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Abstract

We present a selective survey of modern nonlinear modeling techniques relevant to the
field of applied financial econometrics. We first established the usefulness of nonlinear
modeling of financial time series and its relevance for forecasting by means of Sims’s
(1984) definition. Then, we describe specific univariate and multivariate nonlinear
models that can be classified either as stochastic or as deterministically chaotic. We
also provide several novel numerical applications of these models along with their
estimation techniques and tests. We conclude this literature review by presenting an
application which compares the UHF-GARCH model with the parsimonious model-
free realized volatility approach. Additionally, we present an extension to the
multivariate case, referred as the realized covariance. This model-free measure of
dependence might be useful in order to evaluate the volatility feedback, which is an
alternative explanation to the leverage effect theory.
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Resumen

Este artículo consiste en un estudio selectivo de las modernas técnicas de modelización
no lineal de interés en el campo de la econometría financiera aplicada. En primer lugar,
se pone de manifiesto la utilidad de la modelización no lineal de series temporales de ca-
rácter financiero y su importancia en las labores predictivas por medio de la definición
de Sims (1984). A continuación, se describen los modelos específicos no lineales, tanto
univariantes como multivariantes, que pueden ser clasificados ya sea como estocásticos
o deterministas caóticos. También se presenta una serie de nuevas aplicaciones numéricas
de estos modelos junto con sus técnicas de estimación y contraste. Esta revisión de la li-
teratura concluye con la presentación de una aplicación que compara el modelo UHF-
GARCH con la metodología parsimoniosa “model-free” de volatilidad realizada. Además,
se presenta una extensión al caso multivariante, a la que nos referimos como covarianza
realizada. Esta medida “model-free” de la dependencia podría resultar de gran utilidad a
la hora de evaluar la retroalimentación de la volatilidad, que es una explicación alternativa a
la teoría del efecto apalancamiento.

Palabras clave: 

Modelos no lineales, Test BDS test; Caos, Modelos UHF-GARCH, Volatilidad rea-
lizada, Correlación realizada, MGARCH; Efecto apalancamiento, Retroalimentación
de la volatilidad, Modelos con régimen cambiante de Markov, VIX. 
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1 See Racicot (2000).

n 1. Introduction1

Since the seminal paper of Bachelier (1900), there has been a considerable

development in nonlinear modeling of financial assets. The fact that most financial

models rests on the Martingale hypothesis, including the empirical facts that financial

time series are not normally distributed (Mandelbrot, 1963), triggered the

developments of a plethora of nonlinear modeling techniques. This is the main reason

behind the ARCH process developed by Engle (1982) and its basic extension, the

GARCH model of Bollerslev (1986). 

These models assume that one of the key ingredients of modern econometric models

of asset pricing is a sharp focus on the difference between conditional and

unconditional moments. Conditional mean forecasts, which use recent information,

are known to be more efficient than the unconditional ones. Similarly, the ARCH model

rests on the presumption that forecasts of variance can also be improved by using

recent information, at some point in the future. In particular, volatility clustering

implies that big surprises of either sign will increase the probability of future volatility.

Forecasts of volatility that recognize this fact will likely be more accurate than those

that do not. Since all modern theories of asset relate the first moment (risk premia) to

the second one (a measure of risk), forecasted volatilities are not only indispensable

ingredients for asset pricing theories, but also for strategies of portfolio management.

Black (1976) observed that the distribution of stock returns was leptokurtic. He also

noticed a negative correlation between current returns and future volatility. Black

(1976) and Christie (1982) suggested a plausible economic explanation called the

leverage effect, which was later modeled by Nelson (1990). According to the leverage

effect, a reduction in equity value would raise the debt-to-equity ratio (leverage); hence,

raising the riskiness of the firm as manifested by an increase in future volatility. As a

result, the future volatility will be negatively related to current return on the stock. The

linear GARCH (p, q) specification is potent for modeling returns volatility clustering.

However, due to the fact that the conditional variance is linked to past conditional

variances and squared innovations, it is not able to capture this kind of dynamic

pattern. These considerations triggered the development of Nelson’s (1990) EGARCH

(p, q) model. In this specification, the volatility depends not only on the magnitude of

the past surprises in return, but also on their corresponding signs.

Recent literature (Figlewski and Wang, 2000; Bollerslev et al., 2006; Bollerslev et al.,

2009; Sun and Wu, 2010; Manda, 2010; and Russi, 2012) provides an alternative

explanation of the existence of the negative correlation between implied volatility and
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2 For another application using high frequency data, see Bollerslev et al. (2007).
3 For more on the subject, see Haug (2007).

stock returns. According to Figlewski and Wang (2000), there is an alternative expla-

nation comparable to the leverage theory, referred as the volatility feedback. In this

theory, the causality between stock returns and volatility is now reversed, meaning that

changes in expected volatility alter stock market prices. 

In order to quantify the feedback relationship between expected volatility and stock re-

turns, some recent studies used UHF (ultra high frequency) data (e.g. Russi, 2012). These

studies generalized previous research that was developed in a univariate setting to model

volatility using UHF data. For instance, Engle (2000) developed a UHF-GARCH model

and Bollerslev and Wright (2001) proposed the concept of integrated volatility that was

eventually called the realized volatility2. This concept can be generalized to a bivariate set-

ting, which is known as the realized correlation. It is computed by means of realized Kernels

(Barndorff-Neilsen et al., 2008b; Gatheral and Oomen, 2010). In this paper, we consider

the leverage effect theory in its original treatment (Black, 1976; Christie, 1982; Nelson,

1990), i.e. the univariate case of the simple realized volatility in comparison with the

UHF-GARCH. Therefore, we leave the subject of the bivariate case to future research.

This article is organized as follows. Section 2 is concerned with the usefulness of

nonlinear models in empirical finance. In section 3, we discuss various classical

univariate and multivariate models of volatility, their estimation process, stationarity

tests and empirical applications. Section 4 considers nonlinear stochastic models of

the means. Section 5 deals also with the mean nonlinear models, but particularly with

the deterministic ones. Section 6 is devoted to tests of nonlinearity. In section 7, we

propose ways to use the models presented in the previous sections for the purpose of

forecasting. Section 8 also presents forecasting methods with a specialized application

based on irregularly spaced high frequency data. Finally, section 9 concludes.

n 2. On Establishing the Usefulness of Nonlinear Models in

Empirical Finance

It is widely agreed that many time series of asset returns, while approximately

uncorrelated, are not temporally independent (Mandelbrot, 1963)3. The dependence

arises through persistence in conditional variance or perhaps in other conditional

moments, as well. A number of recent theoretical developments are beginning to show

that, in a general-equilibrium context, economic theory cannot discard the possibility

of nonlinear dependence in the conditional mean as well as dependence in higher-

order conditional moments in asset returns. 



Before developing these subjects, we present some definitions and concepts that will

be used in the following discussion. Sims (1984) shows that general-equilibrium asset-

pricing models imply martingale asset-price behavior only at arbitrarily short horizon. 

2.1. Definition (Sims 1984). A process {Pt } is instantaneously unpredictable if
and only if, as v→0

Et [(Pt+v – Et [(Pt+v])2]/ Et [(Pt+v – Pt )2]→1, a.s.4 (1)

Et is the mathematical expectation conditional on the information set It . It includes
past and present information on  Pt  and other related variables. For an instantaneously
unpredictable process, prediction error is the dominant component of changes over
small intervals. For example, if {Pt} is a martingale5, which is defined as

Et [Pt+v] = Pt for all v >0 , (2)

and {Pt } has finite second moments, the ratio given by equation (1) is exactly 1.

Sims observes that, under (1), regressions of Pt+v–Pt  on any variable in It have an R2→0
as v→0. Under (2), R2=0 . He also shows that (1) does not rule out predictability of first

moments over longer time periods. For instance, a period from one day to a week is

considered as a short one for Sims. Moreover, (1) does not rule out predictability of

higher order moments, such as conditional variance, even in short time periods. Before

the days of nonlinear dynamics, many financial time series were believed to follow a

random walk. This means that no linear dependence can be found (no autocorrelation).

Now, we know that the lack of linear dependence does not exclude nonlinear

dependence, which if present would contradict the random walk model. Two reasons

explain why some financial time series, like stock returns6, should deviate from the

random walk model. Firstly, the variance of stock returns changes over time. This

phenomenon was observed by Mandelbrot (1963), who noted that although stock

returns appeared uncorrelated, large changes tended to be followed by large changes

and small changes by small changes (this is called volatility clustering). This fact has led

to the development of ARCH and GARCH models. These models attempt to capture

the changing variance in time series (detailed description of these models is presented
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4 This stands for almost sure convergence (a.s.). Sequences that converge almost surely can be manipulated almost in the same ways as
non-random ones. The interest typically centers on averages such as bn (w)=�n

t=1Zt /n . We write that bn⟶b a.s. if and only if
P[w: limn⟶∞ bn (w)=b]=1, where w represents the entire random sequence {Zt }. Other modes of convergence are also used in the
literature.  These are : converge in r th mean (m), convergence in probability (p) and convergence in distribution (d ) (logical relationships
among the four modes of convergence : m⇒p⇒d and a.s.⇒p ). They are defined as follows. limn⟶∞ E(|bn (w)–b|r )=0, for some
r>0, limn⟶∞ E[w:/bn (w)–b/<e]=1. Finally, a sequence bn converges to b in distribution if the distribution function Fn of bn converges to the
distribution function F of b, at every continuity point of F. See Amemiya (1985, 1994), Davidson and MacKinnon (1993) and White
(2001).

5 For example, we can get a martingale by taking the conditional expectation of an AR (1) process containing a unit root, known as a
random walk (i.e. pt =apt–1+ut where a=1 and ut ∼WN(0,s 2): Et–1(pt )=pt–1) . 

6 Stock return i over a time period (t, t+h) is defined as ri ,t ,t+h = pi ,t ,t+h =[(Pi ,t+h+Di ,t+h)/Pi ,t]–1 , where Pi is the price of stock i and
Di is the dividend of stock i .  An approximation of this formula used in most empirical work (which we will use in our work) is

ri ,t ,t+h =ln(Pi ,t+h+Di ,t+h)–ln Pi ,t .



below). Secondly, there are several calendar anomalies7. The returns differ by small

amounts during different periods. It is appropriate now to give a definition of linearity

because it will be used extensively in the following discussion.

2.2. Definition (Priestley 1981). A stationary process {Pt } is a linear process if it
has a Wold representation8 like Pt =A(L)ut where ut is required to be i.i.d.
The i.i.d. condition in the above definition plays a central role. It implies that the best

MSE predictor is a linear predictor using past information. It means that the past

contains no information on the future; therefore, the best predictor is simply the

unconditional mean. The definition rules out prediction made of nonlinear combination

of past information. For example, assuming a process ht =at +bat-1at-2, where

at ~WN(0,s 2), the unconditional expectation is E(ht+1)=0 and the autocovariance is

E(htht-k)=0. However, the conditional expectation is E(ht+1|ht ,ht-1,...)=bat at-1, which

is the MMSE forecast (best MSE) of a future observation. This definition of linearity

is also called P-linearity. Clearly, if P-linearity is rejected, then nonlinearity prevails

(deterministic or stochastic nonlinearity). The BDS test presented below is a good

way to test P-linearity. Another convenient definition of linearity (Lee et al., 1993)9

states that a process {Pt } is linear in mean conditional to It if

Pr[E(Pt |It)]= I’t θ*]=1 for some θ*∈ �k . 

A process exhibiting ARCH (ARCH process is presented below) may nevertheless exhibit

linearity of this sort, because ARCH does not refer to the conditional mean. This

definition is appropriate whenever one is concerned with the adequacy of linear models

for forecasting. Alternatively, {Pt } may not be linear in mean conditional to It, so 

Pr[E(Pt |It)]= I’t θ]<1 for all θ*∈ �k .  

When the alternative is true, a linear model is affected by neglected nonlinearity. Tests

for linearity usually make the assumption of a model (e.g. an AR (p) model). Then,

a test is performed on the residuals and if the null is rejected, the alternative model

may provide forecasts superior to those from the linear model. However, the BDS,

Bispectrum10 and McLeod-Li tests do not require models that imply such forecasts

(BDS and other tests are presented below).
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7 For more information on the subject, see Racicot (2011). 
8 The Wold's decomposition (Wold, 1938), a fundamental theorem in time series analysis, states that every weakly stationary purely

nondeterministic stochastic process {rt } can be represented as a linear combination (or linear filter) of a sequence of uncorrelated
random variables. By stochastic process {rt} we imply a family of random variables {rt , t ∈T} defined on a probability space (Ω,F,P).
This linear filter representation (MA(∞)) is given by rt =ut +y1ut-1+y2ut-2+ ....=�∞

j=0y jut-j  , y0 = 1 . The sequence ut is a white-noise
process (Mills, 1990).

9 It is a partition of a greater process (a set) Z’t =(Pt ,I’t ), where Pt is a scalar and It , is a k ×1vector. It may (but not necessarily)
contain a constant and lagged values of Pt .

10 See Hinich (1982) and Ashley, Patterson and Hinich (1986).



n 3. Variance-nonlinear Stochastic Models

One of the key ingredients of modern econometric models of asset pricing is a sharp

focus on the difference between conditional and unconditional moments. The ability

of time series analysis to forecast means well rests on the observation that forecasts con-

ditional on recent information are more efficient than forecast that do not use this in-

formation. Similarly, the ARCH model rests on the presumption that forecast of variance

at some point in the future can also be improved by using recent information. In partic-

ular, volatility clustering implies that big surprises of either sign will increase the proba-

bility of future volatility. Forecasts of volatility which recognize this fact will generally be

more accurate than those which do not. Since all modern theories of asset relate first

moments (risk premia) to second moments (measures of risk), forecasted volatilities are

indispensable ingredients of asset pricing theories or strategies of portfolio management. 

In the following discussion, we present the details of the ARCH model and its

extensions. We also propose an application to financial practitioners.

Assuming that we have a time series of stock returns where the returns are defined

as rt =ln(Pt / Pt-1) and where Pt is the price of a stock at time t from a time series 

{Pt } (see footnote 5). Then, the AutoRegressive Conditional Heteroskedasticity

(ARCH(q) Model of Engle,198211) is defined as

rt =st ut ,

V(rt |It )=s 2
t =a+S

q
i=1ji r 2

t–i =a+Φ(L)r 2
t (3)

where ut is i.i.d. (0,1). As an example, an ARCH(1) model is given by 

s 2
t =a+φ r 2

t -1, (4)

Note that if 0<φ <1 then rt has an unconditional stationary12 distribution that is

non-normal with variance a /1–φ . An extension to an ARCH model that allows for

change in the mean is ARCH in mean (ARCH-M) and is given by
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11 For an introduction to ARCH models and their application to finance see Alexander (2001), Bollerslev (1992), Brooks (2008), Engle 
(1995), Gouriéroux (1992), Mills (1999), Pagan (1996), Rachev et al. (2007) and Tsay (2005).

12There are two types: the second-order (weak) stationarity and the strict one. A stochastic process {rt, t ∈ Z }, with index set Z={0,±1,±2,...}, 
is strictly stationary if the joint distributions of {rt1, rt2,...,rtm } and {rt1+k, rt2+k,...,rtm+k } are the same for all positive integer m and for
all t1 ,t2 ,...,tm , k ∈ Z (Brockwell and Davis, 1991). Thus, to be strictly stationary the joint p.d.f. of any set of observations (discrete time
series) must stay unchanged by shifting all the times of observations forward or backward by any integer amount k. The second-order
(weak) stationarity requires that the first and second moments stay constant trough time: 1) E(rt)=c, ∀t ∈ Z (independent of t);
2)E |r 2t|<∞, ∀t ∈ Z ;  3) g (h,s)=g(h+t,s+t) for all h, s, t ∈ Z (also independent of time t, but depend of the distance in time). The second
order stationarity and the assumption of normality are sufficient to produce strict stationarity. Any stationary process can be inverted in
a (convergent) infinite MA, which can be well approximated by a low order ARMA process. Stationary is also required if one wants to
do regression using time series. Spurious regression will result if one does not respect this condition. One test of spurious regression is
large R2, large t-test and very low Durbin-Watson coefficient. To be sure that the time series at hand are stationary, one must do some
unit root testing before using the data. See Enders (2004), Gouriéroux (1990, 1992), Hamilton (1994) and Mills (1990).



rt =θ0+θ1 s 2
t +et

mt =E(rt |It )= θ0+θ1 s 2
t (5)

where et is an ARCH(q) with et |It~N(0,s 2
t ).

Note that this model is nonlinear in the mean and the variance. A more complex form

of this model may be found in the literature. The extension of the ARCH model that

allows for lags in the conditional variance was first presented by Bollerslev (1986). This

model, called the Generalized AutoRegressive Conditional Heteroskedasticity GARCH (p, q), is

written as

s 2
t = a+S

p
i=1 bi s

2
t–i+S

q
i=1φi r 2

t–i . (6)

As an example, a simple GARCH (1,1) model is given by 

s 2
t =a+φ r 2

t–1 +bs 2
t–1. (7)

Note that if 0<b+φ<1 then pt has an unconditional stationary distribution that is non

normal with variance a/[1– b – φ]. As showed above, the GARCH model can be

extended to the case where the mean is no longer assumed constant: GARCH-M and

is defined as

s 2
t =a+S

p
i=1 bi s

2
t–i+S

q
i=1φi r 2

t–i ,

mt=E(rt |It )=θ0+θ1 s 2
t (8)

where the process of rt is given by equation (5). More complex forms of this model

may be found in the literature. Note that if in GARCH (1, 1), for example, the

parameter b+φ=1, then the resulting model is called the IGARCH (1, 1). The

integrated GARCH model is strictly stationary, but not generally covariance

stationary (see ref. 18). All the ARCH-GARCH models presented above are linear

in the second moment and univariate. Nonlinear and multivariate forms of these

models also exist. In the GARCH (p, q) model (6), the variance depends only on the

magnitude and not on the sign of pt . This is not consistent with the empirical

findings that stock market prices are subject to the leverage effects13. The

Exponential GARCH (p, q) developed by Nelson (1990), also known as EGARCH
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13 Black (1976) observed that the distribution of stock returns was leptokurtic. He also noted a negative correlation between current
returns and future volatility. Black (1976) and Christie (1982) suggested a plausible economic explanation, known as the leverage effect.
According to the leverage effect, a reduction in equity value would raise the debt-to-equity ratio (leverage); hence, raising the riskiness of
the firm as manifested by an increase in future volatility. As a result, the future volatility will be negatively related to current returns on
the stock. The linear GARCH(p, q) model is not able to capture this kind of dynamic pattern, because the conditional variance is only
linked to past conditional variances and squared innovations. The development of the EGARCH(p, q) model by Nelson (1990) have
been motivated in light of these considerations. In this model, the volatility depends not only on the magnitude of the past surprises in
returns, but also on their corresponding signs (Nelson, 1990; Bollerslev, 1992 and Pagan, 1996). As mentioned in our introduction, there
are new developments regarding the leverage effect theory. An alternative explanation referred to the “volatility feedback” argues that
the causality between volatility and stocks returns is reversed, which means that the expected volatility alters stock market prices. For
more information on this subject, see Bollerslev et al. (2006), Manda (2010), Sun and Wu (2010).



(p, q), seems to have a superior fit on the data compared with GARCH (p, q). The

EGARCH (p, q) model, which is a nonlinear GARCH (p, q) model, is given by 

lns 2
t =a0+�q

i=1 a1(φut–i+θ1(|ut–i |–E |ut–i |)+�p
i=1gi lnst–i

2 . (9)

Unlike the linear GARCH (p, q) model in (6), bi (here gi ) and φi are not restricted.

This is to ensure non-negativity of the conditional variances. Note that (9) looks

like an unrestricted ARMA (p, q) model for log s 2
t . If φi θ<0, the variance tends to

rise (fall) when pt is negative (positive) in accordance with empirical evidence for

stock market returns. If ut is assumed to be i.i.d. normal, then pt is a covariance

stationary conditional that all the roots of the autoregressive polynomial b(l) lie
outside the unit circle. The EGARCH model is related to the Multiplicative ARCH

model developed by Milhøj (1987) that is defined as 

log s 2
t =a +�q

i=1 θ log u2
t–i +�p

i=1bi (log u2
t–i–log s 2

t–i ). (10)

Many other ARCH formulations are proposed in the literature (e.g. Pagan, 1996).

We present the Hentschel’s (1995) model. Hentschel applied a transformation similar

to the Box-Cox on a generalization of the absolute GARCH model. The resulting

model is 

=a0 + b � �+ast–1
l ( f (ut))

v, (11)

where

f (ut)=|ut–b|–c(ut–b).

This model encompasses most of the models presented previously. For example,

when l =v=2 and b=c=0, we have the standard GARCH model. The absolute value

GARCH model sets l=v =1 with b and c free. Finally, the exponential GARCH or

EGARCH model of Nelson (1990) is obtained by setting l=0, v=1 and b=0 to get

log (st ) =a0 +b log(st –1)+a(|ut|–cut). (12)

This model is appealing because it does not require any parameter restrictions to

ensure that conditional variance of returns are always positive.

The ANN-GARCH Model

In this section, we discuss an extension of the artificial neural network model

(ANN). Following Donaldson and Kamstra (1997), we present an extension of the

standard GARCH model that includes an ANN model to further capture the

nonlinearities in the financial time-series.
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s l
t –1
l

s l
t–1 –1
l



This can be described as follows. We first assume an AR (1) process for the returns

of the financial time series 

rt=a1+a2rt -1 +et (13)

where rt=ln(Pt |Pt -1), et ~(0,s 2
t ) and, 

s 2
t = c +�p

i=1
bi s

2
t–i +�q

j=1
gj e2

t–j +�T

k=1
jk Dt–k e2

t–k +�S

h=1
eh y (ztlh) . (14)

Equation (14) is the ANN-GARCH model. We can see that the first two components

forms a standard GARCH (p, q) model. Adding the third component, we get the

sign-ARCH model developed by Glosten, Jaganathan and Runkle’s (1993), called

the GJR model. The last term is the ANN. More precisely, 

Dt–k = � (15)

y (ztlh)=�1+exp�lh,0,0 +�v
d=1

��m
w=1

�lh,d,w zw
t–d����

–1

(16)

zt–d =�et–d  –E(e)��   E(e2) (17)

1/2lh,d,w ~U(–1, +1) (18)

Equation (15) is part of GJR model and it is simply a dummy variable. Equation

(16) describes the logistic ANN nodes. This equation is called the transfer function.

A popular model for the transfer function is the nonlinear logistic function14

y=a+�(1+exp�–�c+bx���–1 
.

Equation (17) shows how the data must be transformed when E(e) and E(e2) are

the mean and variance of the innovations. To estimate the parameters a, b, g, j

and e in equation (14), a value of l, in equation (18), is chosen using a uniform

random number generator allowed to vary between –1 and +1 and then, estimation

of the parameters is done by maximum likelihood. The ANN-GARCH is considered

as a seminonparametric model, because we have to select values for the l’s that are

the scaling factors used to identifies the e’s.

Application

The ANN-GARCH was applied to four financial time series, namely S&P500, NiKKEI,

FTSE, and TSEC. Donaldson and Kamstra (1997) used an AR (1)-ANN (1)-GARCH
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1 if et–k < 0
0 if et–k ≤ 0



(1,1), and estimate the parameters a1, a2, c, b1, g1, j1 and e1. They report that in

comparison with other model like the standard GARCH, the EGARCH, the GJR model

and the ANN-GARCH seems to be the best performer. In particular, this model is able

to capture both the symmetric and the asymmetric vo latility effects not captured by

the standard ARCH-type models for most of the financial time series.

The GARCH option pricing model

We consider the ARCH models as DGP’s15 of a particular financial time series

exhibiting certain characteristics, which is mainly the volatility clustering. However,

these models have been also generalized to the pricing of options (Duan, 1995,

1996 and Duan et al., 1999)16. In this section, we show that the standard GARCH

(p, q) can be extended for option pricing models. 

Supposing that Pt is the price of an asset observed at discrete time t. Transforming this

variable into return and assuming that it is conditionally lognormally distributed, 

we obtain

rt=ln � �=r+l s 2
t – s 2

t +et (19)

where et|It–1~N(0,s 2
t ); r is the risk free rate and l, the risk premium. We assume that 

s 2
t =a0+�q

i=1
ai e2

t–i +�p

j=1
bjs

2
t–j (20)

is a standard GARCH model. To ensure that the Black and Scholes (1973) model is

a special case of our model, assume that p=0 and q=0, (19) and (20) are reduced to

a standard homoskedastic lognormal process. To obtain the GARCH option-pricing

model, the conventional risk-neutral valuation has to be generalized for heteroskedas-

ticity of the asset return process. This generalization is called the locally risk-neutral

valuation relationship. It implies, under a pricing measure denoted by (*) that 

rt=r– s 2
t +et (21)

where et|It–1~N(0,s 2
t ) and s 2

t =a0+�q
i=1

ai �et–i –l s 2
t–i �

2
+�p

j=1
bjs

2
t–j . As a corollary, we get

PT =Pt e . (22)
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15 DGP stands for Data Generating Process.
16 Another model that uses a continuous GARCH process to price European options is the Heston and Nandi (2000) stochastic volatility

model (Heston, 1993). It proposed an analytical formula for the pricing of options. For an application of this model and a VBA code to
estimate a GARCH (1,1) process in Excel, see Rouah and Vainberg (2007).

Pt
Pt–1

1
2

1
2

�(T–t)r– �T

s=t+1
s 2

s +�T

s=t+1
es�1

2



Discounting the asset price using the risk free interest rate, we obtain the martingale

property. Then, assuming a GARCH (p, q) process, a European call option with

exercise price X and maturity T has a value equal to 

Ct
GARCH=e– (T–t)rE* �Max(Pt – X,0)|It � (23)

where E*[ . ] is the expectation computed in a risk neutral world, conditional on

information set It : (et ,...,et  –q+1,s 2
t ,...,s 2

t–p+1,X ). It should be noted that there is no

analytic solution for equation (23). This is due to the fact that the conditional

distribution for more than one period cannot be derived analytically. To solve that

problem, we can use Monte Carlo simulation to compute a value of (23). 

The Delta of (23), i.e. a measure of the sensitivity of the call premium to the

underlying asset, is given by

Dt
GARCH=e– (T–t)rE*� 1(PT ≥X )|It � (24)

where 1(PT ≥X ) is an indicator function taking the value 1 if Pt ≥ X and 0 otherwise. As 

for equation (23), this measure is also computed by Monte Carlo simulation. The Euro-

pean put GARCH option price can be derived by using the put-call parity relationship.

The Black and Scholes model may be considered as a special case of the GARCH

process. More precisely, for p=0 and q=0, we obtain the homoskedastic lognormal

process, namely the Black and Scholes model. 

Finally, the GARCH option-pricing model may be used for extracting the implied

volatility instead of using the variance of the underlying asset return. The smile is

then obtained, for the GARCH option price, by plotting its implied volatility as a

function of its strike price (X )17.

Modelling correlation

The GARCH model can be generalized for modelling the conditional covariance18. Then

we can build a covariance matrix, where each element is assumed to have the following

process

si, j,t = wi, j +ari, j,t–1rij ,t–1+bsi, j,t–1 (25)

where a and b are estimated by maximum likelihood. wi, j is the log-run covariance, 

si, j,t–1=1/T �T

k=1
ri,t–k rj,t–k and ri,t is the return of asset i at time t.
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17 For an introduction on this subject, see Hull (2012).
18 See Bhansali (1998), Tsay (2005) and Hull (2012).

PT

Pt



To forecast the covariance at period t+k, we have to compute the conditional

expectation based on information set It

si, j,t+k/t =Et [ri ,t+k rj ,t+k]=Et [si, j,t+k ]
=wi, j +(a+b )Et [si, j,t+k –1] (26)

where Et [wi, j ]=wi, j and Et [ri , t+k –1 rj, t+k –1]=si, j, t+k –1. This implies by repeated

substitution that 

Et [si, j,t+k ]=wi, j +(a+b )�wi, j +(a+b )Et [si, j,t+k –2]�
=wi, j +(1+a+b )+(a+b )2 Et [si, j,t+k –2] . (27)

Solving Et [si, j,t+k –2]by recursive substitutions and renaming variables, we get 

Et [si, j,t+k ] = –si, j,+(a+b )k –1�si, j,t+1 – –si, j � (28)

where –si, j,is the mean value of the covariance between of asset i and j.

This model can be used to construct the term structure of correlation, which is

determined in term of forward variances and covariances. Assuming that there is

no serial correlation (no autocorrelation) in the returns, we can write the term

structure of correlation as

R (k)
i, j ,t = (29)

where �k
l=1

si, j,t+l /t = Et ��k
l=1

�ri ,t+l rj ,t+l�� = �k
l=1

�Et � ri ,t+l rj ,t+l�� and Et  �ri ,t+l rj ,t+l � =si, j,t+l /t . 

We can observe the similarities between the GARCH model and the exponential

smoothing model, 

si, j,t =(1– l)si, j,t–1+lri ,t–1 rj ,t–1 . (30)

In this model, we must find the best l that matches the financial time series. Since 

Dsi, j,t =l �ri ,t–1 rj ,t–1–si, j,t–1� and Et [Dsi, j,t]= l �Et �ri ,t–1rj ,t–1 –si, j,t–1��=0, the exponen-

tial smoothing model has intrinsically no forecasting power. 

Multivariate ARCH models (MGARCH)

Multivariate linear formulation exists for the ARCH models. Many issues in asset pricing

and portfolio allocation decisions can be analyzed in a multivariate context. Let rt be a

N×1 vector stochastic process, then any process that permits the representation

rt = ut wt
1/2 (31) 
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�k
l=1

si, j,t+l /t

�k
l=1

si ,t+l /t �k
l=1

si ,t+l /t



where ut is assumed to be i.i.d. with E(ut )=0, V(ut )=I, and wt is a time-varying N×N
positive definite covariance matrix (and measurable conditional to information It),

which is referred as a multivariate linear ARCH model. Kraft and Engle (1983) defined

wt , in their multivariate linear ARCH model, as a linear function of the contemporane-

ous cross-products in the past squared errors: vech(pt–1 pt’–1),..., vech(pt–q pt’–q); where vech( .)
is the operator that stacks the lower portion of an N×N matrix as an (N(N+1)/2)×1 vec-

tor. Bollerslev, Engle and Wooldridge (1988) generalized this model to a multivariate

linear GARCH (p, q). wt is transformed as follows

vech( wt)=W+�q
i=1Aivech(pt–1 pt’–1)+�p

i=1Bivech( wt –i) (32)

where (wt) is a (N(N+1)/2)×1 vector, and Ai and Bi are (N(N+1)/2)×(N(N+1)/2)
matrices. Only three of these models are presented here19, which are the Bollerslev’s

(1990) MGARCH20, the BEKK model of Engle and Kroner (1995), and the Koutmos

(1996) extensions of Bollerslev’s model that includes a multivariate EGARCH for the

innovations. These are presented in section 3.1.4.

3.1. Estimating and testing ARCH models

3.1.1. Testing for ARCH effect

Testing for the presence of ARCH effect in the error term of a model like

yt = b’xt +et , (33)

is done by using the Lagrange multiplier (LM) test firstly proposed by Engle (1982).

The procedure is as follows. Firstly, by applying ordinary least-squares on 

yt = b’xt +et ,

where xt may include lagged variables: xt =[1  yt–1 yt–2 ...yt–p], we get

êt  = yt –b’xt 

= yt –b0 –b1yt–1 –b2 yt–2 –...– bt–p yt–p . (34)
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19When there are many time series to be jointly modeled, the number of parameters to be estimated becomes very large. Another model
that takes into account this problem is the orthogonal GARCH developed by Alexander and Chibumba (1997). The implementation of
the orthogonal GARCH model involves using principal component analysis and univarite GARCH methods. The orthogonal GARCH
method has other qualities, namely the lack of dimensional restrictions and the fact that the matrices are positive definite. The problem
of non positive definite matrices is often encountered in the MGARCH framework.

20 It should be noted that Engle (2000) has developed a generalized version of that model called the dynamic conditional correlation
(DCC ) model. As we will see in section 3.1.4, the MGARCH of Bollerslev (1990) involves computing a conditional covariance matrix
wt=Dt GDt , where G is supposed to be a time invariant conditional correlation matrix. In his generalization, Engle (2000) lets G to be
time dependent and denotes it Gt , which contains dynamic conditional correlations that are more in accordance with the stylized facts
observed in the financial time series.



Secondly, we apply OLS on 

ê 2
t  = a0+a1 ê 2

t–1+...+aqê 2
t–q , (35)

This test is based on the resulting R 2. Knowing that

T×R 2    d⟶χ 2
q , (36)

Therefore, the test rejects the null hypothesis, which is H0: a0=a1= ... =aq =0, if 

T×R 2 >χ 2
q ,

with probability of type I error of a =5%, for example.

3.1.2. Estimating univariate ARCH models

Estimation of ARCH models is generally done by maximum likelihood (ML).

Assuming that the disturbances of the following model 

yt = b’xt + et  , (37) 

are normally distributed

et ~N(0,s 2
t ), (38)

where s 2
t follows any of the ARCH models presented previously. If s 2

t follows an

ARCH (1) model, the likelihood function is constructed by using the following steps.

i) The joint p.d.f. of the errors is written as

f (e1, e2, ... , eT |b’, a0,a1)= f (e1|b’, a0,a1)× f (e2|b’, a0,a1)×...×f (eT |b’, a0,a1)

= PT
t=1  f (e1|b’, a0,a1) , (39)

where f (et |b’, a0,a1)=            ×exp	– � �2
 . 

ii) By applying the Jacobian transformation f (y)=(e)×| | where | |=
: :
, we 

we get the joint p.d.f. of the yt‘s

f (y1, y2, ... , yT)= PT
t=1  f (yt |b’, a0,a1) . (40)
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1
2ps 2

t

et –E(et)
st

1
2

∂e
∂y

∂e
∂y

∂e1

∂y1

∂e1

∂y2

∂e1

∂yT
...

∂eT

∂y1

∂eT

∂y2

∂eT

∂yT
..



With this result, the likelihood function is written as 

L(a0,a1,b’|y1, y2, ... , yT)= P
T

t=1 
f (yt |b’, a0,a1)

= P
T

t=1 
×exp	– � �2


=(2p)–T/2�T

t=1
(s 2

t )–1/2×exp�– �T

t=1
� �2

� . (41) 

iii) Finally, in order to find the maximum of this function and to simplified the

numerical calculations, the logarithm transformation is applied to the likelihood

function. The result is

lnL=–T/2ln(2p)–1/2 ln �T

t=1
s 2

t –1/2��T

t=1
� �2

� . (42)

Application

We provide a numerical application of an ARCH model, namely the popular

EGARCH model, using a sample of montly S&P500 data ranging from January 1982

to February 2012. A plot of these returns is provided at Figure 1.

n Figure 1. Monthly SP&500 returns – January 1982 to February 2012

Figure 1 shows that there are evidences of changing variance so an ARCH-type

model should perform well in modeling this time series. Table 1 provides the EViews

estimation of the popular EGARCH process on the time series shown in Figure 1.
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l Table 1. EViews estimation an AR(1)-EGARCH model for the S&P500 returns
(January 1995 to March 2012)

Dependent Variable: RSP500
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 04/18/12 Time: 10:11
Sample (adjusted): 1995:03 2012:03
Included observations: 205 after adjustments
Convergence achieved after 25 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(4)
*RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1))

Variable Coefficient Std. Error z-Statistic Prob.

AR(1) 0.148347 0.078698 1.885014 0.0594

Variance Equation

C(2) -1.277 0.572366 -2.23108 0.0257

C(3) 0.256524 0.138581 1.851075 0.0642

C(4) -0.28038 0.095627 -2.93202 0.0034

C(5) 0.825574 0.08531 9.677368 0.0000

R-sq. 0.002522 Mean dependent var 0.0052

Adjusted R-sq 0.002522 S.D. dependent var 0.0466

S.E. of reg. 0.046512 Akaike info criterion -3.438

Sum sq. resid 0.441334 Schwarz criterion -3.357

Log likelihood 357.3583 Hannan-Quinn criter. -3.405

DW stat 2.042729

Inv. AR Roots 0.15

As shown in this table, the coefficients of the EGARCH21 process are all quite

significant in terms of p-values. This implies that there would be some leverage effect

in our sample. As it is well-known, the goodness-fit measures used to evaluate the

overall performance of these models are the information criterions like the Akaike’s

one. The R 2 criterion is known to be unreliable in the context of time-series analysis.

Some authors consider modeling stock prices directly (e.g. Mun, 2006)22. We

consider a similar approach, assuming an ARMA (1, 1), for the prices plus a mean

reversion factor. Thus, the suggested model for the mean of the process is given by

Pt = b0+b1Pt–1+b2et–1+b3(Pt  –Pt–1)+et .
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21 EViews provides several other useful ARCH-type models.
22 Stock prices can also be modeled as a function of dividends. For instance, Foerster and Sapp (2006) use the following model: 

Pt−Pt –1=a0+a1(Dt –1–Dt –2)+a2(Dt –2 –Dt –3)+et to explain the changes in stock prices. The model is used to determine how investors
react to changes in dividends. A positive increase in the dividends might be considered by investors as a positive indication on the future
value of the company. Therefore, its stock prices increase. Foerster and Sapp (2006) found that the model has good fit in general, but
a2 is not significant. Note that the specification of this model is similar to a standard model of dividends which is given by: 
Dt – Dt –1= b0+b1(Dt –1–Dt –2)+b2(Dt –2 –Dt –3)+et . This specification is designed to determine whether there is a persistence in the
changes in dividends, where the persistence is captured by the parameters b1 and b2.



We also assume that the residuals of this model follow an EGARCH (1,1) process.

The EViews results appear at Table 2.

l Table 2. EViews estimation an ARMA (1, 1)-EGARCH model with a mean
reversion factor for the S&P500 prices January 1995 to March 2012

Dependent Variable: SP500
Method: ML - ARCH (Marquardt ) - Normal distribution
Date: 04/18/12 Time: 11:36
Sample (adjusted): 1995:03 2012:03
Included observat ions: 205 after adjustments
Convergence achieved after 49 iterations
MA Backcast : 1995:02
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(5) + C(6)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(7)
*RESID(-1)/@SQRT(GARCH(-1)) + C(8)*LOG(GARCH(-1))

Variable Coefficient Std. Error z-Statistic Prob.

C 1573.573 458.4589 3.43231 0.0006

AR(1) 0.987622 0.007647 129.1536 0.0000

MA(1) 0.989238 0.003379 292.7858 0.0000

D(SP500) 0.505848 0.004722 107.1205 0.0000

Variance Equation

C(5) 0.248612 0.097187 2.558091 0.0105

C(6) 0.279824 0.137714 2.031927 0.0422

C(7) -0.11442 0.069825 -1.63859 0.1013

C(8) 0.926551 0.023902 38.76513 0.0000

R-squared 0.98954 Mean dependent var 1115.2

Adjusted R-sq. 0.989384 S.D. dependent var 249.68

S.E. of reg. 25.7255 Akaike info criterion 9.0513

Sum sq. resid 133022.1 Schwarz criterion 9.181

Log likelihood -919.762 Hannan-Quinn criter. 9.1038

DW stat 1.832442

Inv. AR Roots 0.99

Inv. MA Roots -0.99

As shown at Table 2, the results are good for most of the parameters of the

EGARCH model. The mean model is significant in terms of p-values and the overall

fit is also quite high as shown by the adjusted R 2 (and the DW is sufficiently close

to 2). Thus, our conclusion is that this data set shows significant leverage effect.

We arrived to a similar conclusion in the model presented at Table 1.

3.1.3. Testing for unit roots

Up to now, we have presented models that where stationary, because of the

assumption that the process {pt } followed: pt = st ut , where ut  was supposed to be

a white noise. However, in this section, we consider a generalization of this model
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that allows for autocorrelations in the process  { pt } and lags in the innovations.

This means that the process follows an ARMA (p, q) process. Thus, the generalized

model might be written as

θ(L)pt =c+j(L)ut , (43)

where ut~WN(0,s 2
t ). That means that ut might take the value of

ut=� g+bs 2
t–1+ju2

t–1�et (44)

if s 2
t is Et(u2

t ) assumed to follow a GARCH (1, 1) process and et is an i.i.d. (0,1)
process. For example, an AR (1)-GARCH (1, 1) can be written as 

pt=a +θpt–1+ut ,

V( pt  /It )=s 2
t =g+bs 2

t –1+ju2
t –1 . (45)

One condition that this model must respect is stationarity. To check if the

stationarity23 condition is respected, we present two classical tests, namely the

Dickey-Fuller test and the augmented Dichey-Fuller test24.

Dickey-Fuller test (DF test)
Let: 
The TS (Trend Stationary) model be

pt =g0+g1t+ut , (46)

The DS (Difference Stationary) model be

pt =g1+pt –1+ut . (47)

Combining (46) and (47) as suggested by Bhargava (1986) gives

pt =g0+g1t+vt ; vt=avt –1+ut

=g0+g1t+a(pt –1– g0–g1( t–1))+ut . (48)

Since (48) is nonlinear in the parameters, it is convenient to reparametrize it as

pt =b0+b1t+apt –1+ut , (49)
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23 For a test of stationarity against the alternative of a unit root, see Brooks (2008) or Kwaitkowski, D. et al. (1992). This test is known as
the KPSS test. It has been developed for alleviating the criticisms of DF and Phillips-Perron-type tests of having low power when the
process is stationary, but with a root close to the non-stationarity boundary.  We provide an EViews application of this test in the
application subsection presented below.

24 In the presence of structural breaks and misspecification of the short run component like their possible nonlinearity, the tests presented
below might be inappropriate. Breitung (2002) suggests nonparametric tests that are robust to such misspecifications.



where b0 and b1 are obtained by manipulating (49) as 

pt =g0+g1t+apt –1–ag1t+ag1 +ut

=g0(1–a)+ag1+g1(1–a)t–apt –1+ut , (50)

and by setting b0=g0(1–a)+g1a and b1=g1(1–a). (50) hides the fact that b1=0 when 

a =1 . Subtracting pt by pt –1 both side gives

pt – pt –1=b0+b1t+apt –1– pt –1+ut

∇pt =b0+b1t+(1–a)pt –1+ut .25 (51)

As we can see, if a< 1, (51) is equivalent to model TS (46); and if a = 1, (51) is equivalent

to model DS (47). Equation (51) can be consistently estimated (p lim(b)=b) by using

OLS. As showed by Dickey and Fuller (1979), the resulting t-statistic for testing the null

hypothesis a–1= 0 must be compared to the corresponding t values. Otherwise, type I
error might be committed. The critical values (for regression (51), which includes a

constant and trend) of the t statistics are respectively for a =1%, 2.5%, 5%, 10%; 
tct = –3.96, –3.66, –3.41, –3.13 (Davidson and Mackinnon 1993, chap. 20).

Augmented Dickey-Fuller test (ADF test)26

From (51) we can write

∇pt = xtb+(a–1)pt –1+ ut , (52) 

where xtb =b0+b1t . xt may also include any set of non stochastic regressors that we

might want to include in the test regression; namely a constant, a linear trend, a

polynomial trend (e.g. the quadratic trend xt b =b0+b1t +b2t 2). Supposing that ut

follows the stationary AR (1) process ut = rut –1+et , (52) becomes

∇pt = xtb+(a–1)pt –1+rut –1+et

= xtb+(a–1)pt –1+r(pt –1–pt –2–xt –1b–(a–1)pt –2)+et

= xtb – xt –1rb+(a + r –1)pt –1+pt –2(r – r –ra)+et

= xtb
*+(a+r –1)pt –1 –rapt –2+et

= xtb
*+(a+r –1–ar)pt –1 +ar(pt –1–pt –2)+et

= xtb
*+[(a–1)–r (a–1)]pt –1 +ar(Dpt –1)+et

= xtb
*+b’1pt –1+b’2Dpt –1+et , (53)

where b’1=(a–1)(1–r ) and b’2=ar .
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25 ∇ is the difference operator with d=1. ∇d means differencing d times and it is equal to (1–L)d, where L is the lag operator. For example,
∇2=(1–L)2 =1–2L+L2 and if multiplied by pt , it gives: pt –2pt–1+pt–2  .  

26 See Dickey and Fuller (1981).

=(a –1)(1–r )



Thus, one performs an ADF test simply by running OLS on (53) and by comparing

the resulting t statistic, called t, of parameter b’1 to the tct asymptotic critical values.

The null hypothesis is b’1 =0, which is the equivalent of testing a =1.

An application of standard unit root tests on VIX data

In this section, we discuss a numerical application of the standard unit root tests

using a sample on of S&P500 Volatility Index (VIX) ranging from January 1995 to

March 2012. Figure 2 shows this time series.

n Figure 2. Monthly S&P500 Volatility Index (VIX) – January 1995 to March 2012 

Some words should be said about the CBOE S&P500 Volatility Index (VIX). This index

is computed using OTM puts and calls as27 ŝ 2=       �∫0F0,T  P(k)dK+∫
∞

F0,T         
C(k)dk�; where

P(K) and C(K) are puts and calls, which are functions of the strike price K, and F0,T=S0erT

is the forward price. In practice, the CBOE use a discretized approximation of this equa-

tion, which takes the form s 2=   �Ki≤K0
e rTPut(Ki)+ �Ki >K0

e rTCall(Ki)– � –1�
2

.

It should be noted that the expected realized variance can be estimated using this

formula. This means that by creating a portfolio of OTM puts and calls weighted by

the inversed squared strike price, the variance estimate can be replicated, so trading

options is another way to proceed. For instance, Russi (2012) provides some details

about how one should use S&P500 futures and VIX futures when going to high-

frequency analysis. We present further discussion on this subject in section 8.

Table 3 provides several estimations of unit tests.
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27 See MacDonald (2006), Rouah and Vainberg (2007) and Hull (2012). Racicot (2009) briefly discuss this formula.
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l Table 3. Several EViews unit root tests
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Panel A. 
The DF test

Panel B. 
The ADF test

Panel C. 
The PP test

Panel D. 
The Ng-Perron test



At Table 3, we can note that all the unit root tests are consistent because there are

no unit roots in this time series, which means that the VIX is stationary and does not

necessitate any differentiating. Consequently, one could use the VIX as a regressor in

a financial regression without any sort of preliminary transformation28. 

3.1.4. Estimating multivariate ARCH models (MGARCH)29

In this section, we present the methodology for estimating Bollerslev’s (1990)

MGARCH and the BEKK (1995) models. Bollerslev’s model is easier to estimate

than other MGARCH models, because of the assumption of constant conditional

correlation. By imposing constant correlation, the number of parameter to estimate

reduces greatly. In fact, the research in this field deals mainly with two things:

reducing the inflation of parameters to estimate and the problem that the

covariance matrix might not be positive definite. The BEKK (1995) model, which

has the advantage of being parsimonious, suggests some ways to handle this matter.
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28 For an application, see Racicot and Théoret (2009).
29 See also Alexander and Chibumba (1997). This method provides an alternative that is probably easier to implement than the MGARCH

models of Bollerslev (1990) and Engle (2002). For an application of the orthogonal GARCH on covariance matrix forecasting in a stress
scenario, see Byström, H.NE. (2000).

Panel E. 
The KPSS test

Panel F. 
The Elliot-Rotenberg-Stock test



The Bollerslev’s (1990) MGARCH model 

The Bollerslev’s (1990) model is as follows.

Let yt denote the N×1 time-series vector of interest (yt might be considered as a

vector of pit) with time varying conditional covariance matrix wt , 

yt=E(yt|yt –1)+et (54)

V(et |yt –1)= wt ,

where yt is the information set of all the available information up through time

t–1, and wt is almost surely positive definite for all t. The formulation in (54) allows

for both conditional and/or unconditional heteroskedasticity. For example, note

that E(yt|yt –1) can be set to be equal to x’tb, which is our standard multivariate

regression model.

Also, let sijt denote the ijth element in wt and yit and eit the ith element in yt and et,

respectively. The assumption that the conditional correlation is constant is 

written as 

sijt = rij(siitsjjt)1/2, j =1,…,N,  i = j+1,…,N. (55)

The appealing feature of this model relates directly to the simplified estimation and

inference procedures. To that end, rewrite each of the conditional variances as

siit =wis
2
it   , i =1,…,N, (56)

with wi a positive time invariant scalar and s 2
it >0 almost surely for all t. Given (55)

and (56), the full conditional covariance matrix, wt may be partitioned as 

wt =DtGDt , (57)

where Dt denotes the N ×N stochastic diagonal matrix with elements s1t ,…,sNt and

G is an N ×N time invariant matrix with typical element rij wiwj . wt could be positi-

ve definite for all t if and only if each of the N conditional variances are well defined

and G is positive definite. Assuming conditional normality, the log likelihood

function for the general heteroskedasticity model in (54) becomes, 

L(θ )= – log 2p – �T

t=1
(log|wt |+e’twt

–1et ) , (58)

where θ denotes all the unknown parameters in et and wt. Under standard regularity

conditions, ML estimate for θ is asymptotically normal and the traditional inference

185
 

  

A E S T I T I OM A
  

TN
2

1
2

n
o

tes o
n no

nlinear dynam
ics. R

acicot, F.E.
a

est
im

a
t

io
, t

h
e

ieb
in

t
er

n
a

t
io

n
a

l
jo

u
r

n
a

l
o

f
fin

a
n

c
e, 2012. 5

: 02-67



procedures are immediately available30. However, since the evaluation of the likelihood

function in (58) requires the inversion of an N × N matrix for each time period, 

the maximization of L(θ) by iterative methods can be very costly even for small sized 

T and N. The assumption in (55) reduces this computation. By direct substitution,

L(θ )= – log 2p – �T

t=1
log|DtGDt |– �T

t=1
e’t (DtGDt )–1et

= – log 2p – �T

t=1
log|G|– �T

t=1
log|Dt |– �T

t=1

~e’tG–1~et (59)

where ~et = Dt
–1et denotes the N ×1 vector of standardized residuals. Except for the

third term that is a Jacobian term arising from the transformation from et to ~et , the

likelihood function in (59) is equivalent to the likelihood function for ~et ; which is

conditionally normal with time invariant covariance matrix G. The likelihood function

in (59) is still highly nonlinear in the parameters, thus an iterative maximization

procedure is required. Nevertheless, comparing (59) to (58), the former is much easier

to evaluate and requires only one N ×N matrix inversion as opposed to T inversions in

(58). Note also that log|Dt| is equal to the sum of logs1t,...,logsNt . The suggestion for

maximizing (59) is to use the Berndt, Hall, Hall and Hausman (BHHH, 1974)

algorithm along with numerical first order derivatives31. 

The BEKK model of Engle and Kroner (1995)

Another popular specification, the BEKK model of Engle and Kroner (1995), named

after an earlier working paper by Bollerslev, Engle, Kraft and Kroner, guarantees

positive definiteness by working with quadratic forms rather than with the individual

elements of wt . The model is 

wt=C’C+B’ wt–1B+A’ ete’t A , (60)

where C is a lower triangular matrix with N(N+1)/2 parameters, and B and A are square

matrices with N 2 parameters each, for a total parameter count of (5N 2+N)/2. Weak

restrictions on B and A guarantee that wt is always positive definite. The log

likelihood of this model is obtained by replacing the value (60) in (58). Numerical

methods are required to find the value of the parameters.

The multivariate VAR-EGARCH model

Multivariate autoregressive models have been applied mainly to account for the

interrelation between time series. For example, Koutmos (1996) used a multivariate

186

30 If the model correctly specifies the first two conditional moments, even if conditional normality is violated and under suitable regularity
conditions, the quasi-maximum likelihood estimates obtained from (58) will still be consistent and asymptotically normal. However, the
usual standard errors will have to be modified.

31 In this model, there are n (n+2)/2 correlation coefficients rij and N conditional variances to estimate. If these conditional variance were
a univariate GARCH (1, 1), then the total number of parameters would be equal to 3n+(n (n+1)/2).
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VAR-EGARCH (MVAR-EGARCH) for modeling the interaction of stock markets across

four European countries: France, Germany, Italy and UK. The MEGARCH structure

is used to capture the leverage effect and the linkage across the innovations. The

MVAR-EGARCH model and its application to stock markets follow.

Assuming that ri,t (e.g. possibly an index) is the return of market i at time t, having

four countries : i = 1, 2, 3, 4. Then the MVAR-EGARCH model can be written as follow

ri,t =bi,0+�4

j=1
bi,j rj,t–1+ei,t     i,j = 1,2,3,4 (61)

s 2
i ,t = exp�ai,0+�4

j=1
ai,j f j (zj,t–1)+gi  ln(s 2

i ,t–1)� i, j = 1,2,3,4 (62)

fj (zj,t–1)=(|zj,t–1|–E(|zj,t–1|)+dj zj,t–1) j = 1,2,3,4 (63)

si,j,t = ri,jsi,tsj,t     i,j = 1,2,3,4 i ≠ j (64)

where (61) is a vector autoregressive model VAR for the four markets. Note that

the conditional mean of each market is a function of its own past and the cross-

market past returns. The coefficient bi,j for i≠j captures the interactions across

markets. For example, if  bi,j is significant then market j can be used to predict future

returns for market i. Equation (62) is used for modeling the conditional variance

in each market. 

This is the EGARCH model, which is a function of its past volatility as well as its

cross-market standardized innovations: fj(zj,t–1) where zj,t–1=ei,t /si,t is the standardized

innovation. This is shown in equation (63). It permits standardized and cross-market

innovations to influence the conditional variance in each market asymmetrically,

which is consistent with the leverage effect. Equation (64) is the conditional

covariance used to capture the contemporaneous relationship between the returns

of the markets. This specification assumes that the correlation of the returns of

markets i and j is constant. As in the model of Bollerslev (1990), this is the same

specification and it simplifies the estimation process.

Parameters estimation

If we assume normality of the innovations, we can write the log likelihood function

of the MVAR-EGARCH as follows 

l(θ )= lnL(θ )=– (NT)ln(2p)– �T

t=1
(ln(wt)+e’twt

–1et ) (65)

where θ is a vector of 54 parameters, N=4 is the number of equations, T is the

number of observations, e’t= (e1,t ,e2,t ,e3,t ,e4,t ) is a vector of innovations at time t, wt is
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time varying variance-covariance matrix; where the diagonal elements are given by

equation (62) for i=1, 2, 3, 4 and, the off diagonal elements are given by equation

(64) for i ,j =1, 2, 3, 4 and i≠j. As in Bollerslev (1990) the parameters vector θ is

estimated using numerical maximization algorithm. Koutmos (1996) used the

BHHH (1974) algorithm, which uses numerical derivatives of l(θ ). This algorithm

may be found in GQOPT and runs in FORTRAN programming language32.

Application33

In our example, the MVAR-EGARCH is used to model the interdependence of

conditional mean and volatility of four European countries: France, Germany, Italy

and UK. Koutmos (1996) found that the b coefficients are significant for many of

the countries in his study. For example, the conditional mean of France is linked to

past returns of Germany and UK. Similarly, the returns in Germany are correlated

to past returns in France and the UK. Italy is influenced by Germany and UK.

When analyzing the volatility interdependence, it is found that the correlations 

(ri,j = si,j,t /si,tsj,t ) between markets are significant. The conditional variance in each

market is also influenced by its own past innovations and past innovations created

by other markets. Only Italy and UK are not influenced in both directions. Finally,

the degree to which bad news (innovations) have increased the volatility more than

good news is captured by ai,j and dj . For example, the impact of a ±3% variation

of the innovation in market i (at time t–1 on the conditional variance of market j at

time t) not only appears in the same market, but also it has an impact on other

markets.

The following application presents a numerical example of the simplest M-GARCH,

which is referred as the constant conditional correlation (CCC) model. It is

essentially the same model as the one in equation (25). Our application uses

observed monthly data on the S&P500 and the VIX ranging from January 1995 to

March 2012. Our goal here is to provide an example of the use of multivariate

GARCH that would share some of the ideas developed in Sun and Wu (2010);

which represents an evaluation of the leverage effect theory. We used EViews to run

the multivariate GARCH models presented in Table 4.

188

32 For an application of GQOPT, see Racicot (2003), chapter 2.
33 Brooks (2008) provides RATS programs for estimating a diagonal VECH model and BEKK model. He also provides an application of

these models for computing a dynamic hedge ratio using daily data on the FTSE 100 stock index and futures contracts on stock indexes.
For more financial applications of these models, see Tsay (2005).
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l Table 4. Several EViews M-GARCH estimations

Panel A. The diagonal BEKK model

Panel B. The Diagonal VECH model
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Panel C. The Constant Conditional Correlation (CCC) model

Panels A, B and C (Table 4) show that all the MGARCH models work well. We used

AR (1) equations to model the means of the processes and different MGARCH

processes for comparisons. In order to verify the leverage effect theory, some

authors (Barndorff-Neilsen et al., 2008a) used realized kernel correlation. Instead,

we use basic parametric MGARCH models. Looking at the Panel C, we see that the

coefficient of R (1, 2) is negative and significant. This means that a negative

correlation is observed between the implied volatility and stock returns. The leverage

effect is validated by the volatility feedback34, which implies that volatility is a priced

factor (Bollerslev et al., 2006).

n 4. Mean-nonlinear Stochastic Models

Nonlinearity might arise either in the form of the second moment (e.g. ARCH models),

or in the first moment; as presented previously. The second form of nonlinearity is

considered below and a list of the most popular models is given.

The Nonlinear Moving Average (NMA) model

pt =ut+aut –1ut –2 . (66)

The Bilinear AR Model (BAR) 

pt =ut+apt –1ut –2. (67)

190

34 If investors anticipate an increase in volatility, they would require a higher rate of return on their investments. Consequently, prices would
have to change. The outcome would be, as in the leverage effect theory, an increase in volatility and a drop in stock returns. 
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The Bilinear ARMA Model (BARMA)

pt =apt –1–apt –1ut –1+but –1+ut . (68)

The Threshold Autoregressive Model (TAR) 

pt =apt –1+ut , if  pt –1<1, (69)

pt =bpt –1+ut , if  pt –1 ≥1.

The Nonlinear Autoregressive Model (NAR) 

pt =(a |pt –1|)/(|pt –1|+2)+ut . (70)

The Exponential Autoregressive Model (EAR)

pt – j1pt–1– ... – jp pt –p = ut , ut ~WN (0,s 2) (71)

where ji=ai+bi exp(–g p2
t –1) . This model behaves in the same way as the TAR model,

but its coefficients change smoothly between the time intervals. Other models using

the same acronym have been developed by Lawrence and Lewis (1985). These models

can also be represented in a more general form, which is called by Priestley (1980) the

state dependent models. Other popular models like the VCM (variable coefficient model)

and the STUR (stochastic unit root process) are currently used in the literature35. 

The VCM and STUR models take respectively the following forms: pt =at pt –1+ut with

at=0.9cos(2p/T)and, pt=at pt –1+ut where at=0.1+0.9at+ht . All of these models might

be estimated consistently by maximum likelihood. 

The Markov Switching Model

Hamilton (1989) is known to be the first author to have proposed using a simple

Markov switching AR process to model the US GDP. Following the presentation of Zivot

and Wang (2006), the Markov switching AR (p) model can be written as

yt = mSt+XtϑSt+ut for  t=1, 2,…,n (72)

where Xt = (yt–1, yt–2, ..., yt–p), ϑSt is the AR vector of coefficients of dimension p x 1, 

ut ~N(0,s 2
St ), the hidden state variable S follows a k-regime Markov chain given by 

P(St = j |St–1= i)= Pij ≥ 0 (73)
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with i, j =1,2,…,k , where k represents the number of possible regimes or states. As usual,

the sum of the probabilities (73) must equal 1 that is

�k
j=1P(St = j |St–1= i)= 1 (74)

The transition probabilities can be summarized into a matrix referred as the tran-

sition matrix 

P =(                  )
where each row of P sum to 1. 

The estimation of the coefficients of (72) is usually done by means of Maximum

Likelihood. Two cases must be considered when estimating this model. In the first case,

the states S = (Sp+1,…,Sn) are known. In the second case, they are unknown. When

knowing the states S, the likelihood function is very similar to equation (42). The log

likelihood function can be written as follows

L(θ|S ) = �n
t=p+1 log f (yt|It–1,St) (75)

where f (yt|It–1,St)∝ exp�             �, and θ , the unknown parameters.

In the case where the states S are unknown, the likelihood function must be generalized

to include the transition probabilities. It can be written as 

L(θ )=�n
t=p+1 log f (yt|It–1,St)=�n

t=p+1 log {�k
j=1 f (yt|It–1,St = j)P(St = j |It–1)} (76)

This result is obtained by applying the law of total probability. Note that f (yt|It–1,St = j)
is equal to f (yt|It–1,St) and that by the Bayes theorem the transition probability

P(St = j |It–1) are P(St = j |It–1)=�k
i=1 P(St = j |St–1= i, It–1)P(St–1= i|It–1)

=�k
i=1 Pij (77)

The log-likelihood function of the Markov switching AR (p) model can be computed

iteratively using (76) and (77) given an estimate of the initial probability P(Sp+1 = i|Ip), 
i=1, 2,…,k, of each state. The unknown parameters θ  can be estimated using standard

maximum likelihood.
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f (yt=j |yt–2,St–1= i)P(St–1=i|It–2)
�k

m=1 f (yt–1|It–2,St–1=m)P(St–1=m|It–2)



A Numerical Application of the Markov Switching Model

Nonlinear models, like the Markov switching one, have had several applications since

their inception. For instance, Billio et al. (2009) use it to compute volatility of their asset

returns process assuming that it has different states or regimes. They have also use it,

assuming a regime-switching beta model, in order to capture hedge fund exposure to

market and other risk factors based on the state of the market. There are plenty of other

applications of this model36. Our own applications follow. 

We provide two applications using two standard data sets, which are the S&P500 and

the VIX index. These applications were also used previously in section 3.1.3 and 3.1.4.

To estimated the Markov Swtiching (MS) model, we used a computer code developed

by professors Pynnönen and Knif in the EViews programming language37. This program

assumes a mean of the process either in a low or a high volatility regime. Figures 3 and

4 present a run of this program respectively for the S&P500 returns and the VIX Index

ranging from January 1995 to March 2012. 

n Figure 3. MS for the S&P500 n Figure 4. MS for the VIX 
returns (1995m1-2012m3) (1995m1-2012m3)

In these Figures, P1TM1 represents the probability of regime switching. For comparison

purposes, we provide the SMOOTHPT1, which is the smoothed probability of regime

switching developed by Kim and Nelson (1999). In Figure 3, we can easily see that the

probability of going to another regime (a high volatility regime) increased dramatically

in 2007. This increase corresponds to the beginning of the financial crisis. In Figure 4,

we observe the reverse phenomenon with the VIX. As we discussed previously, this would

imply a negative correlation between the two series; an empirical fact justifying the

volatility feedback or the leverage effect.
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36 For instance, Khemiri (2012) presents an application of a Markov Switching Exponential GARCH (MSGARCH) model that provides a
richer modeling of volatility dynamics. Moreover, the MSEGARCH model seems to fit the intraday data in a better way.

37 The code can be found on the web site of Professors S. Pynnönen and J. Knif (Hanken), http://lipas.uwasa.fi/~sjp/Teaching/Afts/Lectures/
fetsSynopsis.html.
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n 5. Nonlinear deterministic models38

Nonlinear deterministic models might be used if the tests (e.g. BDS or R/S tests) that

distinguish between a nonlinear deterministic model and a nonlinear stochastic model

reject the possibility of a stochastic model. A list of these models follows.

The ‘logistic map39’ is defined as

pt+1=apt (1–pt ). (78)

Figure 5 shows the erratic behavior40 generated by this equation.

n Figure 5. The logistic map

The ‘tent map’

pt+1=2pt if pt <.5 ,
pt+1=2–2pt if pt ≥.5 .  (79)

The tent map is shown in Figure 6. 
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38 For an introducing to chaos theory in financial modeling, see Peters (1991, 1994). 
39 Only at a=3.57 that chaos can be seen. For example, at a=2.45 the logistic equation produces numbers that converge to 4 points

attractor. A Lyaponuv exponent <0 means a stable system, >0 means a chaotic system (see Brock et al., 1991 and Dendney, 1991).
Thus, chaos requires the largest Lyapunov exponent to be positive. The Lyapunov exponent is given by L=limt⟶∞[ln(||d Ft(x)·v||)/t]
where || || is a norm, d is the derivative and v is a direction vector. Here, ‘ · ’ denotes scalar product. Ft(x) is t-th iterate of F starting at
initial condition x . For a time series {yt} under scrutiny for temporal dependence, the definition implies that {yt} has a deterministic
DGP. If for some state vector xt , it’s law motion can be described by xt+1=F(xt) and there is some function h(x) such that yt=h(x) for
all t. Note also that F is assumed to have an ergodic invariant measure m that is absolutely continuous. This means that m is non
degenerate (the series is not packed on one point, but it has a variance) and that the limiting time averages exist. These averages are
independent of initial conditions (i.e. we can do time series analysis, Brock et al., 1991). Thus, ergodicity can be considered as a form of
‘average asymptotic independence’. It also implies that the moments exist. For example, the Cauchy distribution is strictly stationary, but
not ergodic because of the non-existence of its moments. Note that this definition involves concepts related to measure theory. For more
details of these concepts, see Davidson and MacKinnon (1993), Hamilton (1994), White (2001).

40 As seen in Figure 5, the logistic map seems to be an acceptable pseudo-random number generator, because it seems to generate a
sufficient erratic behavior. However, this equation has two substantial problems. The first problem concerns the temporary near-periodicity
or structure implicitly generated by this equation. Jäckel (2002) presents an example that shows this problem of temporary near
periodicity at some values iterates. The second one concerns the non-uniformity of the invariant measure. In other words, there will be
a concentration of numbers at certain iterates.
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n Figure 6. The tent map

Finally, the Mackey and Glass (1977) deterministically chaotic model

pt =apt –t 
/[1+p10

t –t
]–bpt . (80)

The Mackey and Glass equation is shown in Figure 7. 

n Figure 7. The Mackey and Glass (1977) equation

Equation (80) is formally an infinite dimensional system, but its attracting set dimension

varies as the delay parameter t is changed. For t =100, the dimension is about 7 or

larger. This model is a much higher dimensional system than the tent map. A simpler

form of this model41 is given by

pt =bpt–1–apt –t  
. (81)

Figure 8 shows another chaotic model found in the literature. 
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41 The Mackey and Glass (1977) equation was developed to model red blood cell reproduction: production is based on past and current
measurement. The delay t between production and the measurement of current level produces a cycle related to that delay (see Brock
et al., 1991). In Figure 7, we used equation (80) and assumed a delay t = 1.  
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n Figure 8. Equation from the Scientific American Fractal T-Shirt

This model is defined by the following simple recurrence equation pt+1=p 2
t + c , where c

is a given constant. We can see that, even for the simplicity of the model, it generates

plausible fluctuations seen in financial time series.

n 6. Testing for neglected nonlinearity

6.1. The BDS test42

The BDS test uses a measure of spatial correlation43, which is not often discussed in

the literature. For this reason, we present below the details of the test. The BDS (Brock,

Dechert and Scheinkman, 1987) statistic is defined as 

Wm,T(e)=T 1/2[Cm,T(e)–C1,T(e)m]/sm,T(e) , (82)

where Cm,T is a measure of spatial correlation (see Brock et al., 1991) of scattered points

in m-dimensional space, known as correlation integral. This correlation through space

was defined by Grassberger and Procaccia (1983) as

Cm,T(e)=�t<s Ie(pt
mps

m)×[2 /Tm (Tm–1)] (83)

where Tm = T– (m–1), pt
m = (pt ,..., pt+m–1), T is the length of the time series {pt}, 

pt
m = (pt ,..., pt+m–1), Ie( pt

mps
m) is an indicator function which equals 1 if || pt

m–ps
m||<e and

equals 0 otherwise. || || is the sup-norm. In general, this norm may be replaced by other

norms like the Euclidean norm which are defined as || pt
m–ps

m||=��(pt –ps )2�1/2
. Here, to

be consistent with the BDS statistic, the sup-norm (i.e. L∞-norm) is used and defined

as  || pt
m–ps

m||=E|pt–ps| in the Hilbert space L, which is L(w,A,P). The triplet (w,A,P) is a

196

42 This section is inspired by Brock et al. (1991). For more information on the subject, see Campbell et al. (1997) and Peters (1994).
EViews has the BDS test as a standard function. 

43 For an introduction to spatial correlation, see Anselin (2001). 
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probability space given a sample space w, a s-algebra A associated with w, and a

probability measure P(·) defined over A. For stochastic and deterministically chaotic

systems, it can be shown that C(e)m,T ⟶Cm(e)≡Pr �||pt
m–ps

m||<e�. Cm(e) is the probability

that the pair of points ( pt
m, ps

m)are within the distance e of each other sm,T(e) is an

estimate of the standard deviation under the i.i.d. null hypothesis. Here {pt } is a scalar

time series under investigation for randomness. We can estimate intertemporal local

correlation and other dependence by means of (83). To compute this correlation, we

incorporate {pt } in an m-dimensional space by forming m-vectors pt
m = (pt ,..., pt+m–1),

starting at each date t. If {pt } is i.i.d., then Cm(e)=[C1(e)]m and C1(e)=E{G(p+e)–G(p–e)},
where G(p )≡Pr{pt ≤p} is the cumulative distribution function. The following explanation

helps to understand (82). It works like a student-t test, if the series under investigation

is strongly nonlinear, then the discrepancy between i.i.d. null hypothesis C1,T(e)m and

the alternative Cm,T(e) will be large enough so that Wm,T(e) rejects the null hypothesis.

Brock, Deckert and Sckeinkman (1987) showed that under the null hypothesis of i.i.d.,

(82) is asymptotically normally distributed

Wm,T(e) d
⟶N(0,1) as T ⟶ ∞. (84)

The BDS test can be compared to the standard normal distribution tables. As

mentioned above, the BDS test is designed to detect nonlinear deterministic chaos as

well as nonlinear stochastic dependence. If the sample size is sufficiently large, the BDS

statistic has good power against both types of nonlinear dependence. However, this

test is neither specific for deterministic chaos nor for ARCH-GARCH process; rather, it

is sensitive to nonlinearity. Stochastic nonlinear models described above are good

examples of the alternative hypotheses that the BDS test is capable of detecting. For

instance, the procedure to test the specification of an ARCH process is to use the BDS

statistic on the residuals obtained by fitting a particular ARCH model. If the residual

are i.i.d., then this model could be a good choice44.

Some considerations with the use of the BDS test 

The data under investigation must be stationary. Otherwise, the BDS test may commit

type I errors. Unit root testing may be required to verify that this condition is satisfied.

Monte Carlo experiments suggest that e should be chosen between one-half and three

halves of the standard deviation of the data. The dimension m should be chosen

between 2 and 5 for small data sets (200 to 500 observations) and up to 10 for large

data sets (at least 2000 observations). If there are 500 or more observation for the

range of m and e values, the asymptotic distribution provides a good approximation of

the finite sample distribution. In actual application, it is recommended to do some

bootstraps experiments.
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An application of the BDS test

Table 5 presents an application of the BDS test using the data generated by the MacKey

and Glass (1977) equation shown in Figure 7.

l Table 5. The Brock, Dechert and Scheinkman (BDS) test

In Table 5, we used EViews to compute the values of the BDS statistics for several

dimensions. These values are very significant at 1% level, which implies that our

generated data cannot be considered i.i.d.45.

6.2. Tests for nonlinear structure
To distinguish between models that are nonlinear in mean or in variance, Tsay (1986)

suggests doing the following test.

Test for models that are nonlinear in the mean 

The test is implemented as follows (see Campbell et al., 1997).

i) Assuming that we have a time-series of observations {pt } then, regress pt on its own

lags and lags of its cross-products

g(pt–1, pt–2,...)=�ni=1 
ai pt–i +�n

i=1 
�m
j=1 

bij pt–i pt–j . (85)

198

45 Salazar and Lambert (2010) used the BDS test to investigate if the independence assumption of their data set holds. 
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ii) The test of the null hypothesis that all the nonlinear terms are not significant is

F = SCR*–SCR/J a~F ( J ,N–K )  , (86)
SCR/N–K

where SCR* is the restricted sum of squares residuals and SCR is the unrestricted sum.

For example, for n=m=2 the regression to estimate is

pt = a1 pt–1+ a2 pt–2+b11 p2
t–1+2b12 pt–1 pt–2+b22 p2

t–2

= a1 pt–1+ a2 pt–2+b11 p2
t–1+b*

12 pt–1 pt–2+b22 p2
t–2 , (87)

where b*
12 = 2b12 by assuming that b12= b21, then the test F might be constructed and

compared with its critical value.

The third moment test 

The third moment test is written as (see Brock et al., 1991)

t = T 1/2rxxx(i, j)/[w(i, j)/s 6
x ] (88)

where rxxx(i, j)=[Sxtxt–ixt–j /T ]/[Sx 2
t /T ]3/2 . w(i, j)/s 6

x   is consistently estimated by:

ŵ(i, j)/ŝ 6
x  = [Sx2

t x2
t–i x2

t–j /T ]/[Sx 2
t /T ]3 (89)

This test is similar to the Tsay test (1986) for nonlinearitiy.

n 7. Forecasting from Nonlinear Stochastic Models

In this section, we study the forecasting methods based on stochastic models that

present nonlinearity in variance. 

Forecasting conditional volatility from ARCH models 

Forecasts from ARCH models are constructed using similar procedure as in the linear

ARMA model. For example, in a GARCH (1, 1) model, an n steps ahead forecast of

future conditional volatility is constructed as follows (see Campbell et al., 1997 or

Gouriéroux, 1992).

First, we need the one step ahead forecast and it is computed as

Et(s 2
t+1)=a0+a1Et (e2

t )+bs 2
t

=a0+a1s
2

t +bs 2
t

=a0+s 2
t (a1+b ) . (90)
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As in the one step forecast, the two steps forecast is written as

Et(s 2
t+2)=a0+a1Et(s 2

t+1)+bEt(s 2
t+1)

=a0+ (a1+b )Et(s 2
t+1) . (91)

By substituting the value found in (90) in equation (91), we get

Et(s 2
t+2)=a0(1+a1+b )+s 2

t (a1+b )2 . (92)

Moreover, note that (92) might be written as

Et(s 2
t+2)=

(1+a1+b )(1–a1–b )
a0+s 2

t (a1+b )2
1–a1–b

=1–(a1+b )2
a0+s 2

t (a1+b )2 , (93)
1–a1–b

Finally, the n steps ahead forecast is computed simply by replacing the exponent 2 in

(93) by n
Et(s 2

t+n)=1–(a1+b )n
a0+s 2

t (a1+b )n

1–a1–b

= a0            – a0(a1+b )n
+s 2

t (a1+b )n

1–a1–b 1–a1–b

= a0            +(a1+b )n �s 2
t – a0           �. (94)

1–a1–b 1–a1–b

Note that equation (94) might be used for computing forecasts at any horizon simply

by replacing n by a value of interest. When a1+b=1, the conditional expectation of

volatility n periods ahead is 

Et(s 2
t+n)=s 2

t +na0 (95)

The GARCH (1, 1) model with a1+b=1 has a unit autoregressive root, consequently

today’s volatility affects forecasts of volatility into the indefinite future. As presented in

section 3, this is known as an integrated GARCH or IGARCH (1, 1) model. For higher-

order GARCH, e.g. GARCH (p, q), multiperiod forecasts can be constructed in a similar

fashion. 

Forecasting conditional covariance from ARCH models

As we explained in section 3, forecasts of the covariance of period t+k can be computed as 

Et �si,j,t+k� = 
_
si,j+(a +b )k–1�si,j,t+1–

_
si,j� . (96)

The procedure to obtain this formula is very similar to what we have shown (equation

94) for the forecast of conditional variance (see Bhansali, 1998).
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n 8. Modeling ultra-high-frequency data46

The models and estimation methods that we presented in previous sections can also

be used to describe data observed at very high frequencies47. However, the main

problem with this is the irregularity of information arrivals. For example, when we

estimate a GARCH process on the S&P500, we generally use daily, weekly or monthly

returns. This means that the interval between each observation is equal: a day, a week

or a month. But when analyzing intra-day observations, like the IBM stock

transactions, the information arrives sometimes in clusters and at different time

intervals. This problem is called time deformation, because the economic time is not

the same as the calendar time. As a consequence, we might observe a loss of

information that could be important when using aggregated daily, weekly or monthly

data. Considering the aggregation bias, it is important to account for the increases

of information not only from an econometric, but also from a market microstructure

theory perspective. 

Another problem arises when analyzing intraday data, there is an ‘intraday seasonality’

problem. More specifically, intraday durations between transactions follow a U-

shaped, which should be considered when working with these observations. This

intraday seasonality can be accounted for using a spline function (Engle, 2000).

Recently, Huptas (2009) investigated some nonparametric methods as alternative

ways to tackle this problem. Therefore, researchers working with UHF financial data

have some solutions for tackling such phenomenon. In our application, we use Engle’s

basic spline approach.

Recently, UHF data was used has an attempted to justified the ‘volatility feedback’,

which is an alternative explanation to the theory of the leverage effect (Bolleslev et al.,

2007; Bolleslev et al., 2009). 

To provide further evidence regarding the dynamics of the leverage effect, the concept

of realized volatility was generalized. This is known as realized correlation, which is

implemented by means of realized Kernels (Barndorff-Nielsen et al., 2008a,b; Getharal

and Oomen, 2010). This method was applied to analyze UHF financial data. It was

used to investigate the dynamics of the leverage effect based on UHF data on the VIX

and the S&P500 (Russi, 2012).
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46 This section in an updated version of Racicot (2003). See also Racicot et al. (2007, 2008).
47 It should be noted that a new subfield of physics called econophysics is interested in modeling intra-day transactions or UHF data. From

the research in this field has emerge the concept of random matrix theory (RMT). Essentially, the RMT theory supposes, as a null
hypothesis, that we have a random matrix C constructed from mutually uncorrelated time series. Deviations of the properties of C from
a random matrix would show genuine correlations. Due to the fact that RMT predictions are universal, they can be applied to a wide
class of systems. The stable distributions are also studied in Random Matrix Theory and financial econometrics fields of research. For
instance, the Lévy stable distribution has fat tails, which is one property of financial time series. See Stanley, Gopikrishnan, Plerou, and
Amaral (2000). 



Here, we intend to investigate volatility computations using UHF data and to compare

the realized volatility and the UHF-GARCH models. We also provide a way of using

them for forecasting purposes and we discuss an application related to the valuation

of volatility swaps. We leave aside the subject of UHF realized correlations for future

research.

This section is organized as follows. Firstly, we present the ACD model and the UHF-

GARCH model. Secondly, we discuss the parsimonious approach of the realized

volatility. Then, we show our application of these models. Finally, we present a possible

use of these volatility calculations to the pricing of volatility swaps. 

8.1. The autoregressive conditional duration (ACD) model 
The ADC model was firstly developed by Engle and Russel (1998). This model was

improved and applied, in a similar context, by Jasiak (1999), Gouriéroux, Jasiak and Le

Fol (1999), Gouriéroux and Jasiak (2001) and Engle (2000). The basic formulation of

the ACD model is as follows. Let  xi = ti – ti–1, called the duration, be the interval between

two arrival times. Also, let the expectation of the ith duration be 

E �xi | xi–1 ,..., x1� =θ �xi–1 ,..., x1;y�≡θi (97)

Assuming that

xi =θi ei (98)

where {ei}~i.i.d., y is a set of parameters to be estimated. The ACD class of models are

functional forms for (97). The model takes its name from the fact that the conditional

expectation in (97) depends on past durations. 

A general formulation of (97) that has its roots in the ARMA process is called the ACD

(p, q) given by

θi = w +�p
j=0  

ai xi–j +�q
j=0  

bj θi–j (99)

where p and q are the orders of the lags. It is important to notice that this model is

concerned only in modeling the arrival times. It can be used for studying the marks

associated with the arrival times so that hypothesis from the market microstructure

theories can be tested. A generalization of this model to accommodate both the arrival

times and the prices jointly have been proposed by Engle (2000).

8.2. The UHF-GARCH model
Since this paper concerns nonlinear stochastic models, we conclude with an extension

of a familiar model for the volatility. For the purpose of this report, we briefly discuss

the ultra-high-frequency GARCH (UHF-GARCH) model. 
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Assuming that ri is the return from transaction (i–1) to i, the conditional variance per

transaction can be defined as

Vi–1�ri | xi�=hi (100)

where xi is defined as previously. The conditional variance depends on current and past

returns and durations. Since volatility is always measured over a fixed time interval and

frequently reported in annualized terms, the conditional volatility per unit of time is the

most interesting measure to be evaluated. It is given by 

Vi–1� ri | xi�=s 2
i (101)

which implies that the relation between (100) and (101) is 

hi =xis
2
i (102)

Using relation (102), we can compute the forecasted conditional variance of transac-

tions using 

Ei–1�hi�=Ei–1�xis
2
i � (103)

The familiar GARCH (1, 1) model presented in previous section can be extended to

compute s 2
i , which has the following form

s 2
i = w +ae2

i–1 +bs 2
i–1+gx –1

i (104) 

where x–1
i is the reciprocal of duration. According to the market microstructure model of

Easley and O’Hara (1992), a fraction of the investors is informed and consequently

knows if there is news concerning their assets. When it is time for the investors to do

transactions, they will buy if the news is favorable, sell on bad news and they will make

no transactions if there is no news. Thus, in this model, long intervals (xi) will be inter-

preted as no news. This implies that in our model s2
i of and according to the hypothesis

of Easley and O’Hara (1992), we expect a positive value for g, because long durations

indicate that there is no news and consequently a lower volatility. Note that with this

formulation, long durations cannot induce the conditional variance to be negative. The

usual maximum likelihood estimator might be used for estimating parameters w,a, b,g.

Other extensions of (104) can be formulated. One that seems promising is defined as

follows 

s 2
i = a0 +ae 2

i–1 +bs 2
i–1+g1x –1

i +g2   +g3xi–1+g4θ
–1
i (105)

where xi is the long run volatility, θi is the conditional duration and might be defined

by the parsimonious ACD (1, 1) model. Engle (2000) suggests computing the long run

volatility by a Exponential Weighted Moving Average (EWMA) model on r2/x as 
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xi = lxi–1 +(1–l) (106)

In this extended model for computing volatility using high frequency data, the influences

of durations on volatility have been incorporated in three parameters. These parameters

measure, respectively, the effect of surprise in duration, the reciprocal duration and the

expected reciprocal duration, which is the expected rate of arrivals of transactions. As

in any other GARCH models, forecasting volatility can be found simply by computing

the conditional expectation and it is given by

Ei–1(s 2
i )= a0 +a1e 2

i–1 +bs 2
i–1+g1Ei–1(x –1

i ) +g2+g3xi–1+g4θ
–1
i (107)

This calculation reveals us that parameter g2 is not persistent. However, parameters 

g1 and g4 indicate a long run influence on future volatilities due to the persistence of the

durations. These models might be estimated by QMLE (Quasi-Maximum Likelihood

Estimator) without specifying the density of the disturbances. This is supported by the

theorem of Bollerslev and Wooldrige (1992). 

8.3. A more parsimonious approach for computing volatility using UHF data
Engle (2000) approach for modeling and computing volatility using high-frequency

data seems promising on the theoretical side of the coin. However, this approach is

complicated because there is lot of data manipulations, which must be done before

having an estimate of volatility that might be used, for example, in daily option pricing. 

The concept of realized volatility was firstly developed by Andersen and Bollerslev (1998)

and applied for computing daily volatility forecasts of exchange rates and S&P 500

Index-Futures, respectively, by Bollerslev and Wright (2001) and Martens (2002). In

other words, the realized volatility is measured by the squared value of intra-daily

returns. This measure is also considered to be a more accurate measure of ex-post

volatility. Assuming that the returns follow a special semimartigale process, Bollerslev

and Wright (2001)48 observe that ‘the quadratic variation of this process constitutes a

natural measure of ex-post realized volatility’. It also corresponds to the theoretical

definition of volatility used in diffusion and stochastic volatility models49. A

mathematical definition of realized volatility follows,

s 2
I (m)= �N

n=1 
r2
m,n (108)

where r2
m,n is the nth squared return on day m. Due to the fact that the returns are not

observed at a constant interval, the numbers of observations N will vary from day to

204

48 See also Andersen et al. (2003).
49 For another application, see Barndorff-Neilson and Shephard (2001) and Hull and White (1987). 
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day. Compared to the UHF-GARCH model, we can easily see the simplicity of the

calculations required for obtaining an estimate of the volatility. As in the GARCH

framework, it is possible to obtain a forecast of the realized volatility. The method might

be described as follows. The forecasts are based on a long memory autoregressive

model, where the lag p of the autoregressive process must approach infinity. The

coefficients obtained from this autoregression are then used to construct a forecast

function, which takes the following form

s 2
I (m)= �N

n=1 
(m̂+v̂N(m–1)+n|N(m–1)) (109)

where v̂t+1|t =�∞
j=1 

âj vt–j and

v̂t+k|t =�k–1

j=1 
âj vt+k–j|t +�∞

j=k
âj vt+k–j (110)

The coefficients aj might be estimated in the time domain by a long order

autoregression50, vt = log(r 2
t )–m̂ , where m̂ is the samplemean of log(r 2

t ). These coeffi-

cients might be also estimated in a frequency domain using a Wiener-Kolmogorov filter.

The results from using either technique appear to be similar (Bollerslev and Wright,

2001). In the following application, we use the long order autoregression on the log-

squared returns51, which we assume to be a martingale difference. More precisely,

a (L)(log(r2
t )–m)=et where a (L)=1–a1L–a2 L2 –a3 L3– ..., et ~WN(0,s 2) and the lagged

polynomial is assumed to converge. So to implement the forecasting formula

represented by equation (103), we simply have to fit a long order autoregression to the

log-squared returns and use this estimated equation to compute our forecasts. This

point is made clearer in the following section. Since the log-squared returns may yield

large negative numbers for returns close to zero, we applied the following transformation 

r *
t = log(r2

t +ts2)– (111)

where s2 is the sample variance of rt and t is chosen to be equal to 0,02 (Fuller, 1996;

Breidt and Carriquiry, 1996).

8.4. An application: comparing realized volatility to UHF-GARCH calculations 
using high frequency data
The purpose of this section is to give an application of the new models for high

frequency data recently developed in the literature. More precisely, we will compare the

UHF-GARCH model of Engle (2000) to the procedure for calculating volatility based

on intra-day data developed by Bollerslev and Anderson (1998), applied by Bollerslev

and Wright (2001) and Martens (2002). 
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50 The time series of volatilities might be represented by an appropriate proxy such as the log-squared returns, which has an autoregressive
representation.

51 As alternative hypothesis, we might specify that the squared or absolute returns have an autoregressive representation. See Bollerslev
and Wright (2001).
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8.4.1. Data

The data set that we are using is the transactions quotes on IBM stocks52 that are

naturally irregularly spaced53. Two types of random variables compose the

transaction data: the time of transactions and the marks at the time of transactions.

In our application, a point54 in time is the time at which a contract to trade some

number of shares of IBM is traded. The marks are composed of volumes, prices and

the available bid and ask prices of the contract at that time. Our data set is

composed of 60,000 transactions traded on the New York Stocks Exchange on a

time period, which stretches from November 1990 to January 1991. In our

calculations, we proceeds as Engle (2000) and we use the trades that occur between

9:30am to 4:00pm55. In order to account for the calendar effect or the time of day

effect, the data must be seasonally adjusted. This effect is represented by a higher

frequency of transactions near open and close of the market. The adjusted duration

is defined by 

~xi = (112)

where xi = ti –ti–1 is the duration between trades and j(.) is a piecewise linear spline

function used to seasonally adjust the durations. Figure 9 gives an illustration of a linear

spline. 

n Figure 9. Linear spline of the U-shaped intra-day duration 

206

52 We used the same sample of observations as in Engle (2000), firstly, because the purpose of this section is the comparison of Engle’s
(2000) model has a known benchmark with the integrated volatility concept; we already know how this model behave in this context.
Secondly, as explained in Dacorogna et al. (2001), it is not easy to find a reliable source of data in high-frequency finance (e.g. no errors
in the variables like unintentional errors, intentional errors and system errors).

53 The fact that the transactions are irregularly spaced creates heteroskedasticity.
54 It refers to point process.
55 The trades that occur on Thanksgiving Friday, on Christmas Eve, on New Year or overnight durations are not considered, here.
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As shown in this figure, the knots are the points where the linear pieces of the splines

join together. They appeared at times 9:30, 10:00, 11:00, 12:00, 1:00, 2:00, 3:00, 3:30.

Specifically, the seasonal adjustment56 is done by regressing the durations on the time

using a linear spline57 specification, which takes the following form 

x =c + b1t1 +b2t2 + b3t3 + b4t4 + b5t5+ b6t6 + b7t7+ b8t8 +e (113)

where ti–1 for i=2,…,9 are vectors of time variables constructed from the knots. From

this regression we obtain x̂i =j(ti–1; b̂). The resulting variable  ~xi , which is free of the

typical time of day effect, represents fractions of durations below or above normal. 

8.4.2. Comparing volatility calculations

As we mentioned above, the maximum likelihood estimator is used to estimate the

parameters of all of our UHF-GARCH models. After correcting the intraday seasonality,

these models are easy to estimate by using standard software like EViews. For example,

with a simple command in the programming language of that software, one can

estimate equation (105) as follows

Exhibit
Eviews programs for the Extended ACD GARCH model

where the variable duree is our seasonally adjusted duration variable, rends is the return

defined as ri = log D((bidi + aski) / 2) also adjusted for the time of day effect58 as in the

durations59. The longuevola is obtained by computing the mean of squared returns. To

modify the simple GARCH, we used the option @ and then add the variable that we

think might affect the calculation of volatility per seconds. 
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56 For nonparametric methods to estimate the intraday seasonality, see Huptas (2009).
57 Note that we used a linear spline. We might have used a kth-order spline, which is a piecewise polynomial approximation; with polynomials

of degree k differentiable k-1 times everywhere. For example, a cubic spline is a spline of order three and is a piecewise polynomial 
differentiable twice everywhere.  At each knot point the slopes must match and the curvatures from each side must also match.  A
cubic spline is given by the formula s(t)=�3

i=0
aiti+  �n–1

p=1bp(t–ep)3
+ where (t–ep)3

+=max(t–ep,0) . As we can see, s(.) is linear combination of
ti and (t–ep)p. In general, a kth degree spline has n+k parameters, where n is the number of knot points. A useful way of writing 
the function s(.) is called the Bspline, noted B(.). It consists in finding a set of basis function and in representing the general splines as
a linear combination of them. See James and Weber (2000).

58 It must also be adjusted because volatility is known to have a daily configuration (Engle, 2000).
59 It is called the (log D) midquote. This is supposed to be a better measure of the (log D) price, because it reduces the econometric issue

of bid-ask bounce and price discreteness (Engle, 2000).

1
3!

equation ACD.arch(c,h) sqr(duree)
acd.makegarch eduree
genr r=rends
param c(1) -.004 c(2).2 c(3) -.6 c(4) .4 c(5).3 c(6) .5 c(7).5 c(8) -.05 c(9) .1 c(10) .1
equation ACD _UHF .arch(h,s,c=.001, m=200) r ar(1) ma(1) duree @ 1/duree duree/eduree longuevola(–1)
1/duree



To make a comparison between the two methods for computing daily volatility, we have

to consider that the UHF-GARCH gives volatility calculations per seconds and the

realized volatility gives a volatility estimate for a day. We have to transform one of the

models into comparable units. For example, to compute the values of one-day options on

electricity60, which requires a measure on a daily basis that uses the intra-day movements

of the underlying, we have to transform the UHF-GARCH calculation on a daily basis.

A way to proceed is by analogy of the realized volatility calculations. More precisely, we

suggest averaging the intra-day volatilities to obtain a daily volatility calculation as 

s 2
d = �N

i=1 
s 2

i (114)

where s 2
i is obtained by estimating high-frequency GARCH models. At Table 6, we pres-

ent a comparison between different methodologies for computing daily volatility. Using

our intra-daily transactions on IBM stock for the first week of our sample, we compute

the volatilities for five consecutive days, beginning on a Thursday in November 199061.

Thus, our assumption for comparing the volatility computations seems to work well.

l Table 6. Estimations of daily volatility based on realized volatility and GARCH models

Day Realized volatility Simple GARCH ACD GARCH Extended Number of 
ACD GARCH observations

Thursday 3.18 3.68 3.69 3.24 688

Friday 9.13 12.04 12.17 7.49 792

Monday 2.59 3.23 3.04 3.15 671

Tuesday 6.16 6.97 6.96 5.76 732

Wednesday 3.58 3.62 3.62 3.27 649

In fact, we can see that all the GARCH calculations follow quite closely the realized
volatility methodology, which is reassuring. As explained in Bollerslev and Wright (2001)
and as shown at Table 7, the simple GARCH has the worst performance compared to
the realized volatility for high-frequency data. 

l Table 7. Average absolute percentage changes

Day Simple GARCH ACD GARCH Extended ACD GARCH

Thursday 15.72% 16.04% 1.89%

Friday 31.87% 33.30% 17.96%

Monday 24.71% 17.37% 21.62%

Tuesday 13.15% 12.99% 6.49%

Wednesday 1.12% 1.12% 8.66%

Average 17.31% 16.16% 11.32%

208

60 For an introduction on this subject, see Wilmott (2000) or Pilipovic (1998).
61 We have chosen this specific segment of time, simply for comparisons of calculations.
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The Extended ACD GARCH (equation 105) seems to have the best performance among

the GARCH models in our comparison. To have a better idea on the performance of

these volatility models, one can compute standard measures such as the R-squared of

the Mincer-Zarnowitz (1969) regression as in Bollerslev and Wright (2001) or Martens

(2002). We follow the same approach. In the next section, we present a comparison of

forecasts based on our four models. 

8.4.3. Comparing volatility forecasts

Our objective is to make forecasts based on our four models and then to compare them

with the resulting Mincer-Zarnowitz R-squared62. This method is simply to obtain the

R-squared from the regression of realized values of our variable on its forecasted ones.

Before making the actual comparison, we explain how we proceed to obtain these

forecasts based on the four models, namely the realized volatility, the simple GARCH,

the ACD GARCH and the extended ACD GARCH.

The formula given by equation (110) is based on a long order autoregressive model. As-

suming that we want to make forecasts based on data observed at fixed intervals, for

example, every 5 minutes, then a forecasted value for the end of the next day is given by

v̂t+288|t = â1v̂t+287|t + â2v̂t+286|t +â3v̂t+285|t + ...+â288vt + â289vt–1+ â290vt–2+... (115)

where the subscript index t +288, which means that there is 288 intervals of five minutes

in one day. As we can see, (115) is simply a high order autoregressive process. Thus,

our forecasts can be based on the estimation of that process.

The computation of forecasts from a simple GARCH (1, 1) can be done by using the

formula given by equation (104).

The forecasts based on the ACD or extended ACD GARCH models are complicated

due to the fact that we need expected values of durations. This problem might be

bypassed by assuming that this expression has the same types of representation as the

conditional durations. It can be represented by a simple ARMA process63, which is the

approach suggested by Engle and Russel (1998). First, we forecast the values of the

durations based on the ARMA process and then, we include these values in the ACD

GARCH, or in the extended ACD GARCH model. However, this manipulation increases
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62 Other popular measures might be used, such as the mean absolute error (MAE), the root mean squared error (RMSE), the heteroskedas-
ticy adjusted mean absolute error (HMAE), or the heteroskedasticy adjusted root mean squared error (HRMSE). HMAE is defined as

�T

t=1
|(1– and HRMSE =   �T

t=1
|(1– )2

, where the forecasted errors are adjusted for heteroskedasticity. For an  

application of the last two measures, see Andersen et al. (1999), Martens (2002).

63 This is because we know that xi is related to θi . 

1
T

Realizedt
Forecastt

1
T

Realizedt
Forecastt



the number of computations that we have to perform to obtain a forecast. Another

possibility would be to assume that the expected durations become constant after the

last realized value, but this assumption appears to be quite unrealistic. The third

approach suggested involves assuming that the durations can be represented by a log

linear regression models that would look like this xi = e zi b+ei  . This approach leads to

other similar types of modeling like the Cox proportional hazard model or the Weibull

model. Here, we decide to follow the first approach. To be more specific, the

conditional duration might be expressed in the form of an ARMA process. If we use an

ARMA (1, 1) then it is defined by

xi = v +axi–1+bei–1+ei (116)

where ei ≡ xi –θi, which is a Martingale difference by definition (i.e. ei = xi –Ei–1(xi)).

Forecasted values of xi can be obtained from (116) and included in equation (107).

Table 8 shows forecasts evaluation based on the GARCH models in comparisons of the

realized volatility. 

l Table 8. Forecasts evaluation of GARCH models and realized volatility

Number of observations Simple GARCH ACD GARCH Extended ACD GARCH Realized Volatility

700 RMSE : 13.12 RMSE : 13.11 RMSE : 10.94 RMSE : 2.26

MAE : 3.84 MAE : 3.84 MAE : 3.91 MAE : 2.03

R2 : 0.0002 R2 : 0.0001 R2 : 0.0006 R2 : 0.0044

1400 RMSE : 14.83 RMSE : 14.83 RMSE : 12.47 RMSE : 2.23

MAE : 4.35 MAE : 4.35 MAE : 4.34 MAE : 1.99

R2 : 0.0001 R2 : 0.0001 R2 : 0.0003 R2 : 0.0024

2100 RMSE : 15.55 RMSE : 15.54 RMSE : 13.02 RMSE : 2.17

MAE : 4.31 MAE : 4.31 MAE : 4.32 MAE : 1.97

R2 : 0.00008 R2 : 0.00008 R2 : 0.0002 R2 : 0.0015

Comparing the RMSE64 to the MAE or to the R2 of the Mincer-Zarnowitz65 (1969)

regression, the realized volatility method outperforms all the GARCH models. It should

be also noted that none of the numbers presented in this table are significant. However,

in the case of realized volatility, the t statistics of Mincer-Zarnowitz are near significance
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64 Alexander (2001) disagrees with the common usage of criteria such as RMSE in the context of volatility forecast evaluation. The author
observed that this criterion should be used only for mean forecast evaluation. In the context of volatility forecast evaluation, we should
view this measure as a simple distance metric.

65 The Mincer-Zarnowitz regressions are obtained by regressing the ex post realized values of the variable under scrutiny on the forecasted
values of this variable plus a constant term. In our case, we forecasted the IBM prices for different sample sizes: 700, 1400 and 2100,
and then we did the regressions of the related realized values on the forecasted ones, including a constant term (i.e. y*t = c +b y*ft +et ).
The resulting R 2 are shown in Table 8. 
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level66. The poor performance of all the suggested methods for forecasting volatility is

not surprising. When using high frequency data, simple GARCH models are notoriously

known to perform badly (Bellerslev and Wright, 2001). The performance of the simple

realized volatility method is better than the ACD GARCH one. The combination of these

two models could improve the forecasting power. This model combination is suggested,

for instance, in Donaldson and Kamstra (1997). They add an Artificial Neural Network

component to a standard GARCH and they apply this model to forecast the S&P500.

Their model shows improvement in the forecasting power over standard volatility

models. Martens (2002) makes a similar suggestion in his financial econometrics

application on futures. 

8.4.4. A possible application of UHF models in finance:

The case of variance and volatility swaps

In section 3.1.3, we briefly described the process of the VIX calculation and discovered

that it uses a realized volatility estimate. The pricing of volatility swaps on the VIX

actually use this estimate to do so. We should start by describing the pricing of a

variance swap. Let S be the underlying security, a variance swap with a notional amount

N can be represented by (Neftci, 2008)

V (T1,T2) =[s 2
T1,T2 

– F 2
t0

](T2–T1) N (117)

where s 2
T1,T2 

is a measure of realized variance rate of St , t ∈ [T1,T2] and it can be viewed

as a floating rate that will be observed only at T2. Ft0
is the fixed volatility rate of St and

is quoted at time t. 

Here, we shall take a closer look at the floating and fixed legs of this swap.

The floating leg of this swap is given by

s 2
T1,T2

(T2 –T1) =limd⟶0 S
n
i=1( –md )2

=∫T2

T1   
( dSt – md )2

= ∫T2

T1  
s 2

t (118)

where d = ti –ti–1. Equation (118) is similar to the one that we presented for the realized

variance (see equation 108). We could also suggest another estimator, which is given

by equation (114). This estimator can be seen as an approximation of (108). 

For the fixed leg, we determine the Ft0
, which gives the fair value of the variance swap.

Note that the variance swap is designed so that its fair value is equal to 0 at time t0.

Thus, F 2
t0 

is the variance (value) that makes the fair value of the swap equal to zero.
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66 The t statistics are 1.75 (0.08), 1.82 (0.06) and 1.80 (0.07) for sample sizes of 700, 1400 and 2100, respectively. Their corresponding
p-values are given in parenthesis.

1
St

Sti–Sti–1
Sti



From the fundamental theorem of asset pricing67, we can find the proper measure ~P,

which is the risk-neutral measure that gives

E
~P

t0 [s 2
T1,T2 

–F 2
t0](T2–T1)N =0 (119)

Assuming that markets are complete and the continuously compounded risk-free spot

rate r is constant. Then, the money market account (i.e. it give 1$ at T2) can be used for

normalization. Rearranging (119) obtains

F 2
t0 

= E
~P

t0 [s 2
T1,T2 ] (120)

Substituting (118) in (120) obtains

F 2
t0 

=            E
~P

t0 [ ∫T2

T1   
( dSt – md )2] (121)

The integral inside the expectation of (121) can be evaluated using

F 2
t0 

=            E
~P

t0 [Sn
i=1( –md )2] (122)

The risk-neutral expectation can be evaluated via Monte Carlo simulation68. 

Volatility swaps can be valued similarly as (117). For instance, a volatility swap on the

VIX, which trades on the Chicago Futures Exchange, can be valued as follows

(McDonald, 2006)

v (T1,T2)=[VIXT1,T2 
–Ft0 ](T2–T1)N (123)

The difference is that we might not suggest a UHF methodology for valuating (123).

This could be the case here, but as we have seen UHF models might be of some use for

the valuation of volatility swaps. We leave that subject for further investigation.

n 9. Conclusion

We have reviewed several econometric and chaotic models that can be used as DGP’s

of financial time series. In the applied finance literature, econometric models have been

212

67 The fundamental theorem of asset pricing implies that if some state prices (Qi ) exist, then the prices that we are evaluating (Skt0
) are

arbitragefree. The theorem implies three important results: 1) The risk-neutral (risk-adjusted) probabilities are obtained from the state
prices; 2) All properly normalized asset prices have a Martingale property under the selected synthetic probability ~pk. If yt is a stochastic
process that has the property yt = E ~pk

t   [yt]then, yt is a Martingale; 3) Every synthetic probability leads to a particular expected return
for the asset price under consideration (Neftci, 2008).

68 For pricing variance swaps via Monte Carlo simulation, see Rostan et al. (2012).
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more popular than the chaotic ones. One reason that might explain this is the fact that

models and tests that have emerged from chaos theory are generally built on multidi-

mensional spaces, which complicates their computations. A successful related applica-

tion can be found in the literature. It concerns the Brock, Dechert and Scheinkman

(1996) or the BDS test. This test is quite powerful for detecting several types of nonlin-

earities, particularly the nonlinear deterministic ones. 

The econometric models like the GARCH can be used not only to fit a particular series,

but also for pricing derivatives. We have also discussed applications of these models to

data observed at very high frequency. We observed that it is possible to use ARCH mod-

els to forecast volatility at very high frequency using a simple modification to account

for the irregularity of information arrivals. The usual maximum likelihood method was

used to estimate the parameters of the UHF-GARCH. We have also presented an appli-

cation comparing UHF-GARCH models to the realized volatility concept. In terms of

RMSE, MAE and Mincer-Zarnowitz (1969) criterions, the realized volatility has a better

performance than any of the UHF-GARCH models proposed by Engle and Russel (1998)

and by Engle (2000). The developments of the idea of using UHF data to do econometric

inferences have not stopped there. New research has emerged and the concept of real-

ized volatility has been extended to model bivariate phenomenon; this is referred to as

the realized correlation (Russi, 2012). This idea uses an extension of the realized kernels

developed by Barndorff-Nielsen et al. (2008a). The application of realized kernels to

non-synchronous trading seems to yield relevant results (Barndorff-Nielsen et al., 2008b),

because it provides an efficient use of the information (Gatheral and Oomen, 2010). 

Using nonparametric methods, as realized kernels, applied to compute volatility or cor-

relation seems to be a good addition to our econometric tools. It provides an alternative

or a validation process to our basic parametric GARCH or MGARCH. As we presented,

we used the univariate EGARCH and MGARCH models to test for the leverage effect

and the volatility feedback, respectively. Both of the parametric models seem to confirm

previous research. 

Further research should be done to investigate if the use of aggregated data, instead of

non-synchronous ones, creates a bias that could results in bad inferences. In our re-

search, we followed Engle (2000) approach and used irregularly spaced UHF data to

compute both realized volatility and UHF-GARCH. However, most studies (e.g. Boller-

slev et al., 2009) use some sort of aggregated data that is regularly spaced data observed

over a five minutes range. When using irregularly spaced data some sort of correction

must be done to the parametric model used in a similar fashion, as in Engle (2000). All

things considered, if a researcher decides to use irregularly spaced UHF data to compute

some sort of UHF-Multivariate GARCH correlation; then, which corrections should he

performed to the model? Further research should be done to investigate this issue. 
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