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ABSTRACT

Heavy oil is considered nowadays as one of the unconventional reservoirs of main interest in the oil 
industry. Some of them display non-Newtonian pseudoplastic behavior which mathematical modeling 
differs from the conventional case and, therefore, the flow regimes display some particular behaviors. 

Fracturing fluids, foams, some fluids for Enhanced Oil Recovery (EOR) and drilling muds can also fall into 
this category. The spherical/hemispherical flow mainly caused by partial completion/penetration deserves 
a particular treatment for pseudoplastic flow. A single research for this case was found in the literature to 
introduce only its mathematical model. 
The pressure and pressure derivative behavior of spherical/hemispherical flow behavior of a slightly compress-
ible, non-Newtonian power-law fluid (pseudoplastic) is studied in this work and conventional and Tiab’s Direct 
Synthesis (TDS) methodologies are extended for well test interpretation purposes. For pseudoplastic spherical/
hemispherical flow, the slope of the pressure derivative is no longer -½, besides it changes with the value of 
flow behavior index n, which indicates that the interpretation of pressure data for the dealt systems through 
the use of traditional methods should not be accurate. New Equations are introduced to estimate spherical/
hemispherical permeability and spherical/hemispherical skin factor for the systems under consideration. The 
Equations were successfully verified by its application to synthetic cases.
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RESUMEN

Los crudo pesados son considerados actualmente como una clase de yacimientos no convencional de 
mayor interés para la industria petrolera. Algunos de ellos muestran un comportamiento no Newtoniano 
pseudoplástico cuyo modelo matemático difiere del caso convencional y por ende, los regímenes de 

flujo presentan algunos comportamientos particulares. Los fluidos de fracturamiento, las espumas, algunos 
fluidos usados en recobro mejorado y los lodos de perforación también caen en esta categoría. El flujo 
esférico/hemisférico causado por completamiento/penetración parcial merece un tratamiento especial para 
flujo pseudoplástico. Se encontró para este caso una sola investigación en la literatura que solo introduce 
el modelo matemático. 
En este trabajo se estudia el comportamiento de la presión y la derivada de presión para flujo esférico/hemis-
férico de un fluido ligeramente compresible, no Newtoniano ley de potencia (pseudoplástico) y se extienden 
la metodologías convencional y Tiab’s Direct Synthesis (TDS) para propósitos interpretativos de pruebas de 
pozos. En flujo esférico/hemisférico pseudoplástico, la pendiente de la curva de la derivada ya no es de -½, 
es más cambia con el valor del índice de comportamiento de flujo n, lo que indica que la interpretación de 
datos de presión para los sistemas en cuestión usando métodos tradicionales no sería exacto. Se introducen 
nuevas ecuaciones para estimar la permeabilidad esférica/hemisférica y el factor de daño esférico/hemisférico 
para tales sistemas. Las ecuaciones se verificaron satisfactoriamente con casos simulados.

Palabras clave: Fluido pseudoplástico, Consistencia, Ley de potencia, Flujo radial, Completamiento parcial, 
Penetración parcial, Análisis de presiones, Presiones transitorias. 

RESUMO

O scrus pesados são considerados atualmente como uma classe de jazidas não convencional de maior 
interesse para a indústria petroleira. Alguns deles mostram um comportamento não Newtoniano 
pseudoplástico cujo modelo matemático difere do caso convencional e, portanto, os regimes de 

fluxo apresentam alguns comportamentos particulares. Os fluídos de faturamento, as espumas, alguns fluí-
dos usados em recuperação melhorada e os lodos de perfuração, também caem nesta categoria. O fluxo 
esférico/hemisférico causado por completamento/penetração parcial merece um tratamento especial para 
fluxo pseudoplástico.  Encontrou-se para este caso somente uma pesquisa na literatura que só introduz o 
modelo matemático. 
Neste trabalho se estuda o comportamento da pressão e a derivada de pressão para fluxo esférico/hemisférico 
de um fluído ligeiramente compreensível, não Newtoniano lei de potência (pseudoplástico) e estendem-se 
a metodologias convencional e Tiab’s Direct Synthesis (TDS) para propósitos interpretativos de provas de 
poços. Em fluxo esférico/hemisférico pseudoplástico, a pendente da curva da derivada já não é de -½, é 
mais muda com o valor do índice de comportamento de fluxo n, o que indica que a interpretação de dados 
de pressão para os sistemas em questão usando métodos tradicionais não seria exato. São introduzidas 
novas equações para estimar a permeabilidade esférica/hemisférica e o fator de dano esférico/hemisférico 
para tais sistemas. As equações foram verificadas satisfatoriamente com casos simulados. 

Palavras chave: Fluído pseudoplástico, Consistência, Lei de potência, Fluxo radial, Completamento parcial, 
Penetração parcial, Análises de pressões, Pressões transitórias. 
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1. INTRODUCTION

A well with either partial penetration or partial 
completion causes the development hemispherical or 
spherical flow before the radial flow regime takes place. 
Spherical flow can occur in horizontal wells when its 
effective horizontal length is about 5 times shorter than 
the bed thickness. 

Chatas (1966) presented the first discussion of 
unsteady-state spherical flow. Culham (1974) presented 
equations suitable for pressure buildup analysis but the 
wellbore storage distortion was not included. Later, Jo-
seph and Koederitz (1985) presented analytical solutions 
including wellbore storage and damage skin effects. They 
conducted the interpretation via conventional analysis and 
type-curve matching. Proett and Chin (1998) introduced 
new more accurate analytical solutions and provided 
pressure and pressure derivative type-curve matching 
solution to the problem of spherical flow. Using the model 
proposed by Joseph and Koederitz (1985), Recently, 
Moncada et al. (2005) include the TDS technique, Tiab 
(1993), for well test interpretation of spherical and hemi-
spherical flow in vertical oil and gas wells.

There have been some applications of well test analysis 
to Non-Newtonian fluids for interfase power-law non-
Newtonian/Newtonian fluids, double porosity systems and 
even Bingham fluids by, respectively, Escobar, Martínez 
and Montealegre (2010), Escobar, Zambrano, Giraldo and 
Cantillo (2011) and Martinez, Escobar and Montealegre 
(2011). However, none of them considers either spherical 
or hemispherical flow. Actually, the unique work avail-
able for non-Newtonian spherical flow was presented by 
Ci-qun (1988) to only introduce the solution for infinite-
spherical flow regime. He derived a nonlinear parabolic 
partial differential equation and provided asymptotic and 
approximate solutions of the linearized parabolic equation.

In this work, the solutions presented by Ci-qun 
(1988) were used to introduce the pressure behavior 
of transient spherical pseudoplastic. It is observed 
that the pressure derivative changes its slope from -½ 
(Newtonian case) to about 0.22 as the flow index varies 
from 1 to 0.1. Even, for n = 0.5 the pressure derivative 
becomes flat similar to radial Newtonian flow regime. 
Both the straight-line conventional method and the TDS 
technique were extended for well test interpretation. 

The new equations were applied to simulated cases 
providing very low deviation errors with respect to the 
input simulation values. Since only one publication 
precedes this one, no field cases are presented, how-
ever, partial completion/penetration is everywhere 
and applicability of this work is valuable. Actually, 
our experience indicates that some wells with sand 
deposition easily develop hemispherical flow. If a 
well under these conditions is used for the injection 
of foams, fracturing fluids or tertiary recovery fluids 
and is then tested, the tools for interpretation are 
given here. This work is also very useful to under-
stand the pressure and pressure derivative behavior of 
hemispherical/spherical non-Newtonian flow which 
is unknown until now. As observed in Figure 2, the 
pressure derivative displays a slope of -½ for the 
Newtonian case (n = 1) as expected. As the value of 
coefficient n decreases gradually until 0.1, the slope 
of the pressure derivative also increases gradually 
until a value of 0.22. An interesting fact occurs at 
an n value of 0.5 when the pressure derivative be-
comes flat which resembles the radial flow regime 
of a Newtonian fluid. This work also is very useful 
to understand the pressure and pressure derivative 
behavior of hemispherical/spherical non-Newtonian 
flow which was unknown until now. 

2. MATHEMATICAL FORMULATION

Ci-qun (1988) presented a linearized form of the 
diffusivity equation for spherical non-Newtonian flow 
in porous media, as follows: 

2 1
12

1 n n
n

p pr G r
r r r t

−∂ ∂ ∂  = ∂ ∂ ∂  	 (1)

The Equation 1 in dimensionless form for transient 
spherical flow of Non-Newtonian power-law fluid is

2 1
2

1 n nD D
D Dn

D D D D

P Pr r
r r r t

− ∂ ∂∂
= ∂ ∂ ∂  	 (2)

The dimensionless initial and boundary conditions 
are

( ),0 0D DP r = 	 (3)
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He also presented the Laplace solutions for the 
case of infinite reservoir and constant-rate production. 
Notice that this equation becomes very particular ac-
cording to the value of n. For n < 0.5 this is:

( )
3
2

1-2 3
4-2 4-22 - 2 -D n

n n

z zP z K K z
n n

   
=    

   
	 (6)

It is interesting to observe that for n = 0.5 Equation 6 
reduces to the pseudo-radial flow case. It means that the 
pressure behavior of Non-Newtonian fluid in a spheri-
cal flow for n = 0.5 is the same as that of Newtonian 
fluid in radial flow.
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3 3D
z zP z K K z

   
=    

    	 (7)

For 0.5 < n ≤ 1:
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−

+

=

	 (8)

Figure 1. Cartesian dimensionless plot of pressure against the inverse-square-root of time.

When n = 1, Equation 6 reduces to the spherical flow 
case of Newtonian fluids. The results of the simulations 
are reported in Figures 1 and 2. In conventional crude 
and gas, a plot of pressure versus the inverted value of 
the square root of time provides a straight line which 
slope and intercept are used to estimate the spherical 
(tridimensional) permeability and the spherical skin 
factor. Observe in Figure 1 that as n decreases its 
value the straight-line disappears and become more 
curved at later times. This means that the conventional 
analysis for Newtonian fluids should not be applied 
for non-Newtonian case. On the other hand, the pres-
sure derivative, Figure 2, increases its slope from -½ 
to about 0.22 as n goes from 1 to 0.1. On one hand, 
for the Newtonian case, n = 1, the pressure derivative 
displays a slope of -½ as expected which validates the 
solution presented by Ci-qun (1988). On the other hand, 
the pressure derivative becomes flat (radial flow) for 
n=0.5. Therefore, new Equations for handling values of 
n less than one will be developed later on in this paper.

3. FUNDAMENTAL EQUATIONS

The dimensionless pressure, PD, and the dimension-
less time, tD, for spherical and radial symmetry are:

 

( ) ( )
1 2

170.6 96681.605
DspNN n

n n eff sw

sp

PP
r

qB
k

µ −
−

∆
=

	 (9)

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

t  
 *

P 
'  

D
   

   
  D

 n
0.1
0.3
0.5
0.7
0.9
1

1 / DspNNt



23CT&F - Ciencia, Tecnología y Futuro  -  Vol. 5  Num. 1      Dec. 2012

TRANSIENT PRESSURE ANALYSIS FOR VERTICAL WELLS WITH SPHERICAL POWER-LAW FLOW

 
( )

( )

( ) ( )
1 2

1

* '
* '

70.6 96681.605

spNN
D D nspNN

n n eff sw

sp

t P
t P

r
qB

k
µ −

−

∆
=

	 (10)

 
3

1
DspNN n

sw

tt
G r −= 	 (11)

Where:

k qB 

1

1

3792.188
96681.605

n
eff t sw

sp

n c rG
φµ −

 
=

  	 (12)

 

( )
1

1141.2 96681.605
DrNN n n

n eff w

r

PP
rqB

h k
µ −

−

∆
=

 
 
  	 (13)

( ) ( )

( )
1

1

* '
* '

141.2 96681.605

rNN
D D n nrNN

n eff w

r

t P
t P

rqB
h k

µ −
−

∆
=

 
 
  	(14)

 
3

2
DNNr n

w

tt
G r −=

	 (15)

Where:

1

2

3792.188
96681.605

n
eff t

r

n c hG
k qB

φµ −
 

=  
  	 (16)

Figure 2. Behavior dimensionless pressure derivative for a non-Newtonian fluid in the spherical 
flow for different values of n.
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4. INTERPRETATION METHODOLOGIES

Conventional Analysis
As seen in Figure 1, the Cartesian plot of P versus 

1/t0.5 only works for n = 1. Therefore, a plot of pressure 
versus t is required; being β the slope of the Cartesian 
plot which depends upon the value of n.

1) The Cartesian spherical flow slope for a non-
Newtonian fluid is given by:

102 4 6 8

2 4 6 8 101
a cn en gn in kn

bn dn fn hn jn
β + + + + +

+ + + + +
=

	 (18)

With a R2 = 0.99999977. The values of the coef-
ficients are given in Table 1.

Which involves a correction factor given by:

 2 3a bn cn dnFC e + + += 2 3a bn cn dnFC e + + += 	   (19)

The values of coefficients are presented in Table 2.
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Table 1. Constants values for Equation 18. 

Coefficient Value

a 0.42935158

b 1116.18599

c 225.272219

d -6572.71512

e -2517.29978

f 7053.57725

g 9437.07854

h 25686.2003

i -8348.94782

j 4322.10228

k -14599.4614

Table 2. Constants values for Equation 19. 

Coefficient n > 0.5 n < 0.5

a 0.30696567 0.35144873

b 1.93824052 -0.36832669

c -3.69373734 -0.14199263

d 1.44854403 0.13283018

2) The dimensionless pressure for spherical flow in 
a non-Newtonian fluid is expressed according to the 
value of n:

For n ≠ 0.5 y n ≤ 1:

1
2DspNN DspNN spNN

FCP t sβ

β π
= + +

	 (20)

Replacing the dimensionless quantities given by 
Equations 9 and 11 into Equation 20 yields:

	 (21)

As indicated before, notice that Equation 21 suggests 
that a Cartesian plot of Pwf vs. tß gives a linear trend 

which slope and intercept allow for the estimation of 
the spherical permeability and spherical skin factor, 
such as:

	 (22)

	 (23) 

For buildup pressure tests a plot of Pws vs. (tp+Dt)-
(tp) ought to be built instead. Equations 22 and 23 are 
used for similar purposes.

If β > 0.5, the slope is taken as positive and if β < 
0.5, the slope is taken as negative.

 
( ) ( )1 (0 )

1 2

196681.605 1
70.6

n
n sp i wf hr

spNN n
eff sw

k P P
s

qB rµ
−

−

− 
= − 

  	 (24)

For n = 0.5, the governing equation is given by:

 ( )0.3333 ln (1 )DspNN DspNN spNNP t s = + + 	 (25)

Replacing the dimensionless quantities given by 
Equations 9 and 12 into Equation 25, we obtain:

	 (26)
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Equation 26 suggests that a semilog plot of P vs. t or 
Pwf vs. t gives a linear trend which slope and intercept 
allow for the estimation of the spherical permeability 
and spherical skin factor, such as:

 
( ) ( )154.2 96681.605 n n eff

sp

m qB
k
µ−= 	 (27)

 
( ) ( )0.5 0.554.2 96681.605 eff
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  

    

	 (29)

TDS Technique
Several characteristic behaviors are chosen from 

the pressure and pressure derivative log-log plot, as 
follows:

1) Replacing the dimensionless quantities given by 
Equations 10 and 11 into Equation A.1 will result:

 

( ) ( ) ( )119.9158 96681.605 n n

spNN

FC −=
∆

	 (30)

Replacing the dimensionless quantity given by 
Equation 10 into Equation A.2 allows obtaining:

 
( ) ( ) ( )

0.5 0.523.53 96681.605
*

eff
sp

spNN

k qB
t P

µ
=

∆
	 (31)

2) The spherical skin factor for a non-Newtonian 
fluid is derived from the ratio of the dimensionless pres-

sure equation by the dimensionless pressure derivative 
equation and solving for sspNN.

For n ≠ 0.5 and n ≤ 1 using Equations 20 and A.1 
gives: 

	 (32)

For n = 0.5 using Equations 24 and A.2 also gives:

 

2ln 7.24
*

sp sp
spNN

spNN eff t sw

k tPs
t P n c rφµ

  ∆ = − +     ∆     	 (33) 

3) Replacing the dimensionless quantities given 
by Equations 14 and 15 in Equation A.11 provides an 
expression to estimate reservoir permeability:

	 (34)

An erroneous version of the dimensionless pressure 
and skin factor were presented by Martínez, Escobar 
and Cantillo (2011) and Escobar et al. (2010). The 
corrected version for skin factor, which is invalid for 
n = 1 is:
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1 1
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rNN n
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P ts
t P G r

α

α −

 ∆  
= −   ∆    	 (35)
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4) The line corresponding to the spherical flow and 
the late radial flow line of the dimensionless pressure 
derivative in radial symmetry intersect according to:

Then, for n ≠ 0.5 and n ≤ 1, the intercept of Equa-
tions A.8 with Equation A.11 gives:

	 (36)

Replacing the dimensionless time and solving for 
the time of intersection will result in:

	 (37)

From which spherical permeability can be solved 
to obtain:

	 (38)

For n = 0.5, the intercept of Equation A.9 and A.11 
yields:

 0.5
0.20.16665 0.5r
DrNN

sp w

k h t
k r

 
= 

  	 (39)

After replacing the dimensionless time and solving 
for time of intersection will give:

5

2
0.3333 r

i
sp

kt G h
k

 
=  

   	 (40)

Also solving for the spherical permeability allows 
obtaining:

 0.2

20.3333sp r
i

G hk k
t

 
=  

  	 (41)

This work did not considered wellbore storage ef-
fects. However, if given the case, the wellbore storage 
coefficient can be estimated using the same expression 
for the Newtonian fluids as presented in Equation 8 by 
Katime-Meindl and Tiab (2001):

24 24 * '
qB t qB tC

P t P
   = =   ∆ ∆    	 (42)

As, it is well known, using the coordinates of a point 
in the early unit-slope region is used to estimate the 
wellbore storage coefficient. 

5. EXAMPLES

Example 1
A synthetic pressure test of a well inside an infinite 

reservoir was generated with the data in Table 3. Use 
both TDS technique and conventional analysis to obtain 
permeability and spherical skin factor.

Table 3. Reservoir and fluid data for example.

Parameter Example 1 Example 2

Pi, psi 5000 5000

n 0.6 0.8

Ф, % 0.2 0.25

kr, md 25 20

ksp, md 15 15

h, ft 100 100

ct, 1/Psi 1.0x10-5 3.0x10-6

hp, ft 13 13

rw, ft 0.3 0.3

q, Bbl/D 300 300

H, cp.sn-1 2 2

B, rb/STB 1.2 1.2
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Solution 
The log-log plot of pressure and pressure derivative 

against time is given in Figure 3. From that plot the 
following information was read: 

tspNN = 0.02 hr	 ∆PspNN = 169 psi	 (t*∆P’)spNN = 17.8 psi

trNN = 10 hr	 ∆PrNN = 271.2 psi	 (t*∆P’)rNN = 22.03 psi

ti = 0.44 hr

First, an a value of 0.16667 is evaluated using an 
expression introduced by Escobar et al. (2010).

1
3

n
n

α −
=

− 	 (43)

Equation 17 provides a value of µeff = 0.00491 cp(s/
ft)n-1. Then, a radial permeability of 25.48 md is esti-
mated with Equation 34 and a spherical permeability 
of 14.93 md is obtained with Equation 30. G2 = 5.183 
hr/ft3-n is calculated with Equation 16 and a value of 
srNN of 38.83 is found using Equation 35. 

Now, Equation 18 is to find a slope value of -0.0975 
and Equation 19 is used to find a correction factor 
1.573. The spherical permeability is again estimated 
using Equation 30. The equivalent wellbore radius is 
found to be 1.725 ft using an expression introduced by 
Chatas (1966):

 

2ln

p
sw

p

w

h
r

h
r

=
 
 
 

	 (44)

A spherical skin factor of 4 is found with Equation 
32 and a vertical permeability of 5.13 md is estimated 
with Equation 45.

3

2
sp

v
r

k
k

k
= 	 (45)

The spherical permeability is calculated again with 
Equation 38. It results to be 15.03 md. 

Regarding the conventional method, Figure 4 shows 
a Cartesian plot of P versus t -0.0975 which slope provides 
a spherical permeability of 15 md by means of Equa-
tion 23 and a spherical skin factor of 4 with Equation 
24. Main results are given in table 4 for comparison 
purposes.

Example 2
Another synthetic pressure test for a well in an 

infinite reservoir was generated with information 
from Table 3. Perform the same characterization of 
example 1.

Solution
The log-log plot of pressure and pressure derivative 

against injection time is given in Figure 5. From that 
plot the following information was read: 

Figure 3. Pressure and pressure derivative for example 1.
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Figure 4. Cartesian plot for example 1.
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Figure 5. Pressure and pressure derivative for example 2.

Figure 6. Pressure and pressure derivative for example 1.
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tspNN = 0.02 hr	 ∆PspNN  = 510 psi	 (t*∆P’)spNN= 31.99 psi

trNN = 10 hr	 ∆PrNN = 655.94 psi	 (t*∆P’)rNN= 27.64 psi

ti= 0.12 hr

As for the former example, an a value of 0.0909 is 
calculated with Equation 43 and the non-Newtonian 
radial permeability of 20.93 is estimated with Equa-
tion 34. A µeff  value of 0.0996 cp(s/ft)n-1 is found with 
Equation 17 and a G2 = 8.324x10-5 hr/ft3-n is calculated 
with Equation 16. 

Equation 35 allows to obtain a spherical skin factor 
of 23.45. Equations 18 and 19 are used to obtain values 
of 0.2972 and 1.265 for slope and corrections factor, 
respectively. The apparent wellbore radius is equal to 
example 1.

Spherical permeability is calculated with Equation 30. 
Its value is 15.11 md.

Values of 0.67 and 7.88 md are found for spherical 
skin factor and vertical permeability, respectively, using 
Equations 32 and 45. Finally, a spherical permeability 
of 15.6 md is found with Equation 38. 

The values of slope and intercept from the Carte-
sian plot shown in Figure 6 allows for the calculation 
of a spherical permeability of 15.13 md and skin fac-

tor of 0.674 using Equations 23 and 24, respectively. 
The main results for this exercise are also provided in 
Table 4.

6. DISCUSSION

Very low errors in the estimation of spherical perme-
ability and radial permeability were found in all of the 
worked synthetic examples. Actually, for the presented 
examples the errors are lower than 4% for the spherical 
permeability and 7% for radial permeability as shown in 
Table 4. However, we believe that this is function of how 
well the interpreter reads the characteristic points for 
which purpose computer applications are recommended. 
This demonstrates that the developed expressions are 
accurate and can be trustily applied with any of the two 
provided methodologies presented in this work. 

Even though, the worked examples are presented 
for synthetic cases, this work is considered to have a 
great potential in heavy oil fields in which bottom wa-
ter influxes exist as the example provided in Figure 7 
in which the pressure derivative goes down due to the 
aquifer influence. This leads to avoid the radial flow to 
be seen. For such cases is recommended to complete 
the well as partially penetrated to delay the influence 
of the aquifer and conduct a well test using a bottom-
hole shut-in device so the hemispherical flow can be 
seen and analyzed.
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eastern plains basin.
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Table 4. Summary of main results for the worked examples.

EXAMPLE 1

Parameter TDS Technique Conventional Analysis

Value Equation Error (%) Value Equation Error (%)

ksp, md 14.93 30 0.47 15 19 0 

ksp, md 15.03 38 0.2 - -

kr, md 25.48 34 1.92 - -

kv, md 5.13 45 5 - -

EXAMPLE 2

ksp, md 15.11 30 0.73 15.13 19 0.87

ksp, md 15.60 38 4 - -

kr, md 20.93 34 4.65 - -

kv, md 7.88 45 6.6 - -

7. CONCLUSIONS

● �New expressions were introduced to estimate per-
meability and the skin factor for spherical flow in 
non-Newtonian fluids pseudoplastic fluid using both 
the TDS and straight-line conventional techniques. 
The presented Equations were successfully applied 
to synthetic cases providing acceptable margin of 
errors. 

● �Corrected expressions for the dimensionless pressure 
and mechanical skin factor (radial flow regime) for 
non-Newtonian fluid were introduced.

8. RECOMMENDATIONS FOR
FUTURE WORK

This work is based upon the only one on the 
subject presented by Ci-qun (1988). Ci-qun’s solu-
tion did consider neither skin nor wellbore storage 
effects. However, spherical/hemispherical skin fac-
tor expressions were included with the help of the 
development of approximate governing pressure 
Equations. Notice that both TDS and straight-line 
conventional analyses are introduced in this paper 
for characterizing both partial penetration or partial 
completion by well test analysis. Needless to say that 

the conventional analysis works perfectly as long 
as the flow regimes are well defined which may be 
supported on the pressure derivative curve. Thereby, 
a type-curve methodology needs an exact analytical 
solution handling both skin and wellbore storage 
which does not exist so far. It is recommended to 
generate the above mentioned solution to generate 
a type-curve matching methodology for the problem 
dealt with in this work. The analytical solution will 
also serve to study wellbore storage, skin effects and 
length of the completion interval on masking the 
spherical/hemispherical flow regime.
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NOTATION

B Oil formation factor, rb/STB
C Wellbore storage coefficient, bbl/psi
ct System total compressibility, 1/psi
h Formation thickness, ft
H Consistency (Power-law parameter), cp.sn-1

k Permeability, md
m Slope Cartesian Plot
n Flow behavior index (power-law parameter)
p Pressure, psi

Pi Initial Pressure, psi
q Flow rate, STB/D
r Radius, ft

rsw Spherical Radius, ft
s Skin Factor
t Time, hr

t*Dp’ Pressure derivative, psi

GREEKS

a Slope Pressure derivative non-Newtonian Radial Flow
β Slope Pressure derivative non-Newtonian Spherical Flow
D Change, drop
Ф Porosity, Fraction

µeff Effective viscosity for power-law fluids, cp.(s/ft)n-1

SUFFICES

D Dimensionless
eff Effective

i Intersection
NN Non-Newtonian

r Radial
sp Spherical
v Vertical
w Wellbore
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ANNEX A. EQUATIONS FOR SPHERICAL
 FLOW (TDS TECHNIQUE)

1) The governing dimensionless pressure derivative 
for spherical flow in a non-Newtonian fluid is provided 
the value of n:

For n ≠ 0.5 and n ≤ 1:

 ( )* '
2D D DspNNspNN

FCt P t β
π

= 	 (A.1)

For n = 0.5

 ( )* ' 0.3333D D spNN
t P = 	 (A.2)

2) Since the Equations for the pressure and the pres-
sure derivative (Equations 20, 25, A.3 and A.6) are given 
in spherical symmetry it is necessary to transform them 
to a radial symmetry. For this considers the dimension-
less variables of the radial (Equations 13, 14 and 15) 
and spherical symmetries (Equations 9, 20 and 11):

Combining Equations 9 and 13 yields:

1

2
nn

spsw w
DspNN DrNN

r sw

kr rP P
h k r

−
  =   

    	 (A.3)

Combining Equations 10 and 14 yields:

( ) ( )
1

* ' 2 * '
nn

spsw w
D D D DspNN rNN

r sw

kr rt P t P
h k r

−
  =   

   
	

(A.4)

Combining Equations 11 and 15 yields:

3 1n n
spw

DspNN rDNN
sw r sw

kr ht t
r k r

− −
   

=    
   

	 (A.5) 

3) The Equations of the dimensionless pressure for 
the spherical flow non-Newtonian in radial symmetry 
are given by substitution of Equations A.3 and A.5 into 
Equation 20 and Equation A.3 into Equation 25.

For n ≠ 0.5 y n ≤ 1:

(A.6)

For n = 0.5

	 (A.7)

5) The Equations of the pressure derivative of the 
spherical flow non-Newtonian in radial symmetry are 
given by substitution of Equations A.4 and A.5 into 
Equation A.1 and Equation A.4 in Equation A.2.

For n ≠ 0.5 and n ≤ 1:

	 (A.8)

For n = 0.5

( )
0.5

* ' 0.16665 r
D D rNN

sp w

k ht P
k r

 
=  

 
	 (A.9)

6) The governing dimensionless pressure and pres-
sure derivative for radial flow in a non-Newtonian 
fluid is:

1
2DrNN DrNN rNNP t sα

α
= + 	 (A.10)

The above equation in not valid for n = 1

D D DrNNt P t ( )* ' 0.5
irNN

α= 	 (A.11)
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ANNEX B. EQUATIONS FOR 
HEMISFHERICAL FLOW (TDS TECHNIQUE) 

1) Dimensionless quantities:

( ) ( )
1 2

1141.2 96681.605
DhsNN n

n n eff sw

hs

PP
r

qB
k

µ −
−

∆
=

	 (B.1) 

( ) ( )

( ) ( )
1 2

1

* '
* '

141.2 96681.605

hsNN
D D nhsNN

n n eff sw

hs

t P
t P

r
qB

k
µ −

−

∆
=

	 (B.2)

 
3

1
DhsNN n

sw

tt
G r −=

	 (B.3)

2) For n ≠ 0.5 y n ≤ 1 replacing the dimensionless 
quantities given by Equations B.1 and B.3 in Equation 
20 and resolving for khs:

	(B.4)

If β > 0.5, the slope is taken as positive. If β < 0.5, 
the slope is taken as negative.

( ) ( )1 (0 )
1 2

196681.605 1
141.2

n
n hs i wf hr

hsNN n
eff sw

k P P
s

qB rµ
−

−

− 
= − 

  	 (B.5)

For n = 0.5 replacing the dimensionless quantity 
given by Equations B.1 and B.3 in Equation and re-
solving for khs:

k qB( ) ( )0.5 0.5108.4 96681.605 eff
hs m

µ
= 	 (B.6)

3) For n ≠ 0.5 y n ≤ 1 replacing the dimensionless 
quantities given by Equations B.2 and B.3 in Equation 
A.1 and resolving for khs:

	(B.7)

For n = 0.5 replacing the dimensionless quantity 
given by Equation B.2 in Equation A.2 and resolving 
for khs:

( ) ( ) ( )
0.5 0.547.06 96681.605

*
eff

hs
hsNN

k qB
t P

µ
=

∆ 	 (B.8)

 4) Since the Equations for the pressure and the 
pressure derivative (Equations 20, 25, A.1 and A.2) 
are given in hemispherical symmetry it is necessary to 
transform them to a radial symmetry. For this considers 
the dimensionless variables of the radial (Equations 13, 
14, and 15) and hemispherical symmetries (Equations 
B.1, B.2 and B.3):

Combining Equations B.1 and 13 yields:
1 nn

sw hs w
DhsNN DrNN

r sw

r k rP P
h k r

−
  =   

    	 (B.9)

Combining Equations B.2 and 14 yields:

( ) ( )
1

* ' * '
nn

sw hs w
D D D DhsNN rNN

r sw

r k rt P t P
h k r

−
  =   
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	 (B.10)

Combining Equations B.3 and 15 yields:

3 1n n

w hs
DhsNN rDNN

sw r sw

r k ht t
r k r

− −
   

=    
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5) The Equations of the dimensionless pressure 
and derivative pressure of the hemispherical flow non-
Newtonian in radial symmetry are

For n ≠ 0.5 y n ≤ 1:

	 (B.12)

	 (B.13)

For n = 0.5

	 (B.14)
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0.5

* ' 0.3333 r
D D rNN

hs w

k ht P
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 
=  

  	 (B.15)

6) Solving for the hemispherical permeability with 
the time of intersection between hemispherical flow 
and radial flow:

For n ≠ 0.5 y n ≤ 1:

( ) ( )
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(B.16)

For n = 0.5:
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