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Abstract

We design an innovative variance reduction technique coupled with Monte Carlo (MC)

simulation that prices accurately plain-vanilla zero coupon bond options. This technique

speeds up the convergence of the simulation and offers better results than MC simula-

tion using antithetic variables. Our benchmark is the closed-form solution of Cox Inger-

soll and Ross (CIR, 1985). Our paper shows that, when pricing bond options with MC

simulation, we can constrain the Wiener process inside upper and lower bands to speed

up the convergence towards the ‘true’ option value (the CIR analytical solution). Fur-

thermore, it works best when the bands are drawn at plus or minus 0.5 standard devi-

ations and our technique is less time consuming than a plain MC simulation. Finally,

we introduce an original stochastic fifth-order polynomial model beside the CIR solu-

tion. Our contribution is to provide market practitioners with an efficient variance re-

duction technique, easy to implement. The major challenge of our technique would be

to price bond options in times of high market volatility, when option price needs badly

to reflect rare events located in the tails of the distribution. However, we can argue that

pricing options in times of volatile markets is a challenge for every option pricing model. 
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Resumen

En este artículo se diseña una nueva técnica de reducción de la varianza combinada con
simulación de Monte Carlo que valora con exactitud las opciones sobre bonos cupón
cero “plain vanilla”. Esta técnica acelera la convergencia de la simulación y ofrece mejores
resultados que la simulación Monte Carlo con variables antitéticas. El objetivo que se per-
sigue es la solución en forma cerrada de Cox, Ingersoll y Ross (CIR, 1985). Se muestra
que cuando se valoran opciones sobre bonos con simulación Monte Carlo, se puede li-
mitar el proceso de Wiener dentro de las bandas superior e inferior para acelerar la con-
vergencia hacia el 'verdadero' valor de la opción (la solución analítica CIR). Además,
cuando mejor funciona esta alternativa es cuando las bandas  se sitúan a más o menos
0,5 desviaciones típicas y es computacionalmente más rápida que la simulación Monte
Carlo normal. Finalmente, se introduce un  modelo estocástico original,  polinomial de
quinto orden, junto con la solución CIR. La contribución de este artículo es proporcionar
a los profesionales del mercado una técnica de reducción de la variabilidad eficiente y
fácil de implementar. El principal reto de esta técnica es la valoración de opciones sobre
bonos en periodos de alta volatilidad, cuando la valoración de opciones necesita impe-
riosamente reflejar acontecimientos raros localizados en las colas de la distribución. Sin
embargo, se puede argüir que la valoración de opciones cuando los mercados tienen ele-
vada volatilidad es un reto para cada modelo de valoración de opciones.

Palabras clave: 

Técnica de reducción de la varianza, muestreo por importancia; modelo Cox-Inger-
soll-Ross,  modelo polinomial, opción sobre bono, simulación Monte Carlo.
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n 1. Introduction

Monte Carlo (MC) simulation is widely used in the industry for easiness of

implementation, especially for pricing exotic options (barrier, lookback, digital,

Asian, basket, etc). The closed-form solution is not always available for this type of

options. In this situation, MC simulation becomes helpful. In this paper, our main

contribution is to propose a numerical solution to price bond options in the

frameworks of Cox Ingersoll and Ross model (CIR, 1985). We apply an innovative

variance reduction technique, easily implemented, that is not time-consuming

during the MC simulation and that, as expected, speeds up the convergence towards

the ‘true’ solution.

Market practitioners may find variance reduction techniques difficult to implement.

Besides antithetic variable and our innovative technique, other variance reduction

techniques may present implementation problems. For example, the use of control

variate techniques in option pricing presents the following problems: the analytical

solution of the Delta, Gamma or Vega of the option may not be readily available.

Moreover, if the practitioner chooses a numerical approximation of the option Greeks,

it may not be possible to implement it with the control variate technique. Using the

CIR model example, we obtain a yield curve by simulating the stochastic equation.

The simulated curve provides interest rate values that are inputs of the bond price

computation, which is, in turn, an input of the option price computation. However,

typical numerical Greeks approximation that helps computing a control variate is

obtained step by step during the simulation of a given trajectory and the control

variate is a direct input of the option price computation. Therefore, this control variate

method is not applicable to the CIR model when pricing a bond option with MC

simulation. We compare our innovative numerical solution to the solution of an

original stochastic fifth-order polynomial model presented in this paper. The reason

to propose a challenger to the CIR model is to bring perspectives to the results with

a distinct model, which does not include the mean reverting process common to CIR

(1985), Vasicek (1977), Ho and Lee (1986), Hull and White (1990), Fong and Vasicek

(1992), etc., models. 

Our study is organised as follows. The literature review highlights our choice of the

polynomial model as an alternative model to the CIR model. This section also

reviews the Importance Sampling procedure on which we base our variance reduction

technique. The methodology section presents our models. We wrap up our results

and we make final comments in the two last sections.
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n 2. Literature review

2.1 Polynomial models
We compare our variance reduction technique coupled with MC simulation and the

CIR model (1985) to an original stochastic fifth-order polynomial model also based

on MC simulation. Several authors have proposed polynomial models to fit the yield

curve. At the start of the polynomial models incubation period, pioneers like

Kornbluth and Salkin (1992) discussed the effect of various polynomial

representations of the yield curve on the tilting of medium to long term bond

portfolios. Pham (1998) proposed ‘a methodology of fitting the term structure of

interest rates with Chebyshev polynomials incorporated into a quantity called the

interest cumulator and then subjected to a minimization procedure to yield

parameters that subsequently maps out zero-coupon yield curves’. Almeida et al.,

(1998), proposed modelling the term structure of interest rates R(·) as a linear

combination of Legendre polynomials. Bing-Huei (1999) used ‘curve fitting

techniques with the observed government coupon bond prices to estimate the term

structure. Bing-Huei applied the B-spline functions to approximate the discount

function, spot yield curve, and forward yield curve respectively’.

Bali and Wu (2006) provided a comprehensive analysis of the short-term interest-rate

dynamics. They think of ‘the drift function as a Laurent series expansion of a generic

function with positive order of five and negative order of one’. They tested a fifth-order

polynomial function of the interest rate. They used the fifth-order polynomial drift

specification as a general nonlinear specification m (rt)=a0+a1rt +a2rt2+a3rt3+a4rt4+a5rt5

and contrasted it with the affine1 specification m (rt)=a0+a1rt . They concluded that

‘nonlinearity exists in the very short-term interest rates process due to different speeds

of mean reversion at different interest-rate levels. This difference becomes smaller for

longer-maturity interest rates due to the smoothing effect of market expectations. In

conclusion, it is more difficult to identify nonlinearities in the longer-term interest

rates than in the very short-term ones’.

In line with Bali and Wu (2006), we choose to fit the yield curve with a fifth-order

polynomial function but we add an innovation term to the function as it appears in

equation 4 below in order to simulate the yield curves. 

2.2 Importance Sampling
Since our variance reduction technique focuses on the innovation term of the CIR

model and can be classified as ‘Importance Sampling’, we briefly review the topic

discussed in the literature. Pioneers such as Glynn and Iglehart (1989) promoted the
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Importance Sampling procedure as a variance reduction technique for increasing the

efficiency of MC simulation. Chang et al. (2006) showed that ‘Importance Sampling, as

an efficiency improvement technique for MC simulations, is particularly well-suited

for correlation products whose payoffs are contingent on the occurrence of rare

events’. One must choose the Importance Sampling distribution carefully in order to

achieve variance reductions. In other respects, Capriotti (2008) described ‘a simple

Importance Sampling strategy for MC simulations based on a least-squares optimization

procedure’. Least-squares Importance Sampling (LSIS) is especially efficient when we

need ‘to adjust higher moments of the sampling distribution, or to deal with non-

Gaussian or multi-modal densities, in order to achieve variance reductions’.

Gouda and Szántai (2008) focused on the manipulation of the innovation term by

dealing with estimation of rare event probabilities in stochastic networks. Their ‘main

idea is to simulate the random system under a modified set of parameters, so as to

make the occurrence of the rare event more likely’. In our paper, we just do the opposite

by removing the rare events from the distribution. Neddermeyer (2009) stated that ‘the

variance reduction established by the Importance Sampling procedure strongly depends on

the choice of the Importance Sampling distribution. A good choice is often hard to achieve

especially for high-dimensional integration problems’. This is why Neddermeyer proposes

a nonparametric estimation of the optimal Importance Sampling distribution called

“nonparametric Importance Sampling”, as a substitute to parametric approaches.

Regarding the nature of the distribution of the innovation term, Hou and Suardi (2011)

used the Student’s t distribution for interest rate innovation and argue that it is

consistent with the widely observed non-normal short-term interest rate distribution. In

our paper, we rely on the assumption of normality of the innovation term. 

2.3. Adding bands to the simulation
The intuition of adding lower and upper bounds to interest rates was proposed by

Delbaen and Shirakawa (2002) with a new interest rate dynamics model where the

interest rate fluctuates in a bounded region. The equation of the short-term interest

rate becomes:

dr=a(rm –rt)dt+b (rt –rm)(rM –rt ). dWt

with rm < rm < rM . Théoret and Rostan (2005) proposed a variance reduction technique

that constrains the short-term interest-rate inside Bollinger bands during a MC

simulation. Our innovative variance reduction technique is based on a bounded

distribution of the innovation term e. During the MC, we draw e from a Normal

distribution N(0,1). To speed up the convergence of the simulation, we simply reduce

the interval of drawing, for instance e ∈ [-1,1]. This is Importance Sampling since we

constraint the distribution inside upper and lower bands.te
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n 3. Methodology

To assess the ability of our innovative technique to reduce the variance of the

simulated paths distribution, we price a bond option with the closed-form solution

of Cox, Ingersoll and Ross model (CIR, 1985) called the ‘true’ solution. Then, we

price the same option with MC simulation using: 1) CIR and 2) An original stochastic

fifth-order polynomial model, with and without our variance reduction technique.

Cox, Ingersoll and Ross, (1985), propose to capture the behaviour of the short-term

interest rate with the following process:

dr=a(m –r)dt+s√r dz1 (1)

with dz1=e dt .

They present a closed-form solution for a European call option written on a pure

discount bond. We use this solution as the ‘true’ solution to show that our variance

reduction technique coupled with MC simulation accurately prices bond options,

reducing significantly the simulation time. 

Our methodology follows three steps: 

3.1 Step 1
We simulate a yield curve with a =1, m = 0.04, s= 0.015 and r0 = 0.02, r0 being the

initial interest rate at time T = 0. We obtain the yield curve (Figure 1). This yield curve

is our reference curve, from which we compute the value of a European call option

on a pure discount bond with analytical and numerical solutions. 

n Figure 1. Simulation of a yiel curve over 5 years when 
a = 1, m = 0.04 and s = 0.015 and r0 = 0.01, dt = 0.01 for 500 steps
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3.2 Step 2
We calibrate equation 1 in order to fit the yield curve presented in Figure 1, i.e. to

find parameters  a, m  and s corresponding to the maximization of the log-likelihood

function (equation 2). We apply Kladivko’s (2007) methodology. The log-likelihood

function of the CIR process is:

lnL(𝜃)=(N–1) ln c+ ∑N–1
i=1 {uti + vti +1 +0.5qln( )+ ln{Iq (2 uti vti +1)}} (2)

where uti =crti e
–adt and vti +1=crti +1 . We find maximum likelihood estimates 𝜃^ of para -

meter vector 𝜃 by maximizing the log-likelihood function (2) over its parameter space:

𝜃 ≡ (a, m, s)=arg maxθ ln L(𝜃) (3)

Since the logarithmic function is monotonically increasing, maximizing the log-

likelihood function also maximizes the likelihood function. Refer to Kladivko’s (2007)

methodology, for the practical implementation of the calibration. Three parameters

values result from the optimization of the maximum likelihood objective function:

a = 0.9204, m = 0.0392, s = 0.0147.

In our paper, we also feature an original stochastic fifth-order polynomial model to

capture the yield curve2. Equation 4 illustrates the model:

rt=p1t 5+ p2t 4+p3t 3+p4t 2+p5t1+p6+ ~rt .~s.e (4)

with p1, p2, p3, p4, p5, p6 the fifth-order polynomial coefficients that fit the observed

yield curve in a least-squares sense; ~rt is the fifth-order polynomial interest rate

estimate at time t. Equation 4 models the trend –the drift function– with the fifth-

order polynomial fit of the yield curve. The square root diffusion process (the last

term of the equation) is borrowed from the CIR model. We do not take into account

the step dt in the diffusion process, since equation 4 models rt and not drt .

The annualized volatility of the short-term interest-rate (~s) is obtained using equation 5:

~s = 1
N ∑N

t=1(rt– ~rt )2 . 252 (5) 

With ~rt the fifth-order polynomial interest rate estimate at time t and rt the rate at

time t of the observed yield curve. Fitting the simulated yield curve, we obtain 

p1 = 4.9368e-005, p2 = -0.0004, p3 = 0.0011, p4 = -0.0024, p5 = 0.0115, p6 = 0.0207 and
sigma = 0.0116. 
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3.3. Step 3
We price a two-year European call option with a strike of 0.67 on a five-year pure

discount bond with a face value of 1 $ (e.g. Clewlow and Strickland, 1998). Using

the CIR closed-form solution with the following inputs obtained from the maximum

likelihood estimation of the Cox-Ingersoll-Ross process: a = 0.9204, m = 0.0392, 
s = 0.0147, and r = 0.02 the instantaneous short-rate, we get a European call option

premium of 0.2088. We compare the analytical solution to the MC simulation with

500 steps and a time step dt = 0.01 over 5 years, simulating Equation 1 and Equation

4, with and without our variance reduction technique. 

Our variance reduction technique is based on a bounded distribution of e. During

the MC simulation, we draw ? from a Normal distribution N(0,1). To speed up the

convergence of the simulation, we simply reduce the interval of drawing, for instance

e ∈ [-1,1]. To implement this variance reduction in Matlab, we write the following

line, for example with e ∈ [-0.5,+0.5]:

epsilon=norminv((normcdf(0.5)-(1- normcdf(0.5)))*rand+(1- normcdf(0.5)));

Another example with e ∈ [-1,+1], the Matlab algorithm becomes:

epsilon=norminv((normcdf(1)-(1- normcdf(1)))*rand+(1- normcdf(1)));

n 4. Results

Given our initial example at step 3, we will need to compute the simulated 2-year and

5-year interest rates. The 2-year rate helps us discounting the expected value of the

option payoff of a 2-year maturity. The 2- and 5-year spot rates, 0r2 and 0r5

respectively, help computing the forward rate 2r5 (the spot rate of 3 years in 2 years)

in order to compute the discount bond price in two years. Our computation is based

on the following relationship:

(1+0r2)2 (1+2r5)3 = (1+0r5)5 (6)

Figure 2 illustrates two interest rate yield curves over a 5-year period obtained with

Monte Carlo simulation using:

• Equation 1 with the 3 parameters obtained by optimization.

• Equation 4 with the fifth-order polynomial coefficients obtained by fitting the

simulated yield curve and with the volatility sigma computed with Equation 5.
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n Figure 2. Simulating two yield curves with MC simulation over 5 years:
in brawn using equation 1 (CIR), in beige using equation 4 (Polynomial). In black,
the initial simulated yield curve. ε ∈ [-0.5,+0.5]

source: rostan and rostan

Figure 3 plots the convergence towards the closed-form solution value of plain MC

simulations with no variance reduction technique, simulating equations 1 and 4,

increasing the number of trajectories from 10 to 1,000 (X-axis), when the number of

time steps is 500 (dt =0.01). We observe that the fifth-order Polynomial model

converges faster than the CIR model. After 600 simulations, the option values

obtained with the fifth-order Polynomial model are stabilizing around 0.208 which

is, as we see in Table 3 below, the best value that this model can display with a large

number of simulations. 

n Figure 3. Illustrating convergence of plain MC simulations –CIR and fifth-order 
Polynomial- with no variance reduction technique, towards the “true” value
obtained with the CIR closed-form solution, when increasing the number of
trajectories from 10 to 1,000.

source: rostan and rostan
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n Figure 4. Illustrating convergence of MC simulations coupled with our
innovative variance reduction technique with e [-0.5,0.5], towards the “true”
value obtained with the CIR closed-form solution, when increasing the number 
of trajectories from 10 to 1,000.

source: rostan and rostan

Figure 4 illustrates the convergence towards the closed-form solution value of two

MC simulations coupled with our variance reduction technique with e ∈ [-0.5,0.5],

simulating equations 1 and 4, increasing the number of trajectories from 10 to 1,000
(X-axis), when the number of time steps is 500 (dt = 0.01). Our variance reduction

technique significantly reduces the variance of the payoffs distribution, for both CIR

and stochastic fifth-order Polynomial models, and therefore speeds up the

convergence towards the true value. After 300 simulations, the option value stabilizes

and is close to the “true” value. Furthermore, MC simulation using the CIR model is

more accurate than using the Polynomial model. We can explain this fact intuitively

since equation 1 is used for both the CIR closed-form solution and the MC simulation

to simulate the short-term interest rate. Therefore, there is an evident convergence of

analytical and numerical solutions that are based on the same CIR equation.

l Table 1. Options values obtained by increasing the number of simulations with
MC methods, Plain MC, with our variance reduction technique, with antithetic
variable. Results are compared to the CIR closed form solution. Number of time
steps is 500 (dt = 0.01).

Number CIR CIR Polymonial Simulation CIR Polymonial Simulation CIR Polymonial Simulation
of closed model model time in model model time in model model time in

trajectories form Plain Plain seconds MC MC seconds Antithetic Antithetic seconds
solution MC MC epsilon+ epsilon+ MC MC

simulation simulation 0.5 0.5 simulation simulation
10 0.2088 0.2118 0.2044 2 0.2068 0.2071 2 0.2097 0.208 3

100 0.2088 0.209 0.2075 12 0.2089 0.2079 13 0.2096 0.208 14
200 0.2088 0.2091 0.2089 24 0.2089 0.208 25 0.2095 0.208 27
300 0.2088 0.2099 0.2078 35 0.2091 0.208 36 0.2096 0.208 40
400 0.2088 0.2103 0.2088 46 0.2093 0.2079 48 0.2096 0.208 53
500 0.2088 0.2082 0.2071 57 0.2089 0.2078 59 0.2096 0.208 66
600 0.2088 0.2082 0.2081 68 0.2087 0.2079 71 0.2096 0.208 79
700 0.2088 0.2115 0.2081 79 0.2088 0.208 83 0.2096 0.208 93
800 0.2088 0.209 0.2075 91 0.2091 0.208 95 0.2096 0.208 104
900 0.2088 0.2095 0.2078 102 0.2091 0.208 107 0.2096 0.208 117

1000 0.2088 0.2109 0.2079 113 0.2093 0.2079 118 0.2096 0.208 133
RMSE: 0.0051 0.0054 RMSE: 0.0022 0.0032 RMSE: 0.0027 0.0027
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Table 1 gathers the option values obtained with MC simulations with and without

our variance reduction technique and the simulation time for an increasing number

of simulations; results are compared to the CIR closed-form solution. In terms of

simulation time, our variance reduction technique using e ∈ [-0.5,0.5] shows that it

is as fast as the plain MC simulation. At this stage, two questions arise: 1) What is

the optimal interval of epsilon for the solution to converge faster, ±1, ± 2? 2) How

good is our reduction technique compared to an alternative reduction technique such

as the antithetic variable technique?

4.1 Finding the optimal interval of epsilon
To find the optimal interval of epsilon in order to speed the convergence, we simulate

500 trajectories with the CIR and the stochastic fifth-order Polynomial models, both

coupled with our variance reduction technique, making the interval of epsilon varying

from 0 to ±4:

n Figure 5. Illustrating convergence of MC simulations coupled with our
innovative variance reduction technique changing the interval of e varying from
[0,0] to [-3.75, 3.75], X-axis, for 500 simulations. Number of time steps is 500
(dt = 0.01).

source: rostan and rostan

We observe in Figure 5 that: 

1) Both MC/CIR and MC/Polynomial models are more volatile when e ∈ [-2,2] and

for wider intervals. Our variance reduction is working well with smaller intervals of

epsilon since we observe less volatility in the results. 

2) The fifth-order polynomial model always underestimates the ‘true’ value. The

MC/CIR performs best for narrower intervals of epsilon. 

3) When epsilon equals zero, i.e. e ∈ [0,0], the option value obtained with MC/CIR

slightly overshoots the ‘true value’ at 0.2091. However, since the diffusion term in

equations 1 and 4 equals zero, we do not talk anymore of MC simulation, since

the trajectory is identical one simulation after another. Interestingly, results in Tablete
st
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3 suggest that with a greater number of simulations (e.g. 5,000), MC/CIR values

converge towards 0.2090. Thus, we can suggest that when pricing a plain vanilla

zero coupon bond option, by taking only the drift function of equation 1 (the first

part of the equation), by choosing epsilon equals zero, and by simulating one time,

the process gives directly a value close to the best value that the Monte Carlo

simulation can offer. This process is obviously sensitive to the calibration method

that will greatly influence the result.

With epsilon equals to zero, e ∈ [0,0], we obtain the option values of Table 2 with

the MC/Polynomial model, making the polynomial order varying from 2 to 8:

l Table 2. MC/Polymonial simulations when ee [0.0], i.e. when the diffusion
parameter of equiation 4 is equal to zero; Number of simulations: 1. Number of
time steps is 500 (dt = 0.01).

Polynomial Order: CIR closed-form solution MC/Polynomial option value

2 0.2088 0.2193

3 0.2088 0.216

4 0.2088 0.2104

5 0.2088 0.208

6 0.2088 0.2106

7 0.2088 0.2102

8 0.2088 0.2122

source: rostan and rostan

We observe that the fifth-order polynomial works best with the option value closest

to the ‘true value’. This result confirms the choice of the fifth-order polynomial model

by previous authors such as Bali and Wu (2006). With MC/CIR, we find two

optimums, when e ∈ [-0.5,0.5] , the option value is 0.2087 and when e ∈ [-1.75,1.75],

the option value is 0.2088, with a ‘true’ value of 0.2088 computed by the CIR closed-

form solution.

To identify the best interval among the two, we simulate equations 1 and 4 one

thousand and five thousand times with e ∈ [-0.5,0.5] and with e ∈ [-1.75,1.75] . We

obtain Table 3 that suggests that for 5,000 simulations, the smaller the interval, the

more accurate will be the option price. Thus, the interval with e ∈ [-0.5,0.5] works best.

Intuitively, we can explain the fact that the narrower the interval of epsilon, the closer

the option value to its ‘true’ value. Roughly speaking, the CIR closed-form solution is

obtained by transforming an objective probability measure P in a risk-neutral

probability measure Q (Girsanov theorem), by assuming the normality of the

distribution of the Wiener process, and by discounting the expected value of the
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payoff at maturity of the option (Feynman-Kac theorem). Therefore, using MC

simulation, the best yield estimates should be the ones found on the estimated yield

curve when e ∈ [0,0], e.g. when the diffusion process of equation 1 is equal to zero. 

l Table 3. MC simulations with the innovative variance reduction technique
when ε ∈ [-0.5,0.5] and when ε ∈ [-1.75,1.75] for 1,000 and 5,000 simulations.
Number of time steps is 500 (dt = 0.01).

CIR closed-form MC /CIR MC / Fifth-order Simulation time
solution model polynomial model in seconds

1,000 sim. e ∈[-0.5,0.5] 0.2088 0.2090 0.2105 115

1,000 sim. e ∈[1.75,1.75] 0.2088 0.2094 0.2105 116

1,000 sim. No bounded
interval for e (Plain MC) 0.2088 0.2099 0.2077 117

5,000 sim. e ∈[-0.5,0.5] 0.2088 0.2090 0.2104 573

5,000 sim. e ∈[1.75,1.75] 0.2088 0.2093 0.2106 571

5,000 sim. No bounded 
interval for e (Plain MC) 0.2088 0.2096 0.2083 635

source: rostan and rostan

In addition, Table 3 validates the fact that the option price improvement is marginal

when we move from 1,000 to 5,000 simulations. There is no improvement at all with

MC/CIR model and e ∈ [-0.5,0.5] (0.2090 versus 0.2090), it is slightly better from 0.2105
to 0.2104 with MC/fifth-order polynomial model and e ∈ [-0.5,0.5]. However, the

simulation time with 5,000 simulations is five times the one with 1,000 simulations. The

trade-off between “price accuracy” and “time consuming” means that there is no gain

at increasing simulations beyond 1,000. Finally, we note that the simulation time with

plain MC simulations is even longer than with our variance reduction technique (635
seconds against 573 seconds). Our technique has the twofold advantage of improving

the option price accuracy (0.2090 versus 0.2096 with the plain MC simulation, for a

‘true’ price of 0.2088) and of being faster than the plain MC simulation. 

Summarizing, since MC simulation requires many trajectories in order for the solution

to converge towards the ‘true’ value, our variance reduction technique would therefore

be optimal when e ∈ [-0.5,0.5]. This result is valid for the pricing of a plain vanilla

zero coupon bond option but it may be questionable when we price exotic options

such as path-dependent options, with a more skewed pay-offs distribution.

4.2 Comparing our variance reduction technique to the antithetic variable technique
To find how good our variance reduction technique is compared to the antithetic

variable technique, we refer to Table 1 that shows results with MC and the antithetic

variable and to Figures 6 and 7. For a discussion on how to add an antithetic variable

to the MC simulation, please refer to the appendix and consult for example Clewlowte
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and Strickland (1998). In the framework of MC/CIR model, Figure 6 compares our

reduction technique to: 1) plain MC; 2) MC with antithetic variable.

n Figure 6. Using CIR model, comparing our innovative variance reduction
technique with e [-0.5,0.5] to Plain MC, and MC with antithetic variable, when
increasing the number of trajectories from 10 to 1,000. Number of time steps is
500 (dt=0.01).

source: rostan and rostan

Figure 6 shows that our technique clearly outperforms Plain MC and MC with

antithetic variables. MC with antithetic variable overshoots the CIR closed-form

solution; therefore it appears that the antithetic variable skews the results of the Monte

Carlo simulation. In the framework of MC/fifth-order Polynomial model, Figure 7

compares our reduction technique to: 1) Plain MC; 2) MC with antithetic variable.

n Figure 7. Using the fifth-order Polynomial model, comparing our innovative
variance reduction technique with e [-0.5,0.5] to Plain MC, and MC with
antithetic variable, when increasing the number of trajectories from 10 to 1,000.
Number of time steps is 500 (dt = 0.01).

source: rostan and rostan
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Figure 7 shows that the stochastic fifth-order Polynomial model is converging towards

an option stead-state value of 0.2080 regardless of the approach (plain, our variance

reduction technique or antithetic variable), well below the CIR closed-form solution

of 0.2088, which was assumed to be the ‘true’ value of the bond option in our paper.

This assumption of ‘true value’ can be naturally challenged. If we assume a ‘true’ value

of 0.2080, the fifth-order polynomial model coupled with an antithetic variable works

best and beats our innovative reduction technique. A study with real market data

could help us identifying the ‘true’ option value and which model works best.

However, this approach suffers from two drawbacks:

1) Zero coupon bond options are rarely traded on the exchanges, i.e. most of them are

traded on the OTC market where data are more opaque and more difficult to obtain;

2) When available on the exchanges, zero coupon bond options trading volume 

is generally low, i.e. the quotations are not reflecting market fundamental values

(i.e. true values). 

n 5. Conclusion

Monte Carlo simulation is widely used by practitioners for easiness of implementation,

especially for pricing exotic options, particularly path-dependent options such as

barriers, lookback or Asian. The closed-form solution is not always available for this

type of options. In this situation, Monte Carlo simulation becomes helpful. Our paper

proposes an innovative variance reduction technique coupled with Monte Carlo

simulation that prices accurately plain-vanilla zero coupon bond options. This technique

speeds up the convergence of the simulation and provides better results than Monte

Carlo simulation using antithetic variable. Our benchmark is the closed-form solution

of Cox Ingersoll and Ross (CIR, 1985). Our paper shows that, when pricing bond

options with Monte Carlo simulation, we can constrain the Wiener process inside upper

and lower bands to speed up the convergence towards the ‘true’ option value (the CIR

analytical solution). Furthermore, it works best when the bands are drawn at plus or

minus 0.5 standard deviations and it is less time consuming than a Plain Monte Carlo

simulation. 

We introduce an original stochastic fifth-order polynomial model as an improvement to

the CIR solution. We show that the option value obtained with this model is generally

smaller than the CIR analytical solution. We would like to challenge the result obtained

by the CIR closed-form solution but we do not have much alternative to find the ‘true’

value. Moreover, although our variance reduction technique helps the fifth-order poly-

nomial model to converge faster, it ranks behind the antithetic variable technique in

terms of efficiency. te
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The main contribution of our paper is to provide market practitioners with an efficient

variance reduction technique, easy to implement in the context of option pricing. The

major challenge of our technique would be to price options in times of high market

volatility, when option price needs badly to reflect rare events located in the tails of

the distribution. However, we can argue that pricing options in times of volatile

markets is a challenge for every option pricing model. Furthermore, our technique is

inadequate in risk management, for example to compute Value at Risk with MC

simulation, due to the importance of rare events that cannot be discarded. 

Further works on the topic could include the comparison of our technique with other

variance reduction techniques such as control variate, conditioning, stratified

sampling, importance sampling, splitting, quasi-MC, the integration of our innovation

technique to the Least-Squares Monte Carlo Method of Longstaff and Schwartz

(2001), the extension of our technique to the pricing of other classes of options such

as equity, index and currency options, plain-vanilla and exotic, and of other classes of

derivative products such as swaps. Testing the Student’s t distribution of the innovation

term coupled with our variance reduction technique may also be appropriate. 
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n Appendices

n Figure 8. Simulating two yield curves with MC simulation over 5 years:
in brawn using equation 1 (CIR), in beige using equation 4 (Polynomial). In black,
the initial simulated yield curve. ε ∈ [-1,1]

source: rostan and rostan

A. Matlab code sample of Monte Carlo simulation using the CIR equation 1 and the

antithetic variable:

%coding the yield curve with antithetic variable:
zdata(i)= x(1)*(x(2)-y(i ))*dt+y(i )^0.5*x(3)*dt ^.5*epsilon;
zdata2(i )= x(1)*(x(2)-y(i ))*dt+y(i )^0.5* x(3)*dt ^.5*-epsilon;
%coding the option value; optionvalue1 is computed from zdata; 

%optionvalue2 is computed from zdata2
call1=(0.5*optionvalue1+0.5*optionvalue2)/t1;

B. Matlab code sample of Monte Carlo simulation using the stochastic fifth-order

polynomial equation 4 and the antithetic variable:

%coding the yield curve with antithetic variable:
k(i+1)=p(1)*w(i)^5+p(2)*w(i)^4+p(3)*w(i)^3+p(4)*w(i)^2+p(5)*w(i)^1+p(6)+v1(i)^0.
5*sigma2*epsilon;
ka(i+1)=p(1)*w(i)^5+p(2)*w(i)^4+p(3)*w(i)^3+p(4)*w(i)^2+p(5)*w(i)^1+p(6)+v1(i)^0.
5*sigma2*-epsilon;
%coding the option value; optionvalue1 is computed from k; 
%optionvalue2 is computed from ka
call2=(0.5*optionvalue1+0.5*optionvalue2)/t1;

n
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