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 

Abstract — The purpose of grid computing is to produce a 

virtual supercomputer by using free resources available through 

widespread networks such as the Internet. This resource 

distribution, changes in resource availability, and an unreliable 

communication infrastructure pose a major challenge for efficient 

resource allocation. Because of the geographical spread of 

resources and their distributed management, grid scheduling is 

considered to be a NP-complete problem. It has been shown that 

evolutionary algorithms offer good performance for grid 

scheduling. This article uses a new evaluation (distributed) 

algorithm inspired by the effect of leaders in social groups, the 

group leaders' optimization algorithm (GLOA), to solve the 

problem of scheduling independent tasks in a grid computing 

system. Simulation results comparing GLOA with several other 

evaluation algorithms show that GLOA produces shorter 

makespans. 

 
Keywords — Artificial Intelligence, Distributed Computing, 

Grid Computing, Job Scheduling, Makespan. 

I. INTRODUCTION 

EW technology has taken communication to the field of 

grid computing. This allows personal computers (PCs) to 

participate in a global network when they are idle, and it 

allows large systems to utilize unused resources. Like the 

human brain, modern computers usually use only a small 

fraction of their potential and are often inactive while waiting 

for incoming data. When all the hardware resources of inactive 

computers are collected as an all-in-one computer, a powerful 

system emerges. 

With the help of the Internet, grid computing has provided 

the ability to use hardware resources that belong to other 

systems. “Grid computing” may have different meanings for 

different people, but as a simple definition, grid computing is a 

system that allows us to connect to network resources and 

services and create a large powerful system that has the ability 

to perform very complex operations that a single computer 

cannot accomplish. That is, from the perspective of the users 

of grid systems, these operations can only be performed 

through these systems. As large-scale infrastructures for 

parallel and distributed computing systems, grid systems 

 
 

enable the virtualization of a wide range of resources, despite 

their significant heterogeneity [1].  

Grid computing has many advantages for administrators and 

developers. For example, grid computing systems can run 

programs that require a large amount of memory and can make 

information easier to access. Grid computing can help large 

organizations and corporations that have made an enormous 

investment to take advantage of their systems. Thus, grid 

computing has attracted the attention of industrial managers 

and investors in companies that have become involved in grid 

computing, such as IBM, HP, Intel, and Sun [2]. 

By focusing on resource sharing and coordination, 

managing capabilities, and attaining high efficiency, grid 

computing has become an important component of the 

computer industry. However, it is still in the developmental 

stage, and several issues and challenges remain to be 

addressed [3]. 

Of these issues and challenges, resource scheduling in 

computational grids has an important role in improving the 

efficiency. The grid environment is very dynamic, with the 

number of resources, their availability, CPU loads, and the 

amount of unused memory constantly changing. In addition, 

different tasks have different characteristics that require 

different schedules. For instance, some tasks require high 

processing speeds and may require a great deal of coordination 

between their processes. Finally, one of the most important 

distinctive requirements of grid scheduling compared with 

other scheduling (such as scheduling clusters) is scalability. 

With more applications looking for faster performance, 

makespan is the most important measurement that scheduling 

algorithms attempt to optimize. Makespan is the resource 

consumption time between the beginning of the first task and 

the completion of the last task in a job. The algorithm 

presented in this paper seeks to optimize makespan. Given the 

complexity and magnitude of the problem space, grid job 

scheduling is an NP-complete problem. Therefore, 

deterministic methods are not suitable for solving this 

problem. Although several deterministic algorithms such as 

min-min and max-min [4] have been proposed for grid job 

scheduling, it has been shown that heuristic algorithms provide 

better solutions. These algorithms include particle swarm 
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optimization (PSO)[5], genetic algorithms (GAs)[6], 

simulating annealing (SA)[7], tabu search (TS)[8], 

gravitational emulation local search(GELS)[9], ant colony 

optimization (ACO) [10], and recently Learning Automata 

(LA) [26]. Also, some researchers have proposed 

combinations of these algorithms, such as GA-SA[11], GA-

TS[12], PSO-SA[13], GPSO[14], and GGA[15].  

It is important that an optimization algorithm for 

optimization problems should converge to the optimal solution 

in a short period of time. The group leaders optimization 

algorithm (GLOA) [16] was inspired by the influence of 

leaders in social groups. The idea behind the algorithm is that 

the problem space is divided into several smaller parts (several 

groups), and each part is searched separately and in parallel to 

increase the optimization speed. Each separate space can be 

searched by its leader, who tries to find a solution by checking 

whether it is the closest member to the local and global 

minimum. 

In this paper, we use GLOA for independent task/job 

scheduling in grid computing. In addition to the simplicity of 

its implementation, GLOA reduces optimization time. The 

remainder of this paper is organized as follows. Section II 

discusses related methods. Section III presents a general model 

for job/task scheduling. Section IV presents the GLOA method 

and modifies it based on our problem. Section V compares 

simulation results obtained with this algorithm and several 

other heuristic algorithms. Finally, the last section presents the 

conclusion of this study. 

II.   RELATED WORK 

In [17], the TS algorithm, which is a local search algorithm, 

is used for scheduling tasks in a grid system. In [18], the SA 

algorithm is used to solve the workflow scheduling problem in 

a computational grid. Simulation results show that this 

algorithm is highly efficient in a grid environment. The TS 

algorithm uses a perturbation scheme for pair changing. 

In [19], the PSO algorithm is used for job scheduling with 

two heuristic algorithms, latest finish time (LFT) and best 

performance resource (BPR), used to decide task priorities in 

resource queues. In [20], the critical path genetic algorithm 

(CPGA) and task duplication genetic algorithm (TDGA) are 

proposed; they modify the standard GA to improve its 

efficiency. They add two greedy algorithms to the GA so that 

the wait times for tasks to start and ultimately the makespan 

can be reduced. The proposed algorithms consider dependent 

tasks, so that computation costs among resources are 

considered as well. Chromosomes are divided into two parts, 

and the graph under consideration is transformed into a 

chromosome that performs mapping and scheduling. The 

mapping part determines the processors on which tasks will 

execute, and the scheduling part determines the sequence of 

tasks for execution. In the representation of a chromosome, 

task priorities are considered by examining the graph.  

The CPGA algorithm combines the modified critical path 

(MCP) algorithm [21] and a GA. The MCP algorithm first 

determines critical paths, and if the parent of tasks being 

executed on a processor is executing on another processor, 

these tasks are transported to the parent’s processor to reduce 

the cost of transportation between processors. 

The TDGA algorithm combines the duplication scheduling 

heuristic (DSH) algorithm [22] and a GA. This  algorithm first 

sorts tasks in descending order and then repeats the parent task 

on all processors so that the children can execute earlier, 

because the transportation cost between processors becomes 

zero. By repeating the parent task, overload and 

communication delays are reduced and total execution time is 

minimized. 

The resource fault occurrence history (RFOH) [23] 

algorithm is used for job scheduling fault-tolerant tasks in a 

computational grid. This method stores resource fault 

occurrence histories in a fault occurrence history table (FOHT) 

in the grid information server. Each row of the FOHT table 

represents are source and includes two columns. One column 

shows the failure occurrence history for the resource and the 

other shows the number of tasks executing on the resource. 

The broker uses information in this table in the GA when it 

schedules tasks. This reduces the possibility of selecting 

resources with more occurrences of failures.  

The chaos-genetic algorithm [24] is a GA for solving the 

problem of dependent task/job scheduling. This algorithm uses 

two parameters, time and cost, to evaluate quality of service 

(QOS), and chaos variables are used rather than randomly 

producing the initial population. This combination of the 

advantages of GAs and chaos variables to search the search 

space inhibits premature convergence of the algorithm and 

produces solutions more quickly, with a faster convergence. 

The integer genetic algorithm (IGA) [25] is a genetic 

algorithm for solving dependent task/job scheduling that 

simultaneously considers three QOS parameters: time, cost, 

and reliability. Since these parameters conflict with one 

another and cannot be simultaneously optimized—as 

improvement of one reduces the quality of another—weights 

are assigned to each parameter, either by the user or randomly. 

If the user provides the weighting, the parameter that is more 

important to the user is given more weight than the others. 

III. PROBLEM DESCRIPTION 

The problem studied in this paper is independent task/job 

scheduling in grid computing. The proposed algorithm should 

be efficient in finding a solution that produces the minimum 

makespan. Thus, the problem is to assign a set of m input tasks 

(T=T1,T2,...,Tm) to n resources (R=R1,R2,...,Rn), with the 

minimum makespan. 

IV. THE GLOA ALGORITHM 

GLOA is an evolutionary algorithm that is inspired by the 

effect of leaders in social groups. The problem space is 

divided into different groups, and each group has its own 

leader. The members of each group don’t necessarily have 

similar characteristics, and they have quite random values. The 
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best member of each group is selected as the leader. The 

members of each group try to become similar to their leader in 

each iteration. In this way, the algorithm is able to search a 

solution space between a leader and its group members. It is 

obvious that after some iteration, members of a group may 

become similar to their leader. In order to introduce diversity 

within a group, one of its members is selected randomly and 

some of its variables are interchanged with a member of 

another group. In addition, a crossover operator helps a group 

come out of local minima, and the solution space can be 

searched again so to produce diversity. The algorithm steps are 

as follows:  

A. Initial Population Production 

A set of p members is produced for each group. The total 

population is therefore n*p, where n is the number of groups. 

Group and member values are produced randomly. Since the 

number of entering tasks is m, the members are represented as 

an m-dimensional array in which the stored values are resource 

numbers. For example, in Figure 1 we have n groups, each 

with p members. 

B. Calculating Fitness Values of All Group Members 

The fitness value is calculated for each member of each 

group. Since the purpose of task/job scheduling in a grid is to 

assign tasks to resources in a way that minimizes makespan, 

makespan has been chosen as the criterion for evaluating 

members. The less a member’s makespan is, the greater is its 

fitness value, according to (1): 

)membermakespan(

1
=)memberfitness(

k
k  

(1) 

C. Determining Leader of Each Group 

In each group, after the fitness value is computed for each 

member, the member with the best fitness value is selected as 

the group leader. 

D. Mutation Operator 

In this step, a new member is produced in each group from 

an older member, the leader of the group, and a random 

element, using (2). If the fitness value of the new member is 

better than the fitness value of the older member, it replaces 

the older member. Otherwise, the older member is retained. 

random*r+leader*r+old*r=new 321  (2) 

 

where r1, r2, and r3 are the rates determining the portion of 

the older member, the leader, and the random element that are 

used to generate the new population, such that r1 + r2 + r3 ≤ 1. 

Pseudocode for this step follows: 

for i=1 ton do { 

 for j=1 top do { 

  newij= r1* memberij +r2*Li+r3*random 

  if fitness (newij) better than fitness (memberij) 

then 

   memberij= newij 

  end if 

 } end for 

} end for 

 

The value of r1 determines the extent to which a member 

retains its original characteristics, and r2 moves the member 

toward the leader of its group in different iterations, thus 

making the member similar to the leader. Careful selection of 

these two parameters plays an important role in the 

 
 

Fig. 1.  Steps 1–3 of the algorithm: n groups consisting of p members are created, and their leaders are chosen based on their fitness values. 
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Fig. 2.  Algorithms’ makespan after100 iterations, with 10 resources 

  

 

 
   Fig. 3.  Algorithms’ makespan after 300 iterations, for various numbers of 

resources 

optimization of the results. The main characteristic of this 

algorithm is that it searches the problem space surrounded by 

the leaders. This leads to very rapid convergence to a global 

minimum. Note that eq. (2) is similar to the update equation 

for the PSO algorithm. The difference is that here, unlike PSO, 

the best position value of each member is not stored and so 

there is no information about the past positions of members. 

E. One-way Crossover Operator 

In this step, a random number of members are selected from 

the first group and some of their parameter values are replaced 

with those of a member of another group that is selected 

randomly. It should be noted that in each iteration, only one 

parameter is replaced. If any new member is better it replaces 

the old one; otherwise the old member remains in the group. 

An important issue here is selecting the correct crossover rate, 

for otherwise all members will rapidly become similar to each 

other. The transfer rate t is a random number such that 

1+)
2

m
(t 1  for each group. The purpose of the crossover 

operator is to escape local minima. 

F. Repetition of Steps C to V according to the Determined 

Number of Iterations 

This algorithm is repeated according to the determined 

number of iterations. At the end, from the different groups, the 

leader with the best fitness value is chosen as the problem 

solution. 

V. SIMULATION 

This section compares simulation results for our proposed 

algorithm with the results of several other algorithms. All 

algorithms were simulated in a Java environment on a system 

with a 2.66 GHZ CPU and 4GBRAM. Table I lists the 

parameters used in the performance study of our proposed 

algorithm and the other algorithms. 

Table II shows the five algorithms’ makespans for various 

numbers of independent tasks and 10 resources. As can be 

seen, SA has the worst makespans and GLOA has the best. We 

provide more details in Fig. 2. 

As we can see in Fig. 2, the SA algorithm’s makespan 

increases rapidly as the number of tasks grows from 50 to 

500.  

Hence, SA is the worst algorithm for minimizing makespan 

and GLOA is the best in every case. In the 50-task case, the 

difference between SA and GLOA is approximately 48 

seconds, which is less than half of the SA makespan. Here 

GLOA has the least makespan. When there are only a few 

tasks, the makespans for all of the algorithms are low, and 

GLOA produces the minimum. For the 300-task and 500-task 

cases, GGA has a similar makespan to the GLOA algorithm. 

For example, in the 300-task case, GGA’s makespan is 

TABLE II 

THE ALGORITHMS’ MAKESPAN AFTER 100 ITERATIONS (IN SECONDS) 

(No. Tasks,  

No. Resources) 
SA GA GSA GGA GLOA 

(50,10) 136.742 99.198 95.562 90 89 

(100,10) 307.738 183.49 
190.35

3 
181.028 167 

(300,10) 973.728 638.082 626.66 597 581.842 

(500,10) 
1837.66

2 
1105.56 1087 

1087.21

6 
1072.362 

 

 

TABLE I 

PARAMETERS FOR THE ALGORITHMS 

Value  Parameter  Algorithm  

3 Number of groups  

 

GLOA 
10 Population in each group 

0.8 r1 

0.1 r2 

0.1 r3 

0.85 P-Crossover  

GA 
0.02 P-Mutation 

 

 

TABLE III 

ALGORITHMS’ MAKESPAN AFTER 300 ITERATIONS (IN SECONDS) 

(No. Tasks,  

No. Resources) 
SA GA GSA GGA GLOA 

(100,10) 233.2 172.628 179.062 175.598 166.14 

(100,20) 173.116 111.946 105.314 103.092 94.55 

(100,30) 120.452 90.716 87.846 80.086 77.75 
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approximately 597 seconds but GLOA’s is approximately 582 

seconds. 

Table III shows the makespans the algorithms produce for 

100 fixed independent tasks for various numbers of resources. 

As can be seen, SA has the worst makespan in all of these 

cases and GLOA has the best. More details are shown in Fig. 

3. 

As can be seen in Fig. 3, as the number of resources 

increases, the makespan decreases for all algorithms, because 

when there are several ready resources with empty queues, 

tasks can be assigned to the new resources. The variation is the 

difference between the algorithms’ structures. When the 

number of resources triples, the decrease for the makespan in 

SA is approximately 100 seconds and in GLOA it is 

approximately 90 seconds. As shown, GLOA has the minimum 

makespan in each case. Its structure provides it with the ability 

to be close to GGA, because like GGA, it can search the 

problem space both locally and globally. Hence, GLOA 

reaches the best solution more rapidly (e.g., in 95 seconds for 

20 resources) than the other methods, particularly SA (which 

takes approximately 174 seconds).  GLOA’s makespan 

decreases up to 45% compared to SA, 15% compared to GA, 

11% compared to GSA, and approximately 8% compared to 

GGA. 

 

Table IV shows the algorithms’ runtime for job 500 

independent tasks with varying numbers of resources. As 

shown, SA has the best runtime for 10 and 20 resources 

(because it considers only one solution, it can search more 

quickly than the other algorithms), and GLOA has the second 

best for 30 resources (because it divides the problem solutions 

into several groups that search in parallel, it reaches the 

optimum more quickly, but it takes some time to produce the 

several groups).  Fig. 4 provides more details. 

As can be seen in Fig. 4, when the number of resources 

increases, all algorithm runtimes increase, because when there 

are several new resources with empty queues, these resources 

must be searched and tasks assigned to them. SA is the least 

time-consuming algorithm (except for the 30-resource case) 

and GSA is the worst (except for the 500-task and 20-resource 

case). When the number of resources increases to 30, GLOA’s 

runtime decreases less than SA’s, because the resources have 

sufficiently many empty queues to be able to respond to 500 

tasks more quickly, and SA considers the entire problem while 

GLOA divides the problem into several groups and considers 

the queue sizes and makespans for the tasks. When there are 

only a few resources (10), GA executes in just under 22 

seconds, GSA and GGA have similar runtimes (just under 26 

seconds), and GLOA requires just over 2 seconds, but SA 

requires less than 2 second. Although SA is the best algorithm 

in terms of runtime, it cannot produce better makespan results 

(as seen in Figure 2), and therefore we exempt this algorithm 

from consideration.  When the number of resources triples 

(from 10 to 30), SA’s runtime increases by 80%, GA’s by 

24%, GGA’s and GSA’s by 26%, but GLOA’s increases by 

less than 10%. Therefore, while GLOA’s runtime increases 

with the number of resources, it does so at a very low rate. 

VI. CONCLUSION 

Grid technology has made it possible to use idle resources 

as part of a single integrated system. The main purpose of grid 

computing is to make common resources such as 

computational power, bandwidth, and databases available to a 

central computer. The geographic spread and dynamic states 

of the grid space present challenges in resource management 

that necessitate an efficient scheduler. This scheduler should 

assign tasks to resources in such a way that they are executed 

in the shortest possible time.  

This paper used a new evolutionary algorithm, GLOA, for 

scheduling tasks/jobs in a computational grid.   Simulation 

results for GLOA were compared with results for four other 

intelligent algorithms: GA, SA, GGA, and GSA, and it was 

shown that in addition to wasting less computation time than 

the other algorithms, GLOA is able to produce shortest 

makespans. Also, GLOA could be applied in the real world 

because its runtime and makspan is less than other AI methods 

and produce less overhead on resources while responding the 

independent tasks.  

In the future, we will change GLOA structure and apply it 

into dependent tasks in Grid Environment to cover the current 

gap into scheduling of dependent tasks. 
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