
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 1.

-59-



Abstract — The purpose of grid computing is to produce a

virtual supercomputer by using free resources available through

widespread networks such as the Internet. This resource

distribution, changes in resource availability, and an unreliable

communication infrastructure pose a major challenge for efficient

resource allocation. Because of the geographical spread of

resources and their distributed management, grid scheduling is

considered to be a NP-complete problem. It has been shown that

evolutionary algorithms offer good performance for grid

scheduling. This article uses a new evaluation (distributed)

algorithm inspired by the effect of leaders in social groups, the

group leaders' optimization algorithm (GLOA), to solve the

problem of scheduling independent tasks in a grid computing

system. Simulation results comparing GLOA with several other

evaluation algorithms show that GLOA produces shorter

makespans.

Keywords — Artificial Intelligence, Distributed Computing,

Grid Computing, Job Scheduling, Makespan.

I. INTRODUCTION

EW technology has taken communication to the field of

grid computing. This allows personal computers (PCs) to

participate in a global network when they are idle, and it

allows large systems to utilize unused resources. Like the

human brain, modern computers usually use only a small

fraction of their potential and are often inactive while waiting

for incoming data. When all the hardware resources of inactive

computers are collected as an all-in-one computer, a powerful

system emerges.

With the help of the Internet, grid computing has provided

the ability to use hardware resources that belong to other

systems. “Grid computing” may have different meanings for

different people, but as a simple definition, grid computing is a

system that allows us to connect to network resources and

services and create a large powerful system that has the ability

to perform very complex operations that a single computer

cannot accomplish. That is, from the perspective of the users

of grid systems, these operations can only be performed

through these systems. As large-scale infrastructures for

parallel and distributed computing systems, grid systems

enable the virtualization of a wide range of resources, despite

their significant heterogeneity [1].

Grid computing has many advantages for administrators and

developers. For example, grid computing systems can run

programs that require a large amount of memory and can make

information easier to access. Grid computing can help large

organizations and corporations that have made an enormous

investment to take advantage of their systems. Thus, grid

computing has attracted the attention of industrial managers

and investors in companies that have become involved in grid

computing, such as IBM, HP, Intel, and Sun [2].

By focusing on resource sharing and coordination,

managing capabilities, and attaining high efficiency, grid

computing has become an important component of the

computer industry. However, it is still in the developmental

stage, and several issues and challenges remain to be

addressed [3].

Of these issues and challenges, resource scheduling in

computational grids has an important role in improving the

efficiency. The grid environment is very dynamic, with the

number of resources, their availability, CPU loads, and the

amount of unused memory constantly changing. In addition,

different tasks have different characteristics that require

different schedules. For instance, some tasks require high

processing speeds and may require a great deal of coordination

between their processes. Finally, one of the most important

distinctive requirements of grid scheduling compared with

other scheduling (such as scheduling clusters) is scalability.

With more applications looking for faster performance,

makespan is the most important measurement that scheduling

algorithms attempt to optimize. Makespan is the resource

consumption time between the beginning of the first task and

the completion of the last task in a job. The algorithm

presented in this paper seeks to optimize makespan. Given the

complexity and magnitude of the problem space, grid job

scheduling is an NP-complete problem. Therefore,

deterministic methods are not suitable for solving this

problem. Although several deterministic algorithms such as

min-min and max-min [4] have been proposed for grid job

scheduling, it has been shown that heuristic algorithms provide

better solutions. These algorithms include particle swarm

GLOA: A New Job Scheduling Algorithm for

Grid Computing

1
Zahra Pooranian,

2
Mohammad Shojafar,

3
Jemal H. Abawajy, and

4
Mukesh Singhal

1
Graduate School, Dezful Islamic Azad University, Dezful, Iran

2
Dept.of Information Engineering, Electronic and Telecommunication (DIET), ‘‘Sapienza’’

University of Rome, Rome, Italy
3
School of Information Technology, Deakin University, Geelong, Australia

4
Computer Science & Engineering, University of California, Merced, USA

N

DOI: 10.9781/ijimai.2013.218

 Special Issue on Artificial Intelligence and Social Application

-60-

optimization (PSO)[5], genetic algorithms (GAs)[6],

simulating annealing (SA)[7], tabu search (TS)[8],

gravitational emulation local search(GELS)[9], ant colony

optimization (ACO) [10], and recently Learning Automata

(LA) [26]. Also, some researchers have proposed

combinations of these algorithms, such as GA-SA[11], GA-

TS[12], PSO-SA[13], GPSO[14], and GGA[15].

It is important that an optimization algorithm for

optimization problems should converge to the optimal solution

in a short period of time. The group leaders optimization

algorithm (GLOA) [16] was inspired by the influence of

leaders in social groups. The idea behind the algorithm is that

the problem space is divided into several smaller parts (several

groups), and each part is searched separately and in parallel to

increase the optimization speed. Each separate space can be

searched by its leader, who tries to find a solution by checking

whether it is the closest member to the local and global

minimum.

In this paper, we use GLOA for independent task/job

scheduling in grid computing. In addition to the simplicity of

its implementation, GLOA reduces optimization time. The

remainder of this paper is organized as follows. Section II

discusses related methods. Section III presents a general model

for job/task scheduling. Section IV presents the GLOA method

and modifies it based on our problem. Section V compares

simulation results obtained with this algorithm and several

other heuristic algorithms. Finally, the last section presents the

conclusion of this study.

II. RELATED WORK

In [17], the TS algorithm, which is a local search algorithm,

is used for scheduling tasks in a grid system. In [18], the SA

algorithm is used to solve the workflow scheduling problem in

a computational grid. Simulation results show that this

algorithm is highly efficient in a grid environment. The TS

algorithm uses a perturbation scheme for pair changing.

In [19], the PSO algorithm is used for job scheduling with

two heuristic algorithms, latest finish time (LFT) and best

performance resource (BPR), used to decide task priorities in

resource queues. In [20], the critical path genetic algorithm

(CPGA) and task duplication genetic algorithm (TDGA) are

proposed; they modify the standard GA to improve its

efficiency. They add two greedy algorithms to the GA so that

the wait times for tasks to start and ultimately the makespan

can be reduced. The proposed algorithms consider dependent

tasks, so that computation costs among resources are

considered as well. Chromosomes are divided into two parts,

and the graph under consideration is transformed into a

chromosome that performs mapping and scheduling. The

mapping part determines the processors on which tasks will

execute, and the scheduling part determines the sequence of

tasks for execution. In the representation of a chromosome,

task priorities are considered by examining the graph.

The CPGA algorithm combines the modified critical path

(MCP) algorithm [21] and a GA. The MCP algorithm first

determines critical paths, and if the parent of tasks being

executed on a processor is executing on another processor,

these tasks are transported to the parent’s processor to reduce

the cost of transportation between processors.

The TDGA algorithm combines the duplication scheduling

heuristic (DSH) algorithm [22] and a GA. This algorithm first

sorts tasks in descending order and then repeats the parent task

on all processors so that the children can execute earlier,

because the transportation cost between processors becomes

zero. By repeating the parent task, overload and

communication delays are reduced and total execution time is

minimized.

The resource fault occurrence history (RFOH) [23]

algorithm is used for job scheduling fault-tolerant tasks in a

computational grid. This method stores resource fault

occurrence histories in a fault occurrence history table (FOHT)

in the grid information server. Each row of the FOHT table

represents are source and includes two columns. One column

shows the failure occurrence history for the resource and the

other shows the number of tasks executing on the resource.

The broker uses information in this table in the GA when it

schedules tasks. This reduces the possibility of selecting

resources with more occurrences of failures.

The chaos-genetic algorithm [24] is a GA for solving the

problem of dependent task/job scheduling. This algorithm uses

two parameters, time and cost, to evaluate quality of service

(QOS), and chaos variables are used rather than randomly

producing the initial population. This combination of the

advantages of GAs and chaos variables to search the search

space inhibits premature convergence of the algorithm and

produces solutions more quickly, with a faster convergence.

The integer genetic algorithm (IGA) [25] is a genetic

algorithm for solving dependent task/job scheduling that

simultaneously considers three QOS parameters: time, cost,

and reliability. Since these parameters conflict with one

another and cannot be simultaneously optimized—as

improvement of one reduces the quality of another—weights

are assigned to each parameter, either by the user or randomly.

If the user provides the weighting, the parameter that is more

important to the user is given more weight than the others.

III. PROBLEM DESCRIPTION

The problem studied in this paper is independent task/job

scheduling in grid computing. The proposed algorithm should

be efficient in finding a solution that produces the minimum

makespan. Thus, the problem is to assign a set of m input tasks

(T=T1,T2,...,Tm) to n resources (R=R1,R2,...,Rn), with the

minimum makespan.

IV. THE GLOA ALGORITHM

GLOA is an evolutionary algorithm that is inspired by the

effect of leaders in social groups. The problem space is

divided into different groups, and each group has its own

leader. The members of each group don’t necessarily have

similar characteristics, and they have quite random values. The

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 1.

-61-

best member of each group is selected as the leader. The

members of each group try to become similar to their leader in

each iteration. In this way, the algorithm is able to search a

solution space between a leader and its group members. It is

obvious that after some iteration, members of a group may

become similar to their leader. In order to introduce diversity

within a group, one of its members is selected randomly and

some of its variables are interchanged with a member of

another group. In addition, a crossover operator helps a group

come out of local minima, and the solution space can be

searched again so to produce diversity. The algorithm steps are

as follows:

A. Initial Population Production

A set of p members is produced for each group. The total

population is therefore n*p, where n is the number of groups.

Group and member values are produced randomly. Since the

number of entering tasks is m, the members are represented as

an m-dimensional array in which the stored values are resource

numbers. For example, in Figure 1 we have n groups, each

with p members.

B. Calculating Fitness Values of All Group Members

The fitness value is calculated for each member of each

group. Since the purpose of task/job scheduling in a grid is to

assign tasks to resources in a way that minimizes makespan,

makespan has been chosen as the criterion for evaluating

members. The less a member’s makespan is, the greater is its

fitness value, according to (1):

)membermakespan(

1
=)memberfitness(

k
k

(1)

C. Determining Leader of Each Group

In each group, after the fitness value is computed for each

member, the member with the best fitness value is selected as

the group leader.

D. Mutation Operator

In this step, a new member is produced in each group from

an older member, the leader of the group, and a random

element, using (2). If the fitness value of the new member is

better than the fitness value of the older member, it replaces

the older member. Otherwise, the older member is retained.

random*r+leader*r+old*r=new 321 (2)

where r1, r2, and r3 are the rates determining the portion of

the older member, the leader, and the random element that are

used to generate the new population, such that r1 + r2 + r3 ≤ 1.

Pseudocode for this step follows:

for i=1 ton do {

 for j=1 top do {

 newij= r1* memberij +r2*Li+r3*random

 if fitness (newij) better than fitness (memberij)

then

 memberij= newij

 end if

 } end for

} end for

The value of r1 determines the extent to which a member

retains its original characteristics, and r2 moves the member

toward the leader of its group in different iterations, thus

making the member similar to the leader. Careful selection of

these two parameters plays an important role in the

Fig. 1. Steps 1–3 of the algorithm: n groups consisting of p members are created, and their leaders are chosen based on their fitness values.

 Special Issue on Artificial Intelligence and Social Application

-62-

Fig. 2. Algorithms’ makespan after100 iterations, with 10 resources

 Fig. 3. Algorithms’ makespan after 300 iterations, for various numbers of

resources

optimization of the results. The main characteristic of this

algorithm is that it searches the problem space surrounded by

the leaders. This leads to very rapid convergence to a global

minimum. Note that eq. (2) is similar to the update equation

for the PSO algorithm. The difference is that here, unlike PSO,

the best position value of each member is not stored and so

there is no information about the past positions of members.

E. One-way Crossover Operator

In this step, a random number of members are selected from

the first group and some of their parameter values are replaced

with those of a member of another group that is selected

randomly. It should be noted that in each iteration, only one

parameter is replaced. If any new member is better it replaces

the old one; otherwise the old member remains in the group.

An important issue here is selecting the correct crossover rate,

for otherwise all members will rapidly become similar to each

other. The transfer rate t is a random number such that

1+)
2

m
(t 1  for each group. The purpose of the crossover

operator is to escape local minima.

F. Repetition of Steps C to V according to the Determined

Number of Iterations

This algorithm is repeated according to the determined

number of iterations. At the end, from the different groups, the

leader with the best fitness value is chosen as the problem

solution.

V. SIMULATION

This section compares simulation results for our proposed

algorithm with the results of several other algorithms. All

algorithms were simulated in a Java environment on a system

with a 2.66 GHZ CPU and 4GBRAM. Table I lists the

parameters used in the performance study of our proposed

algorithm and the other algorithms.

Table II shows the five algorithms’ makespans for various

numbers of independent tasks and 10 resources. As can be

seen, SA has the worst makespans and GLOA has the best. We

provide more details in Fig. 2.

As we can see in Fig. 2, the SA algorithm’s makespan

increases rapidly as the number of tasks grows from 50 to

500.

Hence, SA is the worst algorithm for minimizing makespan

and GLOA is the best in every case. In the 50-task case, the

difference between SA and GLOA is approximately 48

seconds, which is less than half of the SA makespan. Here

GLOA has the least makespan. When there are only a few

tasks, the makespans for all of the algorithms are low, and

GLOA produces the minimum. For the 300-task and 500-task

cases, GGA has a similar makespan to the GLOA algorithm.

For example, in the 300-task case, GGA’s makespan is

TABLE II

THE ALGORITHMS’ MAKESPAN AFTER 100 ITERATIONS (IN SECONDS)

(No. Tasks,

No. Resources)
SA GA GSA GGA GLOA

(50,10) 136.742 99.198 95.562 90 89

(100,10) 307.738 183.49
190.35

3
181.028 167

(300,10) 973.728 638.082 626.66 597 581.842

(500,10)
1837.66

2
1105.56 1087

1087.21

6
1072.362

TABLE I

PARAMETERS FOR THE ALGORITHMS

Value Parameter Algorithm

3 Number of groups

GLOA
10 Population in each group

0.8 r1

0.1 r2

0.1 r3

0.85 P-Crossover

GA
0.02 P-Mutation

TABLE III

ALGORITHMS’ MAKESPAN AFTER 300 ITERATIONS (IN SECONDS)

(No. Tasks,

No. Resources)
SA GA GSA GGA GLOA

(100,10) 233.2 172.628 179.062 175.598 166.14

(100,20) 173.116 111.946 105.314 103.092 94.55

(100,30) 120.452 90.716 87.846 80.086 77.75

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 1.

-63-

approximately 597 seconds but GLOA’s is approximately 582

seconds.

Table III shows the makespans the algorithms produce for

100 fixed independent tasks for various numbers of resources.

As can be seen, SA has the worst makespan in all of these

cases and GLOA has the best. More details are shown in Fig.

3.

As can be seen in Fig. 3, as the number of resources

increases, the makespan decreases for all algorithms, because

when there are several ready resources with empty queues,

tasks can be assigned to the new resources. The variation is the

difference between the algorithms’ structures. When the

number of resources triples, the decrease for the makespan in

SA is approximately 100 seconds and in GLOA it is

approximately 90 seconds. As shown, GLOA has the minimum

makespan in each case. Its structure provides it with the ability

to be close to GGA, because like GGA, it can search the

problem space both locally and globally. Hence, GLOA

reaches the best solution more rapidly (e.g., in 95 seconds for

20 resources) than the other methods, particularly SA (which

takes approximately 174 seconds). GLOA’s makespan

decreases up to 45% compared to SA, 15% compared to GA,

11% compared to GSA, and approximately 8% compared to

GGA.

Table IV shows the algorithms’ runtime for job 500

independent tasks with varying numbers of resources. As

shown, SA has the best runtime for 10 and 20 resources

(because it considers only one solution, it can search more

quickly than the other algorithms), and GLOA has the second

best for 30 resources (because it divides the problem solutions

into several groups that search in parallel, it reaches the

optimum more quickly, but it takes some time to produce the

several groups). Fig. 4 provides more details.

As can be seen in Fig. 4, when the number of resources

increases, all algorithm runtimes increase, because when there

are several new resources with empty queues, these resources

must be searched and tasks assigned to them. SA is the least

time-consuming algorithm (except for the 30-resource case)

and GSA is the worst (except for the 500-task and 20-resource

case). When the number of resources increases to 30, GLOA’s

runtime decreases less than SA’s, because the resources have

sufficiently many empty queues to be able to respond to 500

tasks more quickly, and SA considers the entire problem while

GLOA divides the problem into several groups and considers

the queue sizes and makespans for the tasks. When there are

only a few resources (10), GA executes in just under 22

seconds, GSA and GGA have similar runtimes (just under 26

seconds), and GLOA requires just over 2 seconds, but SA

requires less than 2 second. Although SA is the best algorithm

in terms of runtime, it cannot produce better makespan results

(as seen in Figure 2), and therefore we exempt this algorithm

from consideration. When the number of resources triples

(from 10 to 30), SA’s runtime increases by 80%, GA’s by

24%, GGA’s and GSA’s by 26%, but GLOA’s increases by

less than 10%. Therefore, while GLOA’s runtime increases

with the number of resources, it does so at a very low rate.

VI. CONCLUSION

Grid technology has made it possible to use idle resources

as part of a single integrated system. The main purpose of grid

computing is to make common resources such as

computational power, bandwidth, and databases available to a

central computer. The geographic spread and dynamic states

of the grid space present challenges in resource management

that necessitate an efficient scheduler. This scheduler should

assign tasks to resources in such a way that they are executed

in the shortest possible time.

This paper used a new evolutionary algorithm, GLOA, for

scheduling tasks/jobs in a computational grid. Simulation

results for GLOA were compared with results for four other

intelligent algorithms: GA, SA, GGA, and GSA, and it was

shown that in addition to wasting less computation time than

the other algorithms, GLOA is able to produce shortest

makespans. Also, GLOA could be applied in the real world

because its runtime and makspan is less than other AI methods

and produce less overhead on resources while responding the

independent tasks.

In the future, we will change GLOA structure and apply it

into dependent tasks in Grid Environment to cover the current

gap into scheduling of dependent tasks.

REFERENCES

[1] J. Kołodziej, F. Xhafa, “Meeting security and user behavior

requirements in Grid scheduling,” Simulation Modeling Practice and

Theory, Elsevier, pp. 213–226, 2011.

[2] S. Garg, R. Buyyaa, H. Siegel, “Time and cost trade-off management for

scheduling parallel applications on Utility Grids,” Future Generation

Computer Systems, Elsevier, pp. 1344-1355, 2010.

Fig. 4. Algorithm runtimes for 100 iterations with varying numbers of

resources.

TABLE IV

ALGORITHMS’ RUNTIME FOR 100 ITERATIONS (SECONDS)

(No. Tasks, No.

Resources)
SA GA GSA GGA GLOA

(500,10) 1.4 21.2 25.8 25.4 3

(500,20) 2.8 22.2 30 30.4 4

(500,30) 3.4 26 31.8 31 3

 Special Issue on Artificial Intelligence and Social Application

-64-

[3] F. Xhafa, A. Abraham, “Computational models and heuristic methods

for Grid scheduling problems,” Future Generation Computer Systems,

Elsevier, pp. 608-621, 2010.

[4] M. Shojafar, S. Barzegar, M. R, Meibody, “A new Method on Resource

Scheduling in grid systems based on Hierarchical Stochastic Petri net,”

3rd International Conference on Computer and Electrical Engineering

(ICCEE 2010), pp. 175-180, 2010.

[5] Q. Tao, H. Chang, Y. Yi, Ch. Gu, W. Li, “A rotary chaotic PSO

algorithm for trustworthy scheduling of a grid workflow, ” Computers &

Operations Research, Elsevier, Vol. 38, pp.824–836, 2011.

[6] R. P. Prado, S. García-Galán, A. J. Yuste and J. E. M. Expósito,

“Genetic fuzzy rule-based scheduling system for grid computing in

virtual organizations,” Soft Computing - A Fusion of Foundations,

Methodologies and Applications, Vol. 15, No. 7, pp.1255-1271, 2011.

[7] S. Fidanova, “Simulated Annealing for Grid Scheduling Problem,

International Symposium on Modern Computing,” IEEE John Vincent

Atanasoff, pp.41-45, 2006.

[8] B. Eksioglu, S. DuniEksioglu, P. Jain, "A tabu search algorithm for the

flowshop scheduling problem with changing neighborhoods,"

Computers & Industrial Engineering, 54, pp.1–11, 2008.

[9] B. Barzegar, A. M. Rahmani, K. Zamani far, "Advanced Reservation

and Scheduling in Grid Computing Systems by Gravitational Emulation

Local Search Algorithm," American Journal of Scientific Research, No.

18, pp. 62-70, 2011.

[10] Y. Yang, G. Wua, J.Chen, W. Dai, "Multi-objective optimization based

on ant colony optimization in grid over optical burst switching

networks," Expert Systems with Applications, 37, pp.1769–1775, 2010.

[11] G. Guo-ning , "Genetic simulated annealing algorithm for task

scheduling based on cloud computing environment," International

Conference of Intelligent Computing and Integrated Systems (ICISS),

pp-60-63, 2010.

[12] J.M. Garibaldi, D. Ouelhadj, "Fuzzy Grid Scheduling Using Tabu

Search," IEEE International Conference of Fuzzy Systems, pp.1-6,

2007.

[13] R. Chen, D. Shiau, Sh. Tang Lo, Combined Discrete Particle Swarm

Optimization and Simulated Annealing for Grid Computing Scheduling

Problem, Lecture Notes in Computer Science, Springer, Vol. 5755,

2009, pp.242-251.

[14] Z. Pooranian, A. Harounabadi, M. Shojafar and J. Mirabedini, “Hybrid

PSO for Independent Task scheduling in Grid Computing to Decrease

Makespan,” International Conference on Future Information

Technology (ICFIT 2011), Singapore, pp.435-439, 2011.

[15] Z. Pooranian, A. Harounabadi, M. Shojafar, N. hedayat, ” New Hybrid

Algorithm for Task Scheduling in Grid Computing to Decrease missed

Task,” World Academy of Science, Engineering and Technology 79, pp.

262-268, 2011.

[16] A. Daskin, S. Kais, "Group leaders optimization algorithm, Molecular

Physics," An International Journal at the Interface Between Chemistry

and Physics, Vol. 109, No. 5, pp. 761–772, 2011.

[17] M. Yusof, K. Badak, M. Stapa, "Achieving of Tabu Search Algorithm

for Scheduling Technique in Grid Computing Using GridSim

Simulation Tool: Multiple Jobs on Limited Resource," International

Journal of Grid and Distributed Computing, Vol. 3, No. 4, pp. 19-32.,

2010.

[18] R. Joshua Samuel Raj, V. Vasudevan, Beyond Simulated Annealing in

Grid Scheduling, International Journal on Computer Science and

Engineering (IJCSE), Vol. 3, No. 3, pp. 1312- 1318, Mar. 2011.

[19] Ruey-Maw Chen and Chuin-Mu Wang, Project Scheduling Heuristics-

Based Standard PSO for Task-Resource Assignment in Heterogeneous

Grid, Abstract and Applied Analysis, Vol. 2011, pp.1-20, 2011.

[20] F. A. Omaraa, M.M. Arafa, "Genetic algorithms for task scheduling

problem," Journal Parallel Distributed Computing, Elsevier, Vol. 70,

No. 1, pp. 13-22, 2010.

[21] M. Wu, D. D. Gajski, "Hyper tool: A programming aid for message-

passing systems," IEEE Transactions on Parallel and Distributed

Systems, Vol. 1, No. 3, pp. 330-343, 1990.

[22] H. El-Rewini, T. G. Lewis, H. H. Ali, Task Scheduling in Parallel and

Distributed Systems, Prentice-Hall, 1994, ISBN:0-13-099235-6.

[23] L. Khanli, M. Etminan Far , A. Ghaffari, "Reliable Job Scheduler using

RFOH in Grid Computing," Journal of Emerging Trends in Computing

and Information Sciences, Vol. 1, No. 1, pp. 43- 47, 2010.

[24] G. Gharoonifard, F. Moeindarbari, H. Deldari, A. Morvaridi,

"Scheduling of scientific workflows using a chaos- genetic algorithm,"

Procedia Computer Science, Elsevier, Vol. 1, No.1, pp. 1445- 1454,

2010.

[25] Q. Tao, H. Chang, Y. Yi, CH. Gu, "A Grid Workflow Scheduling

Optimization approach for e-Business Application," Proceedings of the

10th International Conference on E-Business and E-Government, pp.

168-171, 2010.

[26] J. A. Torkestani, "A New Distributed Job Scheduling Algorithm for

Grid Systems," An International Journal of Cybernetics and Systems,

Vol. 44, Issue 1, pp.77-93, 2013.

Zahra pooranian received her Msc in Computer

Architecture degree as honor student in Dezful

Islamic Azad University since 2011. She is an

instructor in Sama University in Dezful and Ahvaz

since 2009. Her research interest in Grid computing

specially in resource allocation and scheduling. She

has worked on several papers in decreasing time and

makespan in grid computing by using several AI

methods such as GA, GELS, PSO, and ICA. She has

published more than 5 papers especially in grid

scheduling and resource allocation in various conferences, such as WASET

2010-11, ICCCIT 2011, and ICEEE 2011.Author’s profile

.

Mohammad Shojafar is PhD Student in

Information Communication Technology at

Sapienza University of Roma from November 2012.

He Received his Msc in Software Engineering in

Qazvin Islamic Azad University, Qazvin, Iran in

2010.Also, he Received His Bsc in Computer

Engineering-Software major in Iran University

Science and Technology, Tehran, Iran in 2006.

Mohammad is Specialist in Network Programming

in Sensor field and Specialist in Distributed and cluster computing (Grid

Computing and P2P Computing) and AI algorithms (PSO, LA, GA).

Jemal H. Abawajy is Professor in School of

Information Technology of Deakin University in

Australia. His interest is building secure, efficient

and reliable infrastructures for large-scale

distributed systems. He has published 10 books,

more than 55 international well-known Journals,

more than120 Conference papers and 58 Book

chapters in his interest. He supervised more than

31 PhD students till now. Also, he is teaching

Grid Computing Security, Distributed

Computing, Information Technology Security Management and Information

Security Management in Deakin University now.

Mukesh Singhal is the Professor and Gartner

Group Endowed Chair in Network Engineering,

Dept. of Computer Science, The University of

Kentucky, Lexington, USA; and Chancellor's

Professor School of Engineering of University of

California, Meced, USA. He has authored and

published over 200 research papers and four

textbooks which 175 of them are indexed in

DBLP. The books on emerging topics that Dr.

Singhal edited include, Distributed computing, Cloud computing, Security

and Networks. He is Journal Editorships of 5 outstanding journals such as

IEEE Trans. on Dependable and Secure Computing and IEEE Trans. on

Parallel and Distributed Systems. He is one of the highly cited authors in

computer science and software engineering worldwide(h-index = 39,

Citations = 5594).

