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Abstract — The inherently limited processing power and 

battery lifetime of mobile phones hinder the possible execution of 

computationally intensive applications like content-based video 

analysis or 3D modeling. Offloading of computationally intensive 

application parts from the mobile platform into a remote cloud 

infrastructure or nearby idle computers addresses this problem. 

This paper presents our Mobile Augmentation Cloud Services 

(MACS) middleware which enables adaptive extension of 

Android application execution from a mobile client into the cloud.  

Applications are developed by using the standard Android 

development pattern. The middleware does the heavy lifting of 

adaptive application partitioning, resource monitoring and 

computation offloading. These elastic mobile applications can run 

as usual mobile application, but they can also use remote 

computing resources transparently. Two prototype applications 

using the MACS middleware demonstrate the benefits of the 

approach. The evaluation shows that applications, which involve 

costly computations, can benefit from offloading with around 

95% energy savings and significant performance gains compared 

to local execution only. 

 
Keywords — Application Virtualization, Middleware, 

Pervasive computing, Software Design, Android 

 

IV. INTRODUCTION 

ESOURCE-DEMANDING multimedia applications such as 3D 

video games are being increasingly demanded on smart 

phones. Even if mobile hardware and mobile networks 

continue to evolve and to improve, mobile devices will always 

be resource-poor, less secure, with unstable connectivity, and 

with constrained energy. Resource poverty is major obstacle 

for many applications [14]. Therefore, computation on mobile 

devices will always involve a compromise. For example, on-

the-fly editing of video clips on a mobile phone is prohibited 

by the energy and time consumption. Same performance and 

functionalities on mobile devices still cannot be obtained as on 

desktop PCs or even notebooks when dealing with high 

resource-demanding tasks. 

Recently, the combination of cloud computing [11], wireless 

communication infrastructure, ubiquitous computing devices, 

location-based services, and mobile Web, has laid the 

foundation for a novel computing model, called mobile cloud 

computing [9]. It provides to users an online access to 

unlimited computing power and storage space. The cloud 

abstracts the complexities of provisioning computation and 

storage infrastructure. The end user uses them as utility and in 

reality they can be far-away data center or nearby idle 

hardware. 

Offloading has gained big attention in mobile cloud 

computing research, because it has similar aims as the 

emerging cloud computing paradigm, i.e. to surmount mobile 

devices’ shortcomings by augmenting their capabilities with 

external resources. Offloading or augmented execution refers 

to a technique used to overcome the limitations of mobile 

phones in terms of computation, memory and battery. Such 

applications, which can adaptively be split and parts offloaded 

[6, 18], are called elastic mobile applications. Basically, this 

model of elastic mobile applications gives the developers the 

illusion as if they are programming virtually much more 

powerful mobile devices than the actual capacities. 

Furthermore, elastic mobile applications can run as stand-

alone mobile applications, but use also external resources 

adaptively. Which portions of the application are executed 

remotely is decided at runtime based on resource availability. 

In contrast, client/server applications have static partitioning of 

code, data and business logic between the server and client, 

which is decided in the development phase. 

Our contributions include integration with the established 

Android application model for development of “offloadable” 

applications, a lightweight application partitioning and a 

mechanism for seamless adaptive computation offloading. We 

propose Mobile Augmentation Cloud Services (MACS), a 

services-based mobile cloud computing middleware. Android 

applications that use the MACS middleware benefit from 

seamless offloading of computation-intensive parts of the 

application into nearby or remote clouds. First, from the 

developer perspective, the application model stays the same as 

on the Android platform. The only requirement is that 

computation-intensive parts are developed as Android 

services, each of which encapsulates specific functionality. 

Second, according to different conditions/parameters, the 

modules of program are divided into two groups; one group 

runs locally, the other group is run on the cloud side. The 

decision for partitioning is an optimization problem according 

to the input conditions of the cloud and devices, such as CPU 

load, available memory, remaining battery power on devices, 

bandwidth between the cloud and devices. Third, based on the 
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solution of the optimization problem, our middleware offloads 

parts to the remote clouds and returns the corresponding 

results back. Two Android applications on top of MACS 

demonstrate the potential of our approach. 

In the rest of the paper, we first review related research in 

work mobile cloud computing in Section 2. Then we describe 

our MACS middleware with detailed descriptions of the 

implementation (Section 3). We explain the offloading model 

in our middleware in Section 4. In Section 5 we introduce two 

use case applications, the setup of the evaluation and the 

corresponding evaluation. After that, we discuss the results in 

Section 6. Finally, we draw conclusions and refer to the future 

work. 

V.  RELATED WORK 

Previous work has proposed many mechanisms that address 

the challenges of seamless offloaded execution from a device 

to a computational infrastructure (cloud). The encapsulation of 

the mobile device’s software stack into a virtual machine 

image and executing it on a more powerful hardware can be 

considered as a “brute force” approach to offloading, such as 

proposed by Chun and Maniatis [1] or Satyanarayanan et al. 

[14]. More recently, Kosta et al. [8] further improved this idea. 

Although such virtualized offloading can be considered as 

simple and general solution, it lacks flexibility and control 

over offloadable components. Therefore, we consider that 

application developers can better organize their application 

logic using the established Android service design patterns and 

benefit from the MACS middleware. 

Ou et al. [13] propose class instrumenting technique, i.e. a 

process to transform code classes into a form which is suitable 

for remote execution. Two new classes are generated from the 

original class, one is an instrumented class which has the real 

implementation and the same functionality as the original 

class, the other is a proxy class, whose responsibility is only to 

call the function written in the instrumented class. Then, the 

instrumented class can be offloaded to remote cloud, and the 

call will be invoked from the instrumented in the remote cloud. 

In MACS we adopt similar idea, but unlike Ou et al. [13] we 

use standardized language for the proxy interfaces which is 

already widespread in the Android platform. The Cuckoo 

framework [6] and MAUI system in [2] implement a similar 

idea. Our MACS middleware is inspired by these solutions. 

However, MACS middleware does extra profiling and 

resource monitoring of applications and adapts the partitioning 

decision at runtime. 

An important challenge in partitioned elastic applications is 

how to determine which parts of code should be pushed to the 

remote clouds. The graph based approach to model the 

application has been used in several works. Giurgiu et al. [3] 

use “consumption" graphs and decide which part should be 

running locally or remotely. It finds a cut of the consumption 

graph with a goal function, which minimizes the total sum of 

communication cost, transmitting cost and the cost of building 

local proxies. The AIDE platform [4] uses a component-based 

offloading algorithm, which mainly focuses on minimum 

historical transmission between two partitions. 

The 1)( k partitioning algorithm, introduced by Ou et al. [13], 

is applied to a multi-cost graph representing the class-based 

components. A similar approach is done by Gu et al. [4, 5]. 

Zhang et al. [19, 17] use a general Bayesian inference to make 

the partitioning decision. However, executing constantly 

executing graph or inference algorithms on the mobile device 

takes significant resources on the constrained device. We use 

an integer linear optimization model to describe the offloading 

so that it is not only easy to implement, but it can also be 

independently solved if the remote clouds are not available 

temporarily. 

VI. MOBILE AUGMENTATION CLOUD SERVICES 

The goal of our MACS middleware is to enable the 

execution of elastic mobile applications. Zhang et al. [17] 

consider elastic applications to have two distinct properties. 

First, an elastic application execution is divided partially on 

the device and partially on the cloud. Second, this division is 

not static, but is dynamically adjusted during application 

runtime. The benefits of having such an application model are 

that the mobile applications can still run independently on 

mobile platforms, but can also reach cloud resources on 

demand and availability. Thus, mobile applications are not 

limited by the constraints of the existing device capacities.  

MACS architecture is depicted on Figure 1. In order to use 

MACS middleware, the application should be structured using 

established Android services pattern. Android is already 

established as the most prominent mobile phone platform. 

Additionally, its application architecture model allows 

decomposition of applications into service components which 

 
Fig. 1 MACS architecture. Application logic is structured from multiple 

Android services ( iS ). Some of them can be offloaded into the cloud 

( RiS ). 
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can be shared between applications. A MACS application 

consists of an application core (Android activities, GUI, access 

to devices sensors) which cannot be offloaded, and multiples 

services (
iS ) that encapsulate separate application 

functionality (usually resource-demanding components) which 

can be offloaded ( RiS ). The services communicate with the 

application through an interface defined by the developer in 

the Android interface definition language (AIDL). 

As service-based implementation is adopted, for each 

service we can profile following metadata: 

 

 type: whether can be offloaded or not 

 memory cost: the memory consumption of the service 

on the mobile device 

 code size: size of compiled code of the service 

 dependency information on other services, for each 

related module, we collect following: 

o transfer size: amount of data to be transferred 

o send size: amount of data to be sent 

o receive size: amount of data to be received 

 

Metadata is obtained by monitoring the application 

execution and environment. 

Android services are using Android inter-process 

communication (IPC) channels for RPC. The services are 

registered in the Service Manager, and a binder maintains a 

handle for each service. Then an application, that wants to use 

a service, can query the service in the Service Manager. Upon 

service discovery, the Android platform will create a service 

proxy for the client application. All the requests to access the 

service will be sent through the service proxy, and then 

forwarded to the service by the binder. After processing the 

requests, results are sent back to the service proxy on the client 

application through the binder. Finally, the client gets the 

result from the service proxy. From client's point of view, there 

is no difference between calling a remote service or calling a 

local function. 

The offload manager determines the execution plan, and 

then the services to be offloaded are pushed to the cloud. The 

results are sent back to the application upon completion. Our 

approach is similar to the Cuckoo framework [6], however, 

MACS allows dynamic application partitioning at runtime, 

where Cuckoo only enables static partitioning at compile time. 

MACS monitors the execution of the services and the 

environment parameters. Whenever the situation changes, the 

middleware can adapt the offloading and partitioning. 

The main goal of MACS is to enable transparent 

computation offloading for mobile applications. Therefore, our 

middleware tries to fit the usual Android development process 

and bring the developers an easier way to offload parts of their 

applications to remote clouds in a transparent way. MACS 

hooks into the Android compile system, makes modifications 

of generated Java files from AIDL in the pre-compile stage. 

Developers need to include MACS SDK libraries into their 

Android project. 

Since our implementation wants to bring the developers an 

easier way to distribute their application to remote cloud, the 

low-level implementation should be transparent to them. The 

way to hide the low-level implementation is as follows. 

Recalling the Android compile system and combining with the 

idea of using the services on Android, the possible way to 

make modification of generated Java file from AIDL is in the 

pre-compile stage. Our code is embedded there to realize the 

transparency to the developers. Each time while the developers 

compile their projects by using Ant tool, our code will be 

embedded without notice. The way to add a customized 

process while building with Ant tool is to write a new target, 

which can be treated as a task. 

At the cloud side, the MACS middleware handles the 

offload requests from the clients, installs of offloaded services, 

their initialization and method invokes (s. Figure 9 in the 

Appendix). The cloud-side MACS middleware is written with 

pure J2SE so that it can run on any machines with installed 

J2SE. 

MACS middleware monitors the resources on the mobile 

execution environment and available clouds. It then forms an 

optimization problem whose solution is used to decide whether 

the service which contains the called function should be 

offloaded or not. When the service is determined to be 

offloaded to the remote cloud, our middleware tries first to 

execute the service remotely. If there is no such service on the 

remote clouds, our framework transmits the service code (jar 

file) to the cloud, and the corresponding results after the 

service execution are returned to the mobile device. The cloud 

caches the jar files for subsequent executions. 

Except for the computation offloading, our framework also 

features simple data offloading. If files are needed to be 

accessed on the remote cloud, MACS file transmission 

(MACS-FTM) transfers automatically the non-existing files 

from the local device and vice versa. Basically, the 

middleware at pre-compile time inserts a line of code after a 

file object is created by using the File object in Java. This code 

snippet retrieves file information of the file at runtime. When 

no such file exists in the remote cloud, MACS-FTM throws an 

exception which is caught by the middleware which in turn 

obtains the file from the device.  

VII. ADAPTIVE COMPUTATION OFFLOADING 

The proposed model and corresponding algorithm are 

supposed to be applied for scenario which is computationally 

intensive [7]. The requirements for the developer are that the 

code should be structured in a model in advance.  

The developer should also provide or use extra tools to 

extract meta-information from given modules and then tag 

each module with some parameters. The tagged parameters are 

used for deciding on code partition later. 

Let us suppose that we have n number of modules which can 

be offloaded, S1, S2 ... Sn. Each of the modules has several 

properties described as metadata, i.e. for specific module i, its 
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memory cost memi, code size codei. Let us consider the k 

number of related module which can be offloaded. For each of 

them, we denote the transfer size tr1, tr2 ... trk, send size send1, 

send2...sendk, receive size rec1, rec2...reck, where {1..k} ⊆ 

{1..n} and sendk + reck = trk. Meanwhile, we introduce xi for 

module i, which indicates whether the module i is executed 

locally (xi = 0) or remotely (xi = 1). The solution x1, x2...xn 

represents the required offloading partitioning of the 

application. 

The cost function is represented as follows:  
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There are three parts in the cost function. The first part 

depicts the transfer costs for the remote execution of services, 

including the transfer cost of its related services which are not 

at the same execution location. The latter part of Eq.(2) 

implicitly includes the dependency relationship between 

modules, i.e. if the output of one module is an input of another. 

The memoryc  contains the memory costs on the mobile device, 

and CPUc  the CPU costs on the mobile device is, where   is 

the convert factor mapping the relationship between code size 

and CPU instructions, which is taken to be 10 based on [12]. 

trw , memw , CPUw  are the weights of each costs, which can 

lead to different objectives, for example lowest memory costs, 

lowest CPU load or lowest interaction latency. 

The three constraints are expressed as the following: 

Minimized memory usage. First, the memory costs of 

resident service can not be more than available memory on the 

mobile device, i.e.  

 

1

1=

*)(1* favailxmem memii

n

i

  (5) 

 

where memavail  can be obtained from the mobile device, 1f  is 

the factor to determine the memory threshold to be used, 

because the application can not occupy the whole free memory 

on the mobile device. 

Minimized energy usage. Second, for the offloaded 

services, the energy consumption of offloading should not be 

greater than not offloading [10], i.e.  

 

0>offloadlocal EE   (6) 

 

The local energy consumption can be expressed using the 

number of local instructions to be executed localI , local 

execution speed localS  and the power used of local execution 

localP  [10]. At the first decision time, localI  is estimated 

according to the code size. After the first decision, this number 

is collected from our framework (by calling the statistic 

method provided from Android API). Obviously, there is 

relationship between the instruction number and the power 

used for that instruction while doing power profiling.  
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The energy costs of offloading some parts to remote cloud 

can be expressed as the sum of energy consumption during 

waiting for the results from the cloud idleE , transferring 

(including sending sE  and receiving sE ) the services to be 

offloaded [10] and also the additional data which may be 

needed on the remote cloud extraE . 

 

extraridlesoffload EEEEE =  
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The idle time of the mobile device waiting for the result 

from cloud can be treated as the execution time of remote 

cloud, so the formula becomes  
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where sD  and rD  are the total data sizes to be sent and 

received, extraD  is the size of extra data needed because of 

offloading, which is determined at runtime, sB  and rB  are the 

bandwidths of sending and receiving data, and cloudS  is the 

remote execution speed. Additionally,  
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iii

n

i
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where {0,1}itype  represents whether a service is 

offloadable or not. 

Minimized execution time. Third, the third constraint is 

enabled when the user prefers fast execution, i.e. 

 

0>offloadlocal tt   (13) 

 

The local execution time can be expressed as the ratio of 

CPU instructions to local CPU frequency, meanwhile, the 

remote execution time consists of the time consumed by CPU, 

file transmission and the overhead of our middleware. 
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where overheadt  is the overhead which our framework brings in. 

According to the constraints above, we now transform the 

partitioning problem to an optimization problem. The 

middleware determines the execution location by solving a 

linear integer optimization problem. The decision maker 

receives the input parameters and execution constraints. It then 

returns the corresponding running locations. The solution of 

nxxx ..., 21 , is the optimized partitioning strategy. By using 

integer liner programming (ILP) on the mobile device, MACS 

gets a global optimization result. Whenever the the parameters 

in the model change, such as available memory or network 

bandwidth, the partitioning is adapted by solving the new 

optimization problem.  

MACS middleware defines the abstraction of a decision 

maker so that we can apply different decision makers which 

determine the execution location of each “offloadable” service. 

In our experiments we used Cream
1
, an open-source class 

 
1 http://bach.istc.kobe-u.ac.jp/cream/ 

library for constraint programming in Java. It provides enough 

features to run the decision solver on an Android platform, 

with acceptable solving speed in the order of tens of 

milliseconds. During the calculation, as an objective function 

is taken the sum of transmission cost, memory cost and CPU 

cost.  

Although MACS introduces the overhead because of using a 

proxy for communication between offloaded services and the 

mobile application, the overhead is relatively small, which is 

shown in the evaluation. MACS also profiles each offloaded 

module/service to dynamically change its execution plan and 

adjust the partitioning. 

VIII. EXPERIMENTAL EVALUATION OF OFFLOADING 

We evaluate our MACS middleware with two use case 

smartphone applications. The first application implements the 

well-known N-Queens problem. It is chosen because the 

performance bottleneck represents a pure computation 

problem. This use case can easily show the overhead 

introduced by MACS middleware. The second application 

involves face detection and recognition in video files. This use 

case involves lots of computation, but also requires much more 

memory resources to process and obtain results. Table 8 shows 

the problem space in terms of N.  

 
 

Fig. 2. Snapshot of prototype application of face detection and recognition 

using MACS middleware. 

   
(a) 

 
(b) 

 

Fig. 4. Total time distribution of N-queens: (a) local execution and (b) remote 

execution. 
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The second case can process a video file, and detect faces 

from the video file, cluster them and provide the time point 

cues for video navigation. The results can then be used for 

faster video navigation on small screen devices (Figure 2). The 

video file is processed with OpenCV
2
 and FFmpeg

3
 libraries. 

We use FFmpeg to open video files, and scan it frame by 

frame. Face detection in video files is done by detecting faces 

in video frames. In the processing, faces in the video file are 

detected by the existed implementation in OpenCV, and then 

the detected faces are recognized by the method proposed by 

Turk and Pentland [15], and after that, the faces are clustered. 

In the implementation we used JavaCV
4
 for video 

processing. When the application gets the results from the 

processing, it shows all detected faces as a clustered view. The 

user can select a cluster, and then navigate to the time points 

where that face occurs in the video. Thus, the application can 

accelerate navigation in a video based on persons that occur 

within. 

A. Setup of the Evaluation 

Hardware. The hardware we are using in the evaluation is 

as follows. A Motorola Milestone mobile phone based on 

Android platform 2.2 is used in the evaluation. A desktop 

computer which includes quad-core CPU acts as a cloud 

provider that can host the offloaded computation. The details 

about the hardware components for the mobile device and 

 
2 http://opencv.willowgarage.com 
3 http://ffmpeg.org 
4 http://code.google.com/p/javacv 

desktop computer are shown in Table 1. 

  
 

Network Topology. While offloading services to the 

remote cloud, the mobile phone connects to a nearby access 

point. Since the wireless local area network is encrypted with 

Wi-Fi Protected Access 2 (WPA2) security protocol, the data 

speed is not as fast as non-encrypted considering of the 

overhead introduced by the security protocol. The desktop 

computer is connected to the Internet directly by network 

cable, whose bandwidth is 100 Mbps. 

Energy Estimation Model. We adopt a method as 

the one proposed by Zhang et al. [16], a power model for an 

Android phone and a measurement application for the energy 

consumption on the Android-based mobile device on the fly. 

Using their software, the energy consumption of each 

hardware component of the Motorola Milestone such as LCD, 

CPU and Wi-Fi can be measured separately (see Table 2). 

  

B. Results of the Use Case 1 

We use the algorithm by Sedgewick and Wayne
5
. The basic 

idea is to use recursion and back-tracking to enumerate all 

possible solutions. Although it is not the best algorithm, it is 

often used for solving the N-queens puzzle. It is clear that with 

the increase of N, much more steps are spent to find solutions, 

which is extremely time-consuming for the mobile device. 

We run the N-Queens on the local device and offload to the 

remote cloud separately, for 1=N  to 13=N . For 14=N , it 

will take hours to finish on the local device, it is not realistic 

not to be offloaded while doing computation after 14=N . 

Table 8 in the Appendix provides overview of the problem 

space in terms of N . 

 
5 http://introcs.cs.princeton.edu/java/23recursion/Queens.java.html 

TABLE I 

HARDWARE COMPONENTS OF MOBILE DEVICES AND DESKTOP COMPUTER 

Hardware 

Component 
Android  Milestone PC 

Processor ARM A8 600MHz QuadCore 2.83GHz 

Memory 256MB 8GB 

WLAN Wi-Fi 802.11 b/g N/A 

OS Android 2.2 Windows XP x64 

   

 

 

 
Fig. 7 Energy consumption of face detection. 

TABLE II 

ESTIMATED ENERGY CONSUMPTION OF A MOBILE DEVICE 

Hardware Component Estimated Energy Consumption (W) 

Processor 0.4 (Idle: 0.05) 

WLAN 0.75 (Low: 0.03) 

LCD 0.9 

  

  

 

 

 
 

Fig. 3. Snapshot of prototype application of face detection and recognition 

using MACS middleware. 
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Figure 3 shows the time duration of execution of the specific 

calculation service. From 1=N  to 9=N , the execution 

speed on the local device is acceptable compared with the 

remote speed and to run the method locally is better, but after 

10=N , the remote speed dominates to be the better option as 

the computation time dominates the total time in the rest cases, 

and the remote execution speed is also relative stable, there is 

no huge variation for remote speed.  

Figure 4 shows the different times, which are made up of the 

total spent time. With the increase of the queens number, the 

local execution time increases outstandingly, especially from 

9=N , the execution time of calculating solution occupies 

more than half of the total time. Meanwhile, the overhead, our 

framework brings in, remains constant. As for the remote 

execution, the overhead is broken down into three parts, one is 

the package offloading time, one is the decision making time, 

the rest is the residual overhead. It shows that our decision 

model costs only little time to finish the determination. The 

transmission time of remote package occupies also few periods 

of total time, since the remote package is small. The execution 

time of solving the N-queens is relative stable, except 

for 11=N , which is a deviation during the execution and 

measurement.  

The last Figure 5 shows the results of consumed energy with 

and without offloading. As for the local execution, most of the 

time is spent on computation, since our energy model involves 

CPU and LCD, and the LCD is always on while computation, 

so that the energy consumption of CPU and LCD dominates 

the total energy consumption of local execution. The execution 

time is significantly increased from 9=N  compared to the 

remote execution, which leads to the highest energy value. In 

contrast to those, the remote execution time is nearly stable, so 

that the consumed energy is almost at the same level. 

C. Results of the Use Case 2 

Six video files are used in the evaluation. All of them 

belong to a same original video file with different length of 

time, 10, 20, 30, 40, 50 and 60 seconds (see Table 3). The 

video resolution is 720 pixels   480 pixels, the fps is set to 

30, the overall bit rate is 1500 Kbps and the video is 

compressed with MPEG-4 format, 3GPP Media Release 5 

profile. The audio codec is AAC, and the bit rate for audio is 

30 Kbps. 

 
In order to get a more accurate estimation of execution time 

which is used in the model, we first run the face detection 

services locally, and keep track of the spent time (second) and 

the file size (bytes), and then a linear regression is used to 

reflect the relationship between the spent time and the file size. 

Considering the number of CPU instructions provided by 

Android API, it can only be used to make estimation on the 

execution which involves no native calls, we don’t directly use 

that count, but focus on the execution time. The regression 

shows that, 

 

246.09*0.0005= FileSizeTime  (16) 

 

We use this heuristic equation in our model to determine the 

execution time. 

On Figure 6 can be seen clearly that the execution time is 

reduced hugely while offloading compared with the local 

execution. Even dealing with the 10 seconds video file, the 

local device spends more than 15 minutes on processing and 

detecting, but the corresponding remote offloading takes only 

less than 1 minute. Each time the computation is offloaded to 

the remote cloud, the execution speed can be reduced by more 

than 20 times, see Table 4. It is absolutely not acceptable to let 

the CPU of local mobile device 100% load for such long time, 

and it confirms that the video processing task is still a huge 

burden for the mobile device. 

TABLE III 

VIDEO DURATION AND FILE SIZE 

Duration (seconds) File size (Bytes) 

10 1864984 

20 3864612 

30 5827420 

40 7754219 

50 9633240 

60 11584020 

 

 

 
Fig. 5. Energy consumption of the N-queens app. 

 
Fig. 6. Execution time of face detection 
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With the huge difference between local and remote execution 

time, we can conclude that the local energy consumption is 

worse than the remote ones, because most of the time is spent 

on CPU and LCD, which are the top two energy consuming 

components (s. Figure 7). Table 5 also depicts the energy 

saving situation while offloading. Energy can be saved by 

more than 94% thanks to the offloading. 

Figure 8 describes the composition of the local and remote 

total spent time in details. As the execution time increases with 

the bigger video file size, the overhead our framework brings 

occupies about only 0.1%, which can be nearly omitted. 

Regarding to the remote execution, the total time spent 

consists of execution time, transmission time of needed files, 

package transmission (service offloading) time, and decision 

making time. With the increase of the video file size, the file 

transmission time also rises, but compared to the total time, it 

is not significant. The decision making does its determination 

in less than 1 second, which is only 1% of the total time spent. 

The total overhead our framework brings is about 5% of the 

total time, which is acceptable considering about the speed up 

and energy save above. 

The face clustering can only be done on the remote cloud 

because of the software limitations on the local mobile device. 

Detailed results can be seen in Table 6 in the Appendix. Most 

of the execution time is spent on building/rebuilding the 

training set. If the training set is already available before the 

remote execution, then the estimated execution time can be 

significantly reduced. 

 

 

IX. DISCUSSION 

Offloading perhaps is not suited for every mobile 

application, but from the results of the two use cases, we see 

that when an application uses complex or time consuming 

algorithms such as recursion, by offloading those parts into the 

cloud, time and energy consumption are reduced, so that the 

local execution time is reduced to an acceptable level. 

Offloading can lower the CPU load on a mobile device 

significantly. It can also save lots of energy, which indicates 

that the battery lifetime can be increased compared to the local 

execution, as shown in the second use case, where more than 

90% of energy is saved and the calculation speed is up to 20 

times over local execution. 

The results also prove that the overhead of our framework is 

small and acceptable with the increase of needed computation, 

it is better to push those computations which cost considerable 

resources to the remote cloud. But for the small N in the N-

Queens problem, the overhead occupies almost half of the total 

execution time because of the needed computation is small so 

that it takes only little time to obtain the results. This shows a 

clear advantage of local execution over remote offloading 

when the needed computation is not much. In a word, the more 

computation is needed, offloading has more advantages. Since 

we use Wi-Fi in the evaluation, the time of sending files and 

receiving results has small proportion, but if 3G or GPRS are 

used, the offloading time will surely increase. 

 

X. CONCLUSIONS AND FUTURE WORK 

The results show that the local execution time can be 

reduced a lot through offloading, which is sometimes not 

acceptable for users to wait for, and by pushing the 

computation to the remote cloud can lower the CPU load on 

mobile devices significantly thanks to the remote cloud, since 

most of the computations are offloaded to the remote cloud. 

Meanwhile, lots of energy can be saved which indicates users 

can have more battery time compared to the local execution. 

The results also prove that the overhead of our framework is 

small. 

Our framework supports offloading of multiple Android 

services. If there are multiple services in one application and 

all of those services can be offloaded to the remote clouds, our 

TABLE V 

VIDEO DURATION AND SPEED UP OF SAVED ENERGY 

Duration  

(seconds) 
10 20 30 40 50 60 

Saved 

Energy (%) 
94.98 96.07 95.59 96.37 96.33 96.55 

 

 

TABLE IV 

VIDEO DURATION AND SPEED UP OF FACE DETECTION IN VIDEO FILES  

Duration  

(seconds) 
10 20 30 40 50 60 

Speed up x20 X26 X23 X28 X28 X29 

 

 

 
 

 
 

Fig. 8. Total time distribution of face detection: (a) local execution and (b) 

remote execution. 

  



 

 

-14- 

 

resource monitor natively supports this situation and can make 

the corresponding allocation determination, so that some of the 

services should be offloaded and the rest of the services should 

be run locally. 

The next steps are to enable parallelization of the offloaded 

services. Additionally, we can extend the current middleware 

so that it supports automatic partitioning arbitrary mobile 

applications. A great challenge is how to estimate the 

characteristics of an application depending on different input 

parameters, which is precisely the relationship between the 

input of the invoked method and the execution time. We could 

characterize the relationship between execution time and input 

parameters by running the target application several times and 

adapt the offloading algorithm accordingly. 

 

APPENDIX 

Figure 9 presents the registration flow of “offloadable” 

services (a) and the optimization process (b).  

In Table 6, the data on the left side of the slash sign is for 

local execution, whereas on the right side is for remote 

execution. 

 
Detailed results of use case 2. The data of Table 7 in the left 

side of slash is local execution, the middle one is remote 

execution of face detection, the last one is remote execution of 

face detection with face recognition. 

 

Table 8 shows the number of possible solutions of the N-

Queens problem in terms of N. 

 

TABLE VIII 

N-QUEENS PROBLEM SPACE  

N 4 6 8 10 12 14 

No. Distinct 

Solutions 
2 4 92 724 14200 365596 

 

 

TABLE VII 

EVALUATION RESULTS OF USE CASE 2 IN DETAILS  
Dura- 

tion (s)  

Execution 

Time (min)  
Overhead (s)  

CPU Instructions 

(Million)  

Energy 

(kW)  

10  14.8 / 0.7 / 

1.9  

1.5 / 5.0 / 4.6  7.4 / 1.8 / 2.1  0.9 / 0.1 / 

0.2  

20  27.6 / 1.0 / 

12.3  

1.5 / 2.9 / 5.9  7.2 / 2.6 / 5.5  1.7 / 0.1 / 

1.0  

30  42.6 / 1.8 / 

25.0  

1.4 / 7.3 / 5.9  8.3 / 4.1 / 7.6  2.6 / 0.1 / 

2.0  

40  62.5 / 2.2 / 

70.0  

1.9 / 5.5 / 5.8  10.1 / 5.7 / 8.4  3.7 / 0.2 / 

5.5  

50  77.7 / 2.8 / 

122.5  

1.8 / 5.1 / 7.2  11.8 / 7.8 / 9.6  4.7 / 0.2 / 

9.6  

60  96.7 / 3.3 / 

152.5  

1.9 / 5.8 / 6.5  13.3 / 9.0 / 11.1  5.8 / 0.3 / 

11.9  

 

 

TABLE VI 

EVALUATION RESULTS OF USE CASE 1 IN DETAILS  

 
Num-

ber 

Execution 

Time (s) 

Overhea

d (s) 

CPU 

Instructions 

Energy 

(W) 

1 
0.973 / 

4.383 

0.97 / 

1.97 

155986 / 

847523 

0.877 / 

4.188 

2 
1.953 / 

4.534 

1.95 / 

2.269 

162317 / 

847189 

1.759 / 

4.329 

3 
0.82 / 

4.486 

0.817 / 

2.012 

155925 / 

847421 

0.739 / 

4.285 

4 
0.847 / 

4.378 

0.839 / 

1.943 

164070 / 

847368 

0.766 / 

4.183 

5 
0.827 / 

4.602 

0.811 / 

2.062 

164021 / 

847941 

0.751 / 

4.397 

6 
0.883 / 

7.786 

0.84 / 

3.629 

201058 / 

848234 

0.812 / 

7.513 

7 
1.318 / 

6.752 

1.178 / 

3.592 

383161 / 

848363 

1.242 / 

6.531 

8 
1.473 / 

7.006 

0.841 / 

3.779 

1008483 / 

848173 

1.579 / 

6.770 

9 
3.994 / 

7.746 

0.868 / 

3.611 

4475993 / 

848379 

4.845 / 

7.475 

10 
16.431 / 

7.337 

0.836 / 

3.549 

22916437 / 

849381 

21.026 / 

7.094 

11 
80.055 / 

11.527 

0.794 / 

3.72 

128838160 / 

850019 

103.754 / 

11.112 

12 
459.055 / 

7.256 

0.832 / 

3.571 

780925799 / 

849810 

596.439 / 

7.013 

13 
2766.508 / 

9.839 

1.015 / 

3.685 

6937052630 / 

849590 

3596.054 / 

9.468 

 

 
(a) 

 
(b) 

 

 

Fig. 9. Flow charts: (a) process registration and (b) allocation determination. 
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