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A uniparametric family of modifications for
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Una familia uniparamétrica de modificaciones del método de
Chebyshev
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ABSTRACT. In this paper, we propose a new uniparametric family of
modifications for Chebychev’s method, free from second derivatives,
to solve non-linear equations. It is proved that each method in this
family is cubically convergent. Every iteration of the family requires
one evaluation of the function and two of the first derivative. Hence,
the efficiency index of each method is 3%/ = 1,442 that is better than
that of Newton’s method. Several numerical examples are, also, given
to illustrate the performance of the presented method.
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RESUMEN. En este articulo proponemos una nueva familia de modifica-
ciones del método de Chebychev, independiente de las segundas deriva-
das para resolver ecuaciones no lineales. Se demuestra que cada método
de esta familia converge cibicamente. Cada iteraciénde la familia re-
quiere una evaluacién de la funcién y dos de la primera derivada. Luego
el indice de eficiencia de cada método es 3'/3 = 1,442 el cual es mejor
que el del método de Newton, Sea dan varios ejemplos numéricos para
ilustrar el comportamiento de los métodos.

Palabras y frases claves. Método de Chebyshev, método de Newton,
ecuaciones no lineales, biisqueda de raices, método iterativo.
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1. Introduction

One of the most widely studied problems in Mathematics is to find a solution
for non-linear equations. In this paper, we consider iterative methods to find
a simple root of a non-linear equation f(x) = 0, where f : D C R — R, for
an open interval D, is a scalar function. There are a number of situations in
different scientific disciplines in which this problem appears. Although f(z) =
0 is a relatively easy problem to state, it is also well known that for many
particular choices of the function f, it is very difficult or even impossible to
find an exact solution. So, since centuries ago, different iterative techniques
have been developed in order to approximate a solution of the aforementioned
equation.

Undoubtedly, Newton’s method is the most widely studied and used method
to solve this problem. For a real-valued function f, with an initial value xg,
Newton’s method is defined by

— o f(xn)
Tn+l = Tn o) (1)

Under the appropriate conditions for the function f and the initial value xg,
Newton’s method (1) generates a sequence that converges to a solution of the
equation f(z) = 0. One of the most interesting features of Newton’s method is
its balance between computational cost and speed of convergence, considered
as an important and basic method which converges quadratically [20].

There are many other methods to approximate the solution of non-linear
equations, some of which are variants of Newton’s method that seek either to
reduce the computational cost or to increase the speed of convergence. In the
latter, Chebyshev’s method plays an important role. For a real-valued function
f, with an initial value zy, Chebyshev’s method is defined by

Tptl = Ty — <1 + % Lf(:[,'n)) J{/((Zr;)) ’
in which .
Ly(en) = L2 AE) )

It is well known that Chebyshev’s method is cubically convergent [1,22].

TRAUB [22] credits this method to Euler but in the Russian literature it is
attributed to CHEBYSHEV [2,3]. Although the very method is also known as
Euler’s method or Euler-Chebyshev method, throughout this paper we refer to
it as Chebyshev’s method. Chebyshev’s method together with its variations and
improvements has drawn the attention of many researchers. For instance, from
the historical point of view, we can find an equivalent way to write Chebyshev’s
method known as Schroder’s formula [21]. As a sample of more recently publis-
hed papers about this topic, we can cite [13] and the references cited therein.
Chebyshev’s method can be deduced by different ways. For instance, it can be
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obtained by quadratic interpolation of the inverse function of f, in order to
approximate f~1(0) [22]. It also assumes a geometric derivation, in terms of
an osculating parabola aw(z)? + w(x) + bz + ¢ = 0 that satisfies the tangency
conditions w(xy,) = f(zn), W' (xy) = f'(zn), and w”(z,) = f" () (see [1,19]
for more details). In [13] Chebyshev’s method is obtained from OBRESHKOV’s
techniques.

It is observed that Chebyshev’s method depends on the second derivatives
in computing process, making its practical utility rigorously restricted so that
Newton’s method is frequently used as an alternative in solving non-linear
equations. To remove the second derivative of (2), recently, some variants of
Chebyshev’s method have been obtained [6,7,8,9,10,14,15,16,17,23].

HERNANDEZ [14] developed a second-derivative-free variant of Chebyshev’s
method while approximating the second derivative f”(z,,) by a finite difference
between first derivatives

f'(@n) = £'(5 (@0 + yn)) f(@n)
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So,

Flan) = 7 (o0 - 3 F25)
% I (xn)
In [10,11] a second-derivative-free variant class of Chebyshev’s method is
obtained through approximating the second derivative f”(x,) as follows:

RFACORS (U SN (0

Ly(zn) ~

Tn — Yn Y= f/(xn)7

[ (@n) 0 € (0,1,

that results in
f'(@n) = f'(yn)
0f (zn)
Another class of approximations of Ly (z,,) is obtained in [16], where authors
consider a new finite difference approximation of f”(z,) as

~ f/(yn) — f,(xn) f(xn)

Ly(zn) ~ (4)

[ (an) = T gn—n Yn = Tpn + 0 Fan) 0 € (0,1]
to derive the approximation
L @n) = f(yn)
Ly(xn) =~ W (5)
CHUN [8] used
f”(l'n)z f,(yn)_f/(xn) , yn:xn_ef(xn) 9#0

Yn — Tn f/(xn) ’
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and obtained a class of approximations as follows:

f'(@n) = f'(yn)
0f (zn) .

In [17] authors consider Taylor expansion of f(y,) about ,,, where

f'(wn) ’

L(w,) ~

and get the class of approximations

92f(xn) .

ZHOU [23] considers approximating the equation f(z) = 0 around the point
(Zn, f(zy)) by a hyperbola of the form azw + w + bz + ¢ = 0 and imposes
the tangency conditions w(x,) = f(xn), w'(zn) = f'(zn), w(yn) = f(yn), to
obtain

Lf(xn) ~ 2

(7)

21" (@) f(yn) Yn = T — fzn)
fHxn) — f(xn) f(yn) " " fan)

f(an) = w" (zn) =

Therefore,
2f(yn)
f@n) = flyn)

To derive an approximation of f”(x,,) in (2),CHUN [6] considered the appro-
ximation

Lg(zy) ~

f(z) = h(x) = ax® + ba® + cx +d
which satisfied the conditions f/(z,) = h/(x,) and f'(yn) = h'(yn), in which

f(@n)

Yn = Tp —

He, then, derived the approximation

f'(yn) = f'(@n)

Yn — Tn

f(wn) = B (2) = —AYn —xn), A= 3a,

that resulted in
/ 2
) )
Also, CHUN [7] considers approximating the equation f(z) = 0 around the
point (x,, f(r,)) by the quadratic equation in z and w of the form x? + aw? +
bx + cw+ d = 0. He imposes the tangency conditions w(z,) = f(x,), w'(x,) =

f(xn), w(yn) = f(yn), in which

Lf(],‘n) ~1 (9)
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to derive the approximation

2 (yn) [ (2n) (1 + af ™ (2n))
fAan) + af?(@n)[f (yn) = fzn)]?

(@) =" (x,) =

Hence,
2f (yn) f(25)(1 + af/z(xn))
F2an) +af?(@n)[f (yn) — f(2a)]?

It is proved that all of the above modifications for Chebyshev’s method are
cubically convergent.

Lg(zn) =

(10)

In this paper, we will consider a new technique which is suitable for Chebys-
hev’s method, to construct a finite difference between the first derivatives to
replace the second derivative. So, a new family of modifications for Chebyshev’s
method, free from second derivatives, is obtained. The third order of convergen-
ce of these new methods is proved and their best efficiency, in terms of function
evaluations, is provided, too. Some examples are given to show the efficiency
and superiority of the new methods.

2. A family of modifications for Chebyshev’s method free from
second derivative

In this section, we consider a new finite difference approximation to f”(x,)
as follows:
Bf(xn)

in which g8 # 0 is a parameter. Using the above approximation, we can obtain

L @n + B () — f(@n)

bt = T ) .
that results in the following modifications for Chebyshev’s method:
1 ! n n)) ! n n
Tn4+1 = Tp — <1 + 5 fan + gf”(f(l‘):) MG )> ‘]{./((xxn)) , B#0. (12)

Considering different values of the parameter 5 in (12), we can obtain a
family of Chebyshev-type methods that include, as particular cases, the follo-
wing:

1. As a limit case, when 8 — 0, the classical Chebyshev’s method is
obtained.

2. If we allow the parameter 5 to vary in each iteration of (12), then the
choice f = —0,5/f'(z,) gives the method (3), the choice 8 = -0/ f'(z,),
6 € (0, 1], gives the method (4), the choice 8 = 6/ f'(x,), 8 € (0,1], gives
the method (5), and the choice 8 = =0/ f'(xy,), 6 # 0, gives the method
(6).
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In the sequel, we prove that the methods (12) are cubically convergent for
any choice of the constant parameter 8. To this end, we need the following
facts.

Definition 1. Let f(z) be a real function with a simple root o and {x,, }n>0
be a sequence of real numbers, converging towards a. Then, we say that the
order of convergence of the sequence is p, if there exists a real p > 1 such that

I |Tn41 — af
m —— =
n—00 |xn — a|p

for some C # 0. C' is known as the asymptotic error constant.

If p = 1,2, or 3, the sequence is said to have linear convergence, quadratic
convergence or cubic convergence, respectively.

Definition 2. Let e, = z,, — « be the error in the n-th iteration. We call the
relation

ent1 = Ceb + O(ebh)

as the error equation.

If we obtain the error equation for any iterative method, then the value of
p is its order of convergence.

Definition 3. Let r be the number of new pieces of information required by
a method. A ”piece of informationis typically any evaluation of a function or
one of its derivatives. The efficiency of the method is measured by the concept
of efficiency index [12] and is defined by

p=p""

where p is the order of the method.

It is noticed that each iteration of methods defined by (12) requires one
evaluation of the function and two of its first derivative. Therefore, according
to the definition 3, the methods defined by (12) have the efficiency indexes equal
to v/3 ~ 1,442, which are better than that of Newton’s method v2 ~ 1,414.
Thus, these new methods are preferable if the computational cost of the first
derivative is not greater than that of the function itself.

As we know, to solve the non-linear equation f(z) = 0 most methods have
fixed point style: they transform the equation f(x) = 0 to the x = ¢(z) in
such a way that « is a fixed point of ¢, namely o = p(«). With an initial
approximation xg to the «, they generate the sequence {z,}, in which x,,11 =
©(xn), n > 0. It is obvious that if ¢ is continuous and the sequence {x,} is
convergent, then x, — a. Using the p-th order Taylor series of x,,41 — @ =
o(zn) — p(a) about a, we can easily prove the following theorem.
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Theorem 4. Let sequence z,+1 = @(x,), n > 0, be convergent to the fixed
point « of . If

) =¢" (@)= =P V(@) =0, ¢P(a)#0,
then the sequence {x,,} is convergent of order p with asymptotic error constant

C =@ (a)|/p"

Theorem 5. Let a € I be a simple root of a sufficiently differentiable function
f I — R for an open interval I. If x( is sufficiently close to a, then the class
of methods defined by (12) has third-order convergence for any choice of the
parameter [ # 0, satisfying the error equation

enJrl - (203 - (1 + 1,5ﬂf/(04))03) e:r))z + O(eﬁ)a

®) (o
where e, = x,, — « and ¢, = I{!f’goz;'
Proof. Using Taylor’s expansion and taking f(«) = 0 into account, we have
flan) = f'(@)(en+cael +esep + O(ey)) (13)
F(@n) = f(a)(1+2coe, + 3cze’ + desed + O(er)) (14)
Dividing (13) by (14) gives
}t’((xxz)) = e, — e +2(c3 — c3)ed 4+ 0(ed). (15)

If z, = xp, + Bf(xy), then 2z, —a = e, + Bf'(a) (en + CQefL + (336% + O(ei)) o)
that the Taylor’s expansion of f'(z,) about « can be read as

f'(zn) = f/(@) (14 2c2(zn — @) + 3c3(2n — )2 + 4ca(zn — ) 4 O(er))
= f'(a) (1 +2¢c2(1 + Bf'(a))en + keZ +med + O(er))
in which
k= 2c3B1(a) + 3es(1 + Bf' ()%,
m = 2cac3Bf () (4 + 3B8f () + dea(1 + Bf ()3,
This together with (14) implies that
F'(zn) = f(xn) = f(@) [2c2B8F (@)en + (k — 3e3)e? + (m — des)el + O(en)] -
On the other hand, o)
2 (zn) = (@) (14 desey, + (463 + 6c3)e2 + (12cac5 + 8ea)epy + O(ern))
and hence,
1 1
()~ 2377 |

1 — 4ege, + (1265 — 6¢3)e?

+(36c2c3 — 32¢3 — 8cy)ed + O(er)] . (17)
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Now, using (16) and (17), we have that

f/ n) f/ n / !
(gﬂ)f,z(x:;c - SAa) (2e2Pf (@en + (k = es — 835 f () e

+ (m — deq — dkey — 12c5c3 — 12¢3¢33 + 245¢3) €5 + O(ep)] . (18)

From relations (15) and (18), one can get

1 J'(zn) = f(xn) fl2n) _
l <1 T2 B ) ) @)
en + <2(c§ —c3) + L

26f'(e)

(k—3cs — 10036]"(04))) e3 4

O(ey,). (19)
Therefore,

ent1 = (265 — (1 +1,58f'(a))cs) €2 + O(ep). ]

It has been shown that the Maple package can be successfully employed to
rederive error equations of iterative methods, or, to find their order of conver-
gence (see [4,5] for details). The class of methods (12) in this case is found to
be third-order convergent as shown in the following theorem.

Let a be a simple zero of f. The iteration function F', corresponding to (12),
is defined by

f(x)
fr(z)

(L L) ~ )
Fl@) = (”2 B/72(x) )

According to the theorem 4, it is sufficient to show that

Fla)=a, F'(a)=0, F"(a)=0,

-5 () - (2o

The computations of the above derivatives can be performed using mathemati-
cal software package Maple, one of the computer algebra systems. To do that,
we run the following Maple statements consecutively:
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>L1:=x— >(D(f) (x+5*(x)) =D (f)(x))/ (5*D() (x)*);

D(f)(x +Bf(x)) = D(f)(x)
BD(f)(x)?

>Fi=x— >x—(1+0.5*L1(x))*{(x) /D(f) (x);

Ll :=2— >

Fi=x—>z—(1+ O,5L1(m))D

>algsubs(f(a)=0, F(a));

>algsubs(f(a)=0, D(F)(a));

0.
>algsubs(f(a)=0, (DQQ2)(F)(a));

0.

>algsubs(f(a)=0, (DQQ@3)(F)(x));

_ =300 (H)(@)* + LODD)(£) (@) D(f)(e) + LD (f)(a)BD(f) ()
D(f)()?

Thus, it can be read

Fla)=a, F'(a)=0, F"(a)=0,

= (5~ (i 2) o

Hence,

1/ 111
enn = Flan)=Fle) = F(@)en+ T 2+ T8 s o(et) = cetr0(eh),

///(a) 9 ,
where C' = T 2¢5; — (1 +1,58f"(a))cs.

3. Numerical examples

Now, we employ some new modifications of Chebyshev’s method (NMCH),
Eq. (12), with § = 0,2, obtained in this paper to solve some non-linear equations
to be compared with Newton’s method (NM), Chebyshev’s method (CHM),
the method of Herndndez (HM), Eq. (3), the method of Kou, Li, Wang version
1 (KLWM1), Eq. (5) with 8 = 1/2, the method of Kou, Li, Wang version 2
(KLW2), Eq. (7), with § = —1/2, Zhou’s method (ZM), Eq. (8), Chun’s method
version 1 (CM1), Eq. (9) with A = 0, and Chun’s method version 2 (CM2), Eq.
(10) with a = 1.

All computations were done using MATLAB software with format of long
floating point arithmetics. We accept an approximate solution rather than the



104 H. Esmaeili & A.N. Rezaei. A family of modifications for Chebyshev’s method

exact root, depending on the precision (g) of the computer. We use the follo-
wing stopping criterion for computer programs: |x,+1 — ,| < €. So, when the
stopping criterion is satisfied, z* := z,11 is taken as the exactly computed
root «. For numerical illustrations in this section, we used the fixed stopping
criterion € = 10712,

We used the test functions and obtained the approximate zeros z* up to the
16 digits.

fi(z) = 23 + 422 — 10, fao(z) =sin?x — 2 +1,
f3(x) = 2% —e® — 37 + 2, fa(x) = cosz — x,
f5(x) = (z+2)e” — 1,

As convergence criterion, it is required that the distance of two consecutive
approximations for the zero be less than 107'°. Also, displayed is the number
of iterations to approximate the zero (IT) and the value of | f(z*)].

The test results in Table 1 show that for most of the functions we tested,
our method has better performance compared to other third-order methods,
and can also compete with Newton’s method.

4. Conclusions

In this paper, we proposed a new uniparametric family of modifications for
Chebychev’s method, free from second derivatives, to solve non-linear equa-
tions. It is proved that each method in this family is cubically convergent. Every
iteration of the family requires one evaluation of the function and two of the
first derivative. Hence, the efficiency index of each method is 3'/% = 1,442 that
is better than that of Newton’s method. Numerical experiments shown that
our family is comparable to other third-order convergent methods in terms of
iteration number.
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Table 1. Comparison of various cubically convergent methods and Newton’s method

Method z* IT [f(z™)]
fi, ©o =1
(NMCH) 1.365230013414097 4 0
(NM) 1.365230013414097 6 0
(CHM) 1.365230013414097 5 0
(HM) 1.365230013414097 5 0
(KLWM1) 1.365230013414097 5 0
(KLWM2) 1.365230013414096 4 1.07e-14
(ZM) 1.365230013414097 5 0
(CM1) 1.365230013414097 5 0
(CM2) 1.365230013414097 5 0
f2, zo =2
(NMCH) 1.404491648215341 5 3.33e-16
(NM) 1.404491648215341 6 3.33e-16
(CHM) 1.404491648215341 5 3.33e-16
(HM) 1.404491648215341 5 3.33e-16
(KLWM1) 1.404491648215341 6 4.44e-16
(KLWM2) 1.404491648215341 5 9.99e-16
(ZM) 1.404491648215341 5 4.44e-16
(CM1) 1.404491648215341 6 4.44e-16
(CM2) 1.404491648215341 5 3.33e-16
f3, o = —1,0
(NMCH) 0.2575302854398608 4 0
(NM) 0.2575302854398608 6 0
(CHM) 0.2575302854398608 4 0
(HM) 0.2575302854398608 4 0
(KLWM1) 0.2575302854398607 5 0
(KLWM2) 0.2575302854398608 4 0
(ZM) 0.2575302854398607 5 0
(CM1) 0.2575302854398607 6 0
(CM2) 0.2575302854398607 6 0
fa, ©o =1,
(NMCH) 0.7390851332151607 4 0
(NM) 0.7390851332151606 5 1.11e-16
(CHM) 0.7390851332151607 4 0
(HM) 0.7390851332151607 4 0
(KLWM1) 0.7390851332151607 5 0
(KLWM2) 0.7390851332151607 4 0
(ZM) 0.7390851332151607 6 0
(CM1) 0.7390851332151607 6 0
(CM2) 0.7390851332151607 5 0
fs5, o =1
(NMCH) -0.4428544010023886 5 0
(NM) -0.4428544010023885 8 0
(CHM) -0.4428544010023887 6 0
(HM) -0.4428544010023886 6 0
(KLWM1) -0.4428544010023886 7 0
(KLWM?2) -0.4428544010023888 5 2.2e-16
(ZM) -0.4428544010023886 5 0
(CM1) -0.4428544010023886 5 0
(CM2) -0.4428544010023886 6 0
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