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NOTA TÉCNICA

A general sectional volume equation 
for classical geometries of tree stem

Una ecuación general para el volumen de la sección de las
geometrías clásicas del tronco de los árboles

Gildardo Cruz de León1

ABSTRACT

This work refers to the classical theory of tree stem form. It shows the derivation of a general
sectional volume equation for frustums of solids of revolution generated by the function y2 = pnxn

where, pn is a positive constant, and n any positive integer. The cylinder case presents a singular situa-
tion because of its sectional volume equation cannot be defined for n = 0 as it is known for the gene-
rating function. However, that geometry is implicit as a trivial solution of the derived equation. The
known sectional volume equations for frustums of paraboloid, conoid and neiloid are particular cases
of that equation for n =1, 2, and 3, respectively. The general sectional volume equation has an unex-
pected statistical nature. It is given as an arithmetic mean of geometric means The classical theory of
tree stem form continue being present in the forest measurement teaching and research. This work
could contribute to improve the understanding on that theory. 

PALABRAS CLAVE:
Dendrometry, applied mathematics.

RESUMEN

Este trabajo se refiere a la teoría clásica de la forma del tronco del árbol. Se muestra la deriva-
ción de una ecuación de volumen general de la sección de sólidos de revolución truncados generada
por la función y2 = pnxn donde,  pn es una constante positiva, y n un entero positivo. El caso del cilindro
constituye un caso singular pues su ecuación de volumen de la sección no se puede definir para n =
0, ya que es conocido por la función generadora. Sin embargo, esa geometría está implícita como una
solución trivial de la ecuación derivada. Las ecuaciones conocidas de volumen de secciones trun-
cadas de paraboloides, conoides y neiloides son casos particulares de la ecuación para n = 1, 2 y 3,
respectivamente. La ecuación general de volumen de la sección es de una naturaleza estadística
inesperada. Se da como una media aritmética de medias geométricas. La teoría clásica de la forma
del árbol sigue estando presente en la enseñanza de medición e investigación forestal. Este trabajo
podría contribuir a mejorar la comprensión de esa teoría.
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INTRODUCTION

Tree stem and log volume estimations are
some of the main goals in forest measure-
ments.  It is a difficult task because those
volumes depend on their geometry
(Brack, 1999).  For more than a century
researchers have been working extensi-
vely on the problem of tree stem geometry
from fundamental and empirical points of
view. In the first case one line of assess-
ment has been by means of mechanical
theories. As quoted by Larson (1963) and
Dean and Long (1986), assuming that
tree stem develops a particular form to
maintain the bending stress constant
under the influence of wind, in 1893,
Metzger found a stem geometry where
the cube diameter is proportional to
height. Regarding that gravity determines
tree stem shape the square diameter
results proportional to the cube of height
(McMahon, 1973). The empirical point of
view can be divided on classical and
current theories. In the classical theory a
tree stem is modeled by parts using
simple geometries of solids of revolution
(Graves, 1906). Current theories suggest
particular geometric models developed for
each species by means of taper equa-
tions for the whole tree stem (West,
2004). 

The classical theory of tree stem
form has a significant position in the forest
measurement literature. At least for a
century it has been included in standard
books of that field (Graves, 1906; Van
Laar and Akça, 2007). The classical
theory is considered as part of old rese-
arch in forest measurements (West,
2004). However, it continues being a
useful reference in research problems
that depends on tree stem geometry. For
instance, it has been used to derive the
equation for the centroid position in the
development of the centroid sampling
method for tree stem volume estimation
(Wood et al., 1990) and to derive a

general relation between stem volume
and stem surface form-factors indepen-
dent of position (Inoue, 2006).   

This work shows the derivation of a
general sectional volume equation for the
classical tree stem geometries. It is based
on the classical theory of stem form,
sectional methods of volume estimation,
elementary algebra, and calculus. A
summary of that methodology is provided
below.

MODELS AND METHODS

Classical geometries of tree stem 

Tree stem form can be modeled by longi-
tudinal sections using elementary geome-
tries of solids of revolution generated by
the equation

y2 = pnxn [1]

where pn and n are constants such that
pn>0 and n≥0 (Graves, 1906). Currently,
only the cases n = 0, 1, 2, and 3, related
to cylinder, conoid, paraboloid, and
neiloid, respectively, are assigned the
classical tree stem geometries (Diéguez-
Aranda et al., 2003). For this work, the
original conception of equation [1] will
represent the classical geometries of tree
stem and the study refers to any positive
integer n. 

Tree stem volume estimation

Different types of methods to estimate
tree stem volume are used in forest
measurements. Some of those methods
consist in:  i) to propose a taper equation
and then to estimate the volume by inte-
gral calculus, ii) to propose a volume
equation where the volume can be
directly obtained as a function of height,
normal diameter, and total height, and iii)

90 A sectional volume equation for geometries of the tree stem classical mode

MyB2010(2)  14/6/10  19:15  Página 90



to use a sectional method where the
volume can be known for longitudinal
sections as function of cross sectional
areas and lengths (Brack, 1999).  

The problem of volume estimation is
critical when the volume of logs needs to
be estimated at field where no information
of the original tree stem standard parame-
ters or geometry is at hand. For those
common situations the use of sectional
methods is unavoidable (Bruce, 1982).

General definition of sectional
methods

For simplicity, tree stem longitudinal
sections and logs will be called here tree
stem segments. 

Any sectional method to estimate the
volume of a tree stem segment, of length
L, is refereed to the volume of a cylinder
and can be written as

[2]

where S is an average cross sectional
area (Avery and Burkhart, 2002). What
defines a particular sectional method is
the form of S as function of selected cross
sectional areas. Equation [2] will be
essential in this work. 

Standard sectional methods

The generally accepted sectional
methods for volume estimation of tree
stem segments in the forest measurement
literature are the Huber, Smalian, and
Newton methods. Following the notation
of Chapman and Meyer (1949), for a tree
stem segment, of length L, end cross
sectional areas, B at the large end, b at
the small end, and B1/2 at the middle,

those standard sectional methods can be
respectively defined by

[3]

[4]

[5]

Then, VH = SHL, VS = SSL, and VN = SNL,
are their corresponding volumes  in agre-
ement to equation [2] .

Definition of systems and parameters
for this work

Usually, solids of revolution generated by
equation [1] are placed in a x y z Carte-
sian coordinate system with their axis of
rotation along the x axis and their tips at
the origin (Diéguez-Aranda et al., 2003).
The systems for this work are defined as
frustums of length L of those solids of
revolution for any positive integer n. The
end cross sectional areas will be called
here,  s for the small end, at x = x1, and S
for the large end, at x = x2. By definition,
x1<x2, then, L = x2-x1. 

Sectional volume equations for the
tree stem classical forms

The volumes for frustums of solids of
revolution generated by equation [1], for
n=0, 1, 2, and 3, as function of end cross
sectional areas and length, are

[6]

[7]
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[8]

[9]

for cylinder, paraboloid, conoid, and
neiloid, respectively (Graves, 1906). 

In agreement to equation [2] S = Sn
can be defined for equations [6]-[9]. For
cylinder, S = S0 = S = s. For frustums of
paraboloid, conoid and neiloid, their mean
cross sectional areas are respectively

[10]

[11]

[12]

In the following, it will be shown that equa-
tions [7]-[9] are particular cases of a
general sectional volume equation related
to the generating equation [1] for any
positive integer. The case n=0 deserves a
particular discussion given at the end. 

RESULTS

Derivation of a general sectional
volume equation for classical 
geometries of tree stem

The main result of this work is shown in
the form of a mathematical theorem.

Theorem 
If Vn is the volume for a solid of revolu-
tion’s frustum, of length L, and end cross

sectional areas s at x = x1, and S at 
x = x2, generated by the equation 
y2 = pnxn, where n is a positive integer,
then, Vn can be expressed  in the form

[13]

Proof 
If the generating function for a solid of
revolution is given by y2 = pnxn then the
volume for its frustum from x = x1 to 
x = x2, given by integral calculus, is

[14]

(Stewart, 2002). The relation

[15]

is well known in the mathematical litera-
ture (Spiegel and Moyer, 2007). Given
that L = x2 - x1 and, from equation [1],

equation [15] takes the form

[16]
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Substituting equation [16] in equation
[14], results

[17]

which is exactly equation [13]. 

DISCUSSION

The general sectional volume equation
[13] has been derived for solids of revolu-
tion generated by the equation y2 = pnxn

for any positive integer n. It can be easily
shown that, for n =1, 2, and 3, the
sectional volume equations [7]-[9] for frus-
tums of paraboloid, conoid and neilod, are
respectively recovered. Also, for s=0,
basal area S, and L=H, their total
volumes, SH/(n+1), are obtained.
However, as it can be seen in equation
[13] a sectional volume equation for the
cylinder case n=0 cannot be defined.
Nevertheless, it is not necessary because
the general equation reduces to the
cylinder volume equation when s=S for
any n.  That condition of cylinder volume
recovery seems to be necessary for any
sectional volume equation. In a proposal
to evaluate various sectional methods to
estimate butt log volumes Bruce (1982)
takes that condition as a guide to select
them. 

Let us understand the meaning of
equation [13]. In agreement to equation
[2] it can be written in the form Vn = SnL
where 

should correspond to a general mean
cross sectional area. In particular, for

equation [10], S1, is the arithmetic
average of the end cross sectional areas
s and S. For equation [11], S2 is the arith-
metic average of end cross sectional
areas, S, s, and their geometric mean SS
(Uranga-Valencia, 2008). In general, if X1,
X2, ... Xn, are the possible values taken by
a variable X, for a sample of size n, their
geometric mean is a measure of central
tendency defined by                    
(Chapman and Meyer, 1949; Van Laar
and Akça, 2007). 

The terms                 for i=0,1,2,..., n, re-
present the geometric mean cross
sectional areas for, X1 = X2 = ... = Xn-i = S
and Xn-i+1 = Xn-i+2. Xn-i+2 = Xn-i+i = Xn = s.
Then, the general mean cross sectional area

corresponds to the arithmetic average of
those geometric means. Although the
problem for this work was not originally
defined as of statistical nature it turned on
a statistical one whose complete analysis
is in progress.

An additional property of equation
[13] is that it represents a symmetrical
function on s and S, for any n, because of  

what means that segment volume is inde-
pendent of its orientation along its axis of
rotation. Also, the equations for the stan-
dard sectional methods obey that
symmetry property. That condition could
be another feature to take in account in
the proposal of new sectional methods for
volume estimation.

The most important contribution of
this work is the general sectional volume
equation [13] from what known results of
the forest measurements field, since more
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than a century (Graves, 1906), are parti-
cular cases.
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