spatially distributed 
water balance. Obtaining an accurate distributed 
water balance is the main hydrological challenge for 
many practical and theoretical purposes related with 
water management and irrigation schemes along a 
wide range of scales. 
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