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RESUMEN

En este articulo se obtlenen soluciones para la ecuacién KdV. Estas solu-

ciones son obtenldas a través del método de la function- Exp, con ayuda

del computador.
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Abstract .

In this paper we obtain some exact solutions for
the KdV equation. These solutions are obtained
via the Exp-function method with the aid of a
computer.
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1. INTRODUCTION

Nonlinear evolution and wave equations are par-
tial differential equations (PDEs) involving first
or second-order derivatives with respect to time.
Such equations have been intensively studied for
the past decades [1, 2], and several new methods
to solve nonlinear PDEs, either numerically or
analytically, are now available. When the depen-
dent variable “ in the PDE corresponds to a physi-
cal quantity (such as the surface height of a water
wave, the magnitude of an electromagnetic wave,
etc.), it is important to study the propagation or
aggregation properties of “ . This motivates the
study of methods to analytically solve evolution
or wave equations via symbolic methods. The goal
is to find exact traveling wave solutions. If these
solutions do not change their form during propa-
gation, they are called solitary waves. Solitary
waves that preserve their shape upon collision
are called solitons [3]. Solitary-waves and solitons
arise due to a critical balance between dispersion
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and nonlinearity. Due to- the complexity of the
mathematics involved in: finding-exact.solutions
for these PDEs, the. use of algorithmic techni:
ques that can'be im7plemented in-the symbolic
language of computer algebra systems becomes
a necessity. Several computer algebra packages
now exist to aid in the study of nonlinear PDEs
[4, 5, 6]. For example Pamlev e analys1s offers
an algorlthm for testing whether or not a PDE
is a good candidate to be completely integrable.
In addition, the Painlev’e method allows one to
construct solitary wave solutions in explicit form:
A more powerful techmque is Hirota’s bilinear
method [7]- wh1ch allows one to ﬁnd N-soliton
solutions of large classes of completely integra-
ble PDEs [8] - The story of the first observation
of solitary wavesis worth’ telhng In 1834, while
riding horseback beside the narrow Union canal
near Edinburgh in Scotland, J. Scott Russell
noticed that a bow wave, rolling away from-: a
large barge, traveled-as a huge heap of water for
quite a long distance before finally dispersing into
smaller ripples. In order to study this intriguing
phenomenon, Russell did extensive experiments
in a large water tank.. Further investigations
of solitary waves were done by Airy, Stokes,
Boussinesq, and Rayleigh in an attempt to un-
derstand the mechanism behind this remarkable
phenomenon [9]. The latter two scientists derived
approximate models to describe solitary waves. In
order to-obtain his result, Boussinesq derived -a
one-dimensional- nonhnear wave equatlon which
now bears his name. The issue was ﬁnally resol-
ved (in 1895) by two Dutchmen; Korteweg and de
Vries, when they derived a.-nonlinear evolution
equatien goverrling long, one-dimensional surface
gravity waves (with small amplitude) propagating
in shallow water:
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where 7 is the surface elevation of the wave above
the equilibrium level ”,
tant related to the uniform motion of the liquid,
£ is the gravitational constant, ’ is the surface
tension, and ” is the density. The independent
variables " and ¢ are scaled versions of the time
and space coordinates. Equation (1), which is
called the Korteweg-de Vries (KdV) equation, can
be brought into'a-non-dimensional form via the
change of variables

N . . . . L A‘_«
4=l ,ifc, T=-62¢ w=1 1‘|+l a
2\ ho 2 3

@

“is a small arbitrary cons-

Here subscripts denote partial derivatives,
3
—. After some algebra, one obtains
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u, + 6uu, +u,, = 0.

3
Déespite this early derivation of the KAV equation, -
it was not until 1960 that any new applications of
the equation were discovered [9]. In 1960, while
studying collision-free hydrodynamic waves,
Gardner and Morikawa rediscovered the KdV
equation [10]. Amazingly, the KdV equation
started to show up in a number.of other physical
contexts such as the study of stratified internal
waves, ion-acoustic waves in plasma physics,
lattice dynamics, and so on (further details can -
be found in Jeffrey and Kakutani [11], Scott et
al. [12], Miura [13], Ablowitz and Segur [14],
Lamb [15], Calogero and Degasperis [16], Dodd
et al. [17], and Novikov et al. [18]). Since the late
1960’s, the study of the properties of solitons, and
the search for solitonic equations and methods to
solve them, has been an actlve and exciting area
of research

In this paper we give some new exact solutions of
equation (4) by the exp-function method.
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2. EXACT SOLUTIONS THE KDV EQUATION.
THE EXP- FUNCTION METHOD

Using the transformation
u=1(§), {=pz+ X,
- ‘ (@
where 1, «are constants, Eq.-(4) becomes

V(O + o(E)0'(E) + Av'(€) = 0.
. ‘ 5)

In view of the Exp-function method, we assume
that the solution of Eq. (5) can be expressed in
the form - o

> e, xp(ng)

(€) = == _a_. exp(—c§) + + a, exp(d€)

m=—p

®)
where ¢, d,p and q are positive integers which

are unknown to be determined later, an and bm
are unknown constants.

In order to determine values of ¢ and p , we ba-
lance the linear term of highest order in Eq. (6)
with the highest order nonlinear term, and the
linear term of lowest order in Eq. (6) with the
lowest order nonlinear term, respectively.

By simple calculation, we have

K expl(7p + )]+
k, exp(8p€] + -

V() =
™

and

_ hexpl(p+20)€] + - _
k, exp[3p&] + - '
ks exp[2(3p + c)€] + -+
k, exp[8p&] + -

w(€)2'(€))

y"

®

> b, exp(mé) b, exp(—p€) + -+ b, exp(g€)’

where the ki are some constants. Balancing hig-
hest order of Exp-function in Egs. (8) and

(9), we-have 7p + ¢ = 2(3p + ¢) so that ¢ = p.
Similarly, to determine values of d and ¢, we ba-
lance the linear term of lowest order in Eq. (6)

-+ k "exp[—(7g + d)¢]

’Um(§) = . _,,+k2'exp[—8q§]
9)
and
o _ .-+ k, 'exp[—(d +2¢)§]
v(€)v €)= .-+ k, 'exp[—3¢¢] B
-+ k, 'exp[—2(3q + d)¢]
-« + k, 'exp[—8¢¢]
10)

where the ki are some constants. Balancing lowest
order of Exp-function in Egs. (10) and (11), we
obtain 7g +d = 2(3q + d) so that d = ¢q.

The considerations below say that any solution of
the KdV equation (6) must have the form

a_,exp(—c€)+---+a, exp(df)

" = exp(p) + 4, explae)

We will consider two cases. In these cases we set
b-p = 1, that is, the trial solution has the form

_ a_ exp(—ct) + - + a, exp(d¢)
exp(—p€) + -+ + b, exp(gf)
11)

(§)



21Casel: p=c= 1 and d_=q=1. S

The trial solutlon Eq (12) becomes

o al exp(f) +a,+a eXp( £
exp(€) + by + b_, exp(=§)

(12)

Substituting Eq. (13) into (6) and equating to zero :
the coefficients of all powers of exp (&) yields aset.

of algebraic equations. Solving it with the aid of a
computer, we obtain the following solutions.:

7 2
a/lbo + 12 bO’ b_1:

For b0 =+2 the soliton solutions correspondihg
to these values are :

4'u’2boeu(z+(u2+6a12t) .

(zeuz + boe#(u2+6a1).t)2

ul(:l:, t)=a +
a3)
For b0 =+ 2 and real ,u

2

u,(z,t) = a; + — .
(1) ) l—f-cosh.(u(ac—(p2 +6al)t))
| 149

. 2 .

_ S .
U (Z,t) = a; + c : .
() 1—cosh(,u(z—(y2+6a1)t))
B
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We obtain. periodic solutions in the following
cases :

b'0=2 and:u»=\/—_1mi

u,(z,t) = a, — ' ‘

‘ ' 1+co_s,(m(x +,(m2_6a’l)t))
16)

b0=2and‘u=J~——lml

Coe S m? :

u’(:l:,t)Za - )

o ' '1—cos(m(z+(m2*6a1)t))
(¢)]

22 Case2: p=c=2 andd=q=2.
The trial solution Eq. (12) becomes

%exp(26) + aexp(§) +a +ay eXP( £ +a,exp(-26)
exp(2€) + b exp(§) + b, + b, exp(—£) +b_, exp(—2¢)

v(f)
@as)

Substituting Eq. (16) into (6) and equating

. to zero the coefficients of all powers of exp(¢)

yields a set of algebraic equations. Solving it
with the aid of a computer we obtain many
solutions. For space reasons, we only give
some of them.

I a,=a,, b =5b,a =0,b=0,a,=
b2
a4 sa_ =0, ao=’azbo—i—4,u2bo,b_1 =
.
b, i%, A =—6ua, —4p

16b0/.1/2 —2u(z-2(21% +3a,)t)
(2 + b —2u(z—2(242 +3a2)t))

(19)

us(:c,t) =a, +
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In the case when b0 =+2 we obtain periodic s, - -zl?(za;bg +3p%, — 60,087 — 6u%a,0b? + du'abb, + 6a’a, + 3u’a’b, -
. - u
solutions. More exactly, 4p'al, ~2a7).

Uy, ({E, t) =a, + 2/,LZSGCh2 (/,L(E o 2(2,[1,2 + 3(12)t)) uy(zt) = a, exp(2€) + a, exp(€) + a, + a_, exp(—¢) + a_, exp(—2£)
T exp(2€) + by exp(€) + by + b_y exp(—€) +b_, exp(—2€)

(20) @5)
U (7,t) = a, — 2p’csch® (u(z — 2(2u? + 3a,)t)).
(21) Where £ = plz — (u* —6a,)t).
For by =+2 and p=+—-1m : » V a,=a_, =0, q'1=2q\/r1_,
'U/g(x, t) — a2 _ 2m2 SecZ (m(x + 2(2m2 _ 30,2)t)). .aO = —4q, a—l = —2¢I\/——1-, b_2 = 17
| 22) b,=b=0p= ‘/;J:_l’
A= q\/(;\[—_l
uyy(z,t) = a, — 2m? csc® (m(z +2(2m* — 3a, )t)) ,
2¢ (1 + sin (g z-+qt
(23) g (z,t) = — ( (J_( ))) > 0).
, 1+ cos (2ﬁ(x + qt))
L. o =a, a,=a,, b =0, a, = @6)
_1_a2a14 . = li . = _l_alz(a2 +2u?)
16 48 R Ty ot *To T Ty ut > VL azl =a,=0a = 2gv -1,
1 0112 1 (114 . aO = “‘4(1, 0,_1 = —2QV"1, b_2 = 17

b= =L, b, =0, =—2,
’ 2[1/4 ' . 2. 16u8 i b_1=b1=0,/‘=’"J;‘J—_1,A="QJ-q-‘J—_]..

2q (1 —sin (ﬁ(x + qt)))

' z,t) = — 0).
dpte™ + 2e2#(u’+ﬁag)t) + 4y + p?)erlaHut6a)t) 11-14( 2) .
uu(z’t)=(". % o, + 4 (e + 1) . . 1+ cos (2./g(z + qt)
(2;1/26‘“ + aleu(u’+5%)=)z
(24) (X))
Iv. o, =a,a,=a, b =b,b=b,A=—u"—6pa, VII. Other interesting periodic solutions are :
a,= 1:12&8 (3a," +3a,b* +4p'a,’b b — 8u'aabb +12u%aab} — 12y’ﬁla,’bl’ + - - R . L 7
18a/%0, —120,0,"° —12aa,b, — 4p%a’b, + 44%a,%" + 4u'a b)), m . m 2
Aot 120007 120 ah — At + 4we b+ du'eh) u (z,t) = ——|4 + resc’ 5—(7‘1‘ +m(r +12)t)||.
1 : r
a, = —m(muzuﬁzzb1 +4p'alb —154%0,0.%" — 8u'a b’ — 3{4"11’ + 6%} +
4p'a,b® +2a,°0° — 6a,0,°b” + 4u'a,’b b, + 6a'a,’b — 4p'an b —
2a%a, + 4pab b — 4u‘ab)), (28)
a, = ;1?(2"1“21’1 + b + pwlab, —a, b’ — plah’ ~ al’), -~
b,= 161;4" (30, +3a,'0" +4p'a’b’,  8p'aapp +12u%a)’ 124%0a%° +

18a%a,%* 12a06° 12a'ab,  4p’alh +4plab! +4p'a),




N

u (z,t) = 7271_:{4 - 7”rse_c2 [%n;(m +m’ (r\;12)t)]]

(29

m? (r* — 24 + 8 cos (2m(z - 2ﬁ’t))+ S-Vlf? -7 s‘in (m(z' - 2m’t)))
2 (r_+ 4cos (m(z - Zmzt))j' o

u,(z,t) =

(30)

VIII. Finally, other interesting. solitonic solu-
tions are :

- . 2 P | A—‘ ) I‘L * . ‘ . . < V v
u,(z,t) = £ 14— resch? [— (rz — p*(r +"12)t)] .
2 - A\2r - S

(31)

2 ‘ ' - ' - * - ' .
u (z,t) = ——g—;[zl - rse(_‘:h2 [% (rz — pz(r - 1(2)t)}].
(32)

2 424 + 816 + r* cosh (:l: + 2t)+ 8cosh (2(1 + 2t))

Uy (3,8) = —
w(Bt) = —= 2 (- 4sinh (z +2¢)

(33
Figure 1 and Figure 2 illustrate graphically some

solutions. The soliton solution u,(z,t) and the
periodic solution u,(z,t).

Figure 1: The solution UZ(IIJ, t) for
m=2,al =0,!t|§1andl.’1)v|_<_2.

NEW SOLUTIONS FOR THE KDV EQUATION BY THE EXP-FUNCTION METHOD

Figure 2: The function %, , (SC, t) forq =2
and 1,2 € [»—‘3, 3]

4. CONCLUSIONS -

In this paper, by using the exp-function me-
thod and the help of a computer, we obtained
some exact solutions for the KdV equation
(4). The method-is direct and effective. We
may apply this method to solve other partial
and ordinary nonlinear differential equatio-
ns. The Exp-function method is a promising
and powerful new method for NLEEs arising
in mathematical physics. Its applications are
worth further studying. '
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