
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-23-



Abstract — Sketch-based interfaces provide a powerful,

natural and intuitive way for users to interact with an

application. By combining a sketch-based interface with a

physically simulated environment, an application offers the means

for users to rapidly sketch a set of objects, like if they are doing it

on piece of paper, and see how these objects behave in a

simulation. In this paper we present SketchyDynamics, a library

that intends to facilitate the creation of applications by rapidly

providing them a sketch-based interface and physics simulation

capabilities. SketchyDynamics was designed to be versatile and

customizable but also simple. In fact, a simple application where

the user draws objects and they are immediately simulated,

colliding with each other and reacting to the specified physical

forces, can be created with only 3 lines of code. In order to

validate SketchyDynamics design choices, we also present some

details of the usability evaluation that was conducted with a

proof-of-concept prototype.

Keywords — Gesture Recognition, Physics Simulation, Rigid

Body Dynamics, Sketch-Based Interfaces.

I. INTRODUCTION

SING pen and paper to draw or sketch something in

order to express an idea is very common and also very

natural for us. By using this concept in user interfaces one can

make the interaction process more natural and spontaneous.

In this paper we propose SketchyDynamics, a programing

library to aid in the creation of applications for 2D physics

simulations in which the user interacts directly with the scene

using a ―pen and paper‖ style interaction. Thus, instead of

selecting from a menu which objects compose the scene to be

simulated, the user can simply draw them directly into the

scene. We hope that developing this library will provide a

boost for developers to create new applications around this

concept, be they for educational purposes, like an application

used to teach physics with an interactive whiteboard, or for

entertainment purposes, such as a physics-based game where

the user draws parts of the scene in order to reach a goal.

The library supports three gestures to draw rigid bodies and

other three to define connections between them. The first three

gestures are used to produce rectangles, triangles and circles,

which can be created by drawing these symbols directly. Also,

the user can draw a zigzag to connect two bodies with a spring,

an alpha to pin a body over another and a small circle to define

a rotation axis between two bodies. Since both the circle body

and the rotation axis relation use the same gesture, we only

have in fact five gestures to recognize, presented in Fig. 1.

Fig. 1. Set of gestures used in our library

Although there are already several applications that

combine physics simulation with a sketch-based interface,

most of them have a specific scope and audience. As a library,

SketchyDynamics is intended to be used in different types of

applications and does not have a definite scope. We hope that

our work helps developers create new and exciting

applications with little effort in combining the physics

simulation with the sketch-based interface.

In the next section we present an overview of the results

achieved in the sketch recognition field and also works that

combine sketch-based interfaces with rigid body physics

simulation. Section 3 gives a little insight into a previous

evaluation whose purpose was to select the sketch recognizer

that best integrates with our library. In section 4 we present

our library, its technical characteristics, along with its

functionality. Section 5 discusses a preliminary informal

evaluation and section 6 concludes this paper and presents

potential future work.

SketchyDynamics: A Library for the

Development of Physics Simulation

Applications with Sketch-Based Interfaces

Abílio Costa
1
, João P. Pereira

1,2

1
 Computer Science Department, School of Engineering (ISEP), Polytechnic of Porto, R. Dr. António

Bernardino de Almeida 431, Porto, Portugal
2
 Knowledge Engineering and Decision Support Group (GECAD), School of Engineering, Polytechnic

of Porto, R. Dr. António Bernardino de Almeida 431, Porto, Portugal

amfcalt@gmail.com, jjp@isep.ipp.pt

U

DOI: 10.9781/ijimai.2013.233

 Special Issue on Improvements in Information Systems and Technologies

-24-

II. RELATED WORK

This section presents some of the related work in the sketch-

based interfaces domain and is divided into two subsections.

The first subsection will address the work done in the sketch

recognition field, while the second presents some examples of

applications that result from the combination of sketch-based

interfaces with rigid body physics simulation.

A. Sketch Recognizers

Given the potential of automatic sketch recognition, a lot of

work has been done in order to develop recognizers capable of

dealing with the intrinsic ambiguity of hand-drawn sketches.

Since there is a wide variety of sketch recognition algorithms,

it is only natural that there‘s also diversity in their

characteristics. Examples of these characteristics are the ability

to be trained to recognize new gestures, the capacity to

recognize multi-stroke gestures or the sensitivity to the

gesture‘s orientation, scale or drawing direction.

Rubine‘s recognizer [1], a trainable gesture recognizer,

classifies each gesture using a linear classifier algorithm with a

set of distinct features. The recognizer is very flexible since

features can be easily added or removed to make the

recognizer fit the application needs, as proven by Plimmer and

Freeman [2]. The major limitations of Rubine‘s recognizer are

its sensitivity to the drawing direction, scale, and orientation

and inability to identify multi-stroke sketches. Pereira et al. [3]

made some modifications to Rubine‘s recognizer in order to

make the algorithm accept multi-stroke sketches, but only

when drawn with a constant set of strokes, as pointed out by

Stahovich [4]. Pereira et al. also present a way to make the

algorithm insensitive to drawing direction.

CALI [5] is an easy to use multi-stroke recognizer that uses

Fuzzy Logic and geometric features to classify gestures

independently of their size or orientation. CALI divides

gestures into two types: shapes and commands. Shapes can be

drawn (and recognized) using solid, dashed and bold lines,

while commands are only recognized with solid lines. Since

CALI is not trainable, adding new gestures is not an easy task,

involving analysis of which features characterize and

distinguish the new gesture and hand-coding these features. To

solve this limitation the authors also present a trainable

recognizer but it has a lower recognition rate and requires

numerous training templates for each gesture class
1
.

Wobbrock et al. [6] present the $1 Recognizer which aims

to be easy to understand and quick to implement. It is

insensitive to scale and orientation of sketches, but sensitive to

their drawing direction. One major advantage of $1

Recognizer is the simplicity to add support for new gestures,

requiring only one training template per gesture class to be

effective. Furthermore, the authors also explain how to make

the recognizer sensitive to scale or orientation, for some or all

gesture templates.

In order to solve some of the limitations of the $1

1 A gesture class represents a unique gesture, but can be made from

multiple representations of that gesture, i.e. multiple templates.

Recognizer, such as not being able to recognizing multi-stroke

gestures, sensitivity to the drawing direction, and problems

recognizing uni-dimensional gestures such as lines, Anthony &

Wobbrock extended it and created the $N Recognizer [7].

Despite the improvements over the $1 Recognizer, $N has

problems recognizing gestures made with more strokes than

those used in the training templates. Also, it is not well suited

to recognize ―messy‖ gestures like a scratch-out, commonly

used for erasing-like actions.

Lee et al. [8] present a trainable graph-based recognizer that

is insensitive to orientation, scale and drawing direction and is

able to recognize multi-stroke gestures. Since the recognizer

uses statistical models to define symbols, it handles the small

variations associated with hand-drawn gestures very well.

Despite being a trainable recognizer, it requires all training

templates of a gesture class to be drawn with a consistent

drawing order or consistent orientation.

Vatavu et al. [9] present a trainable recognizer that uses

elastic deformation energies to classify single-stroke gestures.

The recognizer is naturally insensitive to gesture scale and

orientation, since the same gesture has similar curvature

functions independently of the drawing orientation or size, but

is sensitive to drawing direction and starting point within the

gesture.

Sezgin and Davis [10] present a multi-stroke sketch

recognizer, based on Hidden Markov Models (HMM), that is

capable of recognizing individual sketches in complex scenes

even if the scene is not yet completed, i.e. while it is being

drawn, and without the need to pre-segment it. On the other

hand it can only recognize sketches in their trained

orientations, thus being sensitive to orientation. Since the

recognition relies on the stroke order of the trained templates,

it is not well suited for domains where the stroke ordering

cannot be predicted. Also, because HMMs are suited for

sequences, it cannot recognize single-stroke sketches, unless

they are pre-segmented.

B. Physics Simulation with Sketch-Based Interfaces

The idea of using a sketch-based interface to create and

manipulate a simulated scene is not something new. For

example, ASSIST [11] is able to recognize sketches and

convert them to mechanical objects which can then be

simulated. The system recognizes circles and straight-line

polygons (simple or complex) made of single or multiple

strokes. The recognition is done incrementally, while the user

is drawing, which makes the system feel quicker and also gives

an instantaneous feedback to the user, since hand-drawn lines

are converted to straight lines and colored according to the

type of object recognized. When an improper interpretation of

a gesture is made, the user is able to correct it using a list of

alternative interpretations. In ASSIST, users can also pin one

object over another with a rotational axis by drawing a small

circle, or anchor objects to the background by drawing a small

cross. After finishing the sketch, the user can press a ―Run‖

button to transfer his design to a 2D mechanical simulator that

runs and displays a simulation of the designed scene.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-25-

Another application, ―Free-Hand Sketch Recognition for

Visualizing Interactive Physics‖ [12] enables users to draw

simple 2D objects and simulate how these objects behave in

3D. The application is able to recognize four types of objects:

lines, circles, rectangles, and triangles. When the gesture

cannot be recognized a small dialog is presented, requesting

the user to specify the desired gesture. After creating an object,

the user is able to anchor it so that it remains static during the

simulation. The design process consists of three modes: the

―Ink‖ mode where the user can draw new objects; the ―Select‖

mode, where a circle selects the enclosed objects; and the

―Erase‖ mode, used to remove objects. Despite the designing

being done in 2D, the physics simulation is 3D and the user is

able to move the camera and also move objects in 3D space.

There are also games that take advantage of a sketch-based

interface and a physics simulated environment to entertain the

player. One popular example is Crayon Physics Deluxe [13], a

puzzle game where the main objective is to guide a ball so that

it touches all the stars in each level. Instead of controlling the

ball directly, the user needs to draw objects that influence the

ball, leading it to the stars. The user can draw rigid bodies with

any shape and connect them with pivot points and ropes. Since

the simulation is always running, sketched objects are

simulated and interact with other objects right after being

drawn. The game has a ―children‘s drawing‖ theme, with a

background that resembles a yellow paper sheet and crayon-

like sketches, both characteristics that make it successfully

adopt the pen-paper paradigm. Crayon Physics Deluxe also

includes a level editor and an online playground, so users can

create their own levels and submit them online.

III. SKETCH-BASED RECOGNITION EVALUATION

Due to the high importance of having good gesture

recognition, since the user must feel the interaction to be as

natural and unrestrictive as drawing with a pen on a paper, the

gesture recognizer used in SketchyDynamics was selected

based on previous evaluation [14] [15]. The evaluation was

conducted using real gesture samples drawn by 32 subjects,

with a gesture set specifically arranged for our library (Fig. 1).

For the evaluation process we developed an application to

collect gesture samples from the subjects, process them, and

compute the recognition results. With this tool we evaluated

Rubine‘s recognizer, CALI and the 1$ Recognizer, concluding

that for our gesture set CALI achieved the highest recognition

rates.

With this evaluation we were also able to improve

recognition rates by tweaking the templates and the

recognizer‘s implementation to our specific gesture set.

IV. THE SKETCHYDYNAMICS LIBRARY

SketchyDynamics is a programing library that aims to

simplify the implementation of 2D physics simulation

applications with sketch-based interfaces. Using 2D graphics

and physics simulation means that the user sketch (in 2D)

produces a 2D object, which resembles the pen-paper

paradigm and simplifies user interaction.

Out of the box, SketchyDynamics provides an interface for

the user to interact with an application along with recognition

and processing of user actions such as drawing, moving,

scaling and removing rigid bodies and their joints.

SketchyDynamics also deals with the physics simulation of

these elements and visually represent them on the computer

screen along with other user interface elements. Thus, a

developer can integrate these features in an application with

almost no effort.

A. Architecture

A major concern when designing SketchyDynamics was to

make it versatile, so that developers can create all kind of

applications, but at the same time simple enough to enable

rapid prototyping. For example, with only 3 lines of source

code a developer can create a simple test application where the

user can draw objects and see their simulation, while they

collide with each other and react to the specified ―gravitational

force‖. With a dozen more lines the developer is able to add a

background body where the user is able to attach objects, or a

ground body so that drawn bodies have something to fall onto.

As stated previously, we use CALI as the gesture recognizer

since it yielded the best results in our evaluations.

For the physics simulation SketchyDynamics uses the

Box2D physics engine. Despite using Box2D,

SketchyDynamics does not encapsulate it or hide it from the

programmer. Instead programmers have access to all Box2D

objects and functionality so they are able to parameterize them

according to the application‘s needs.

Although bodies and joints are created automatically by the

library when the user draws them, the application is also able

to programmatically create and remove them (along with their

visual representations). Furthermore, SketchyDynamics also

gives the application full control over the simulation state.

To render the bodies simulated by Box2D and any other

visual elements we used the OpenGL API. Despite that,

SketchyDynamics was designed so that a developer can easily

use another API. This is achieved by ensuring that all

OpenGL-specific code is encapsulated in a few classes, thus

creating a conceptual abstraction layer.

While implementing the OpenGL abstraction we took the

opportunity to add some ―graphics library‖ functionality. For

example, a programmer can easily create polygons by defining

their vertices and then apply geometric transformations to

them, toggle their visibility on screen, among other operations,

all done in an object-oriented manner. Additionally, the library

provides scene query functionality and easy texture

management for the developer. To render each object

SketchyDynamics offers three rendering queue layers so that

each individual object can be drawn on the background, on the

front (as a user interface element) or in the middle of these two

layers. Furthermore, the depth or order of each object inside

each layer can also be specified.

Another design decision that resulted from the OpenGL

abstraction was the incorporation of the window creation

 Special Issue on Improvements in Information Systems and Technologies

-26-

process inside SketchyDynamics, thus reducing the effort on

the developer‘s side. Moreover, SketchyDynamics delivers

events received by the window, like mouse and keyboard

inputs, to the application using the observer pattern, thus

letting the developer take actions based on the user input.

B. User Interaction

In order to best represent the pen-paper paradigm, the user

interaction was designed to take advantage of systems with a

touchscreen and stylus. Thus, the user only needs to press and

move the stylus to interact with the system, without needing

extra buttons
2
. Furthermore, no menus are used and most of

the interaction is done by sliding the stylus across the screen.

Although it was designed with that type of devices in mind,

SketchyDynamics also works well with a traditional computer

mouse.

There are two types of objects the user is able to create:

bodies and joints. Bodies are rigid objects that are simulated

according to physics laws while joints are used to connect

bodies. Fig. 2 shows various bodies and three types of joints.

Fig. 2. Various types of joints and bodies: 1) revolute joints; 2) spring joint;

3) weld joint; 4) rectangular body; 5) triangular body; 6) circular bodies.

It is also important for the user to be able to manipulate the

objects to a certain degree so SketchyDynamics lets the user

change an object‘s position, scale, and orientation, or even

delete it.

1) Creating

The creation of an object, be it a body or a joint, is done by

drawing it. So, for example, if users want to create a rectangle

body, they simply draw the rectangle on the screen.

SketchyDynamics then recognizes the rectangle and its

properties, like size and orientation, and creates the physical

and visual representations of it.

SketchyDynamics supports four types of bodies: rectangles,

triangles, circles and freeform bodies. When the user input is

recognized as a rectangle, triangle or circle, it is represented in

a beautified manner, as illustrated in Fig. 3. Otherwise, when

the input is not recognized, it is interpreted as a freeform and

represented in a simplified manner (with fewer vertices) for

performance reasons.

2 In a traditional mouse system this means that only the left mouse button

is needed.

Fig. 3. Example of drawn shapes (left) and respective beautified

representations (right).

The user can also connect two bodies with three different

joint types: weld, revolute and spring. Weld joints connect two

bodies at a specific anchor point, preventing any relative

movement between them. Like weld joints, a revolute joint

connects two overlapping bodies at a specific point but allows

the bodies to rotate freely around that point. Spring joints try

to keep a constant distance between two connected bodies,

based on the distance at the time the joint was created,

stretching and shrinking like a real spring.

Just like creating bodies, the creation of joints is done by

drawing them. Drawing an alpha gesture over two bodies

connects them with a weld joint with an anchor at the gesture‘s

intersection, while drawing a small circle creates a revolute

joint anchored at the circle‘s center. To create a spring joint,

the user draws a zigzag gesture starting in one body and

ending in another one, defining the two spring‘s anchor points

as the start and end points of the gesture.

Regarding the visual representation of joints, the weld and

revolute joints are represented by a small cross and by a small

circle, respectively, on the joint anchor point while the spring

joint is displayed as a zigzag line starting in one anchor point

and ending on the other, stretching and shrinking subject to the

distance between the bodies. The object presented in Fig. 2 was

constructed using joints of the three types.

In order to better deal with the ambiguity in hand-drawn

gestures, a guesses list is presented whenever the user executes

a gesture. The guesses list shows all the available objects so

that the user can choose an object other than the recognized

one. The objects corresponding to gestures identified as

matching by CALI recognizer appear bigger and first in the

list, since they are the most probable choices, followed by the

remaining objects. The guesses list feature can be disabled by

the developer, in which case the most probable object is

always selected.

Depending on the application-specific setup passed to

SketchyDynamics, objects can be created while the physics

simulation is in a paused state or while it is running and thus

making other objects react instantly to the new object. This

instantaneous simulation mode is useful for applications where

the user interacts with a live environment as usually happen in

games.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-27-

2) Selecting

For an object to be manually manipulated by the user, it first

needs to be selected. When any object is selected the physics

simulation is paused so that the user can easily edit it without

being interrupted by other moving bodies. If the simulation

was running before the selection of an object, it will resume

after all objects are unselected.

Objects are selected by tapping on them with the stylus (or

left-clicking them with a mouse), and can be deselected with

the same action. This makes selecting multiple objects an

intuitive process since users only need to keep tapping on the

objects they want to select. It is also possible to unselect

individual objects when there are multiple objects selected.

When an object is selected, its lines assume a distinctive color,

returning to the original color after being unselected. As

shown in Fig. 4, this gives a clear feedback regarding the

object‘s state. Also, tapping on an area of the screen with no

objects or on an object configured as non-selectable, deselects

all selected objects. Non-selectable objects are useful to create

the application‘s scenery, which the user cannot manipulate

but may be able to interact with, for example by connecting a

user-made body to a scenery object.

Fig. 4. Set of objects in unselected (left) and selected (right) states

When there are multiple bodies connected by joints and one

of them is selected, all the other connected bodies are

automatically selected, as long as they are selectable objects.

This feature was introduced in order to improve the usability

of the system, since we found that when multiple bodies are

connected the user typically wants to manipulate them as a

whole.

3) Moving

A selected body or joint can be moved by pressing over it

and dragging the stylus. The object will move in sync with the

stylus as long as the user keeps it pressed on the screen.

When there are multiple objects selected they all move in a

synchronized manner, regardless of which object was pressed

by the stylus.

4) Scaling and Rotating

Scaling and rotation of bodies is done simultaneously in a

single action. As the action to move an object, scaling and

rotation is done by pressing and dragging the stylus, but

instead of pressing inside the selected body, the user needs to

press outside it. As the user drags the stylus, the selected

bodies scale and rotate based on the stylus initial and current

positions. Only bodies can be rotated or scaled, so this

operation is not applicable to joints.

The scale factor is calculated based on the current distance

from the stylus position to the body center and the initial

distance (before dragging the stylus). Regarding rotation, it is

done based on the angle between two imaginary lines: the line

from the current stylus position to the body‘s center, and the

initial line (before dragging the stylus). Thus, moving the

stylus closer or farther from the body scales it while moving

the stylus around the body rotates it.

When multiple bodies are selected, they are all subject to

the same rotation and scaling factor, but instead of using the

body‘s center point as the reference point, the geometric

average of all individual center points is used.

In order to aid the user during a scaling and rotation

operation, SketchyDynamics displays a rectangle enclosing the

selected objects, which rotates and scales along with them.

Also, a small circle is displayed on the center reference point,

along with a line connecting that point to the mouse cursor, so

that the user can clearly perceive the operation being done.

These visual cues are displayed in Fig. 5.

Fig. 5. Set of objects being subject to simultaneous rotation and scaling

operations

5) Removing

Since removing objects is an important operation that

contributes to user‘s creative freedom, it was designed to be

simple, intuitive, and to have a low impact on the user‘s

cognitive load. In fact, removing an object is a just special

case of moving it.

When an object starts being moved by the user, a large

rectangle with a trash bin icon slides down from the top of the

screen, sliding back up and off-screen when the object cease to

be moved. If the stylus enters the trash bin area while moving

any object, the trash bin icon turns red. If the user lifts the

stylus while on this rectangle, all the selected objects are

removed. Fig. 6 shows the trash bin area in context of a simple,

almost empty, application, and also the trash bin icon

representations before and after the stylus drags an object onto

it. We choose to keep this area hidden unless the user starts

moving objects to improve the use of screen real estate, since

objects can only be deleted when they are being moved by the

user.

Joints can also be removed by simply being moved outside

any of the two bodies they connect, without the need to move

them to the trash bin rectangular area, although the trash bin

works for joints too.

 Special Issue on Improvements in Information Systems and Technologies

-28-

Fig. 6. a) simple application showing the trash bin area in context; b) trash

bin icon in its normal state; c) trash bin icon when an object is dragged inside

the trash area.

V. USABILITY EVALUATION

In order to validate SketchyDynamics‘ features and also to

better understand what needs improvement, we conducted a

usability evaluation session that was attended by 8 subjects (2

females and 6 males), comprising students, teachers and

researchers from the Computer Science field. During the

session, participants experienced SketchyDynamics‘

functionalities using a traditional mouse but also using an

interactive display with a stylus (Wacom Cintiq 15X).

Using a prototype application developed with

SketchyDynamics, each subject performed an efficiency test

by creating a complex scene
3
, consisting of 17 bodies and 11

joints (Fig. 7). Before beginning the execution of the efficiency

test, 5 subjects had a few minutes to experiment with the

prototype. Also, during the test, the session coordinator

clarified doubts raised by each of the 5 subjects. Regarding the

remaining 3 subjects, they executed the test in a slightly

different manner: they all done the test simultaneously, using

only one computer; the experience was timed from the moment

they had contact with the prototype; and had no help from the

session coordinator. With this group we hope to evaluate the

usability of SketchyDynamics when users are in a more

adverse situation: for example, when they have no access to

touchscreen and stylus, and/or have no time to get familiar

with the application.

Considering the complexity of the scene to reproduce along

with the inexperience of the subjects with the

SketchyDynamics library prototype, the results of the

efficiency tests are very encouraging. The first 5 subjects

completed the test on an average of 9 minutes and 12 seconds,

with a standard deviation of 3 minutes and 34 seconds.

Fig. 7. Scene reproduced by subjects during the efficiency test (the ruler, at

the bottom, along with the pause indicator, at the top-right corner, are part of

the prototype and not user-made objects)

Regarding the remaining 3 subjects, who performed the test

together, it took them about 24 minutes to complete the test,

which we consider to be a positive result since these 24

minutes include the time they spent learning how to use the

system and discovering its functionalities. Fig. 8 presents the

time taken by each subject to complete the efficiency test.

Note that since subjects 6, 7 and 8 executed the test together,

their results are unified.

Fig. 8. Time spent per subject in the efficiency test

After the efficiency test, each subject filled out a survey

form regarding their experience with the prototype. All the

questions in the survey achieved average results above 1 point,

in a scale from -3 (awful) to +3 (excellent), where 0 represents

a neutral response, showing that SketchyDynamics pleased the

users and is on the right track.

In order to know if the selected gestures were successful,

one section in the survey asked about the suitability of each

gesture in the creation process. As shown in Fig. 9, the average

results for the majority of the gestures were equal or above 2

points, except for the gesture used to create weld joints. This

lower result can be explained by the difficulty to draw an alpha

gesture using a traditional computer mouse.

3 A video demonstrating the creation of such scene can be found at

http://youtu.be/1niigTt_m_I

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-29-

Fig. 9. Average results on the suitability of each gesture in the creation

process

Regarding the object transformation process, we found the

results to be very positive (Fig. 10), since the only action that

achieved an average score lower than 2 points was the

continuous selection of multiple objects. By observing the

subjects during the interaction with the prototype, it was

evident that the action to select multiple objects caused some

trouble, since it conflicts with the usual experience users have

with computer applications. While in most applications a click

over an object selects it and deselects any other object that was

previously selected, in SketchyDynamics clicking over an

object selects it but does not deselects the remaining objects.

As a result of this conflict, participants would misguidedly

apply transformations on objects that they thought to be

deselected. Despite that, the overall opinion of the participants

in relation to the object transformation process was very good,

with an average score greater than 2 points.

Fig. 10. Average results on the object transformation process

Although subjects found that it was useful to remove a joint

by simply displacing it out of the bodies it connects, the results

presented in Fig. 11, despite being very encouraging, show

that there is still some room for improvement in regards to the

object removal process. One of the criticisms mentioned by

several subjects was the impossibility to remove and object by

pressing the ―Delete‖ key. In fact, this is a feature that is

present in most computer applications for the operation of

removing or deleting an object.

Fig. 11. Average results on the object removal process

Regarding the overall perception of SketchyDynamics, the

results showed that subjects feel that it is easy to use and is

also adequate for creating physically simulated scenes (Fig.

12). Concerning the stimulus, which achieved a lower result,

certain participants demonstrated frustration when using the

stylus, due to hardware problems. Also, some participants

complained about the impossibility to undo operations. In

relation to flexibility, participants have suggested that

SketchyDynamics should support a larger number of object

types.

Fig. 12. Average overall results on SketchyDynamics’ functionalities

In addition to these questions, the survey also inquired subjects

about the interaction devices, the arrangement of the user

interface, and also about the manipulation of the simulation.

Further discussion on the usability evaluation and also on the

SketchyDynamics library can be found on [15].

VI. CONCLUSIONS

We have presented a library capable of speeding up the

development of applications by providing developers a sketch-

based interface combined with physics simulation. The library

also provides facilities in managing the graphical side of the

application and dealing with user input.

In an effort to make the library suitable for the widest range

of applications we are working on adding more functionality

into it, such as a new rope-like joint.

One useful feature would be the ability to select an

individual body from a set of connected bodies and transform

it using the joint anchor point as a reference. This poses some

design problems since an object can have multiple joints

(which one should be used?). The problem further increases if

there is more than one selected object. Before implementation,

further study on how to overcome these problems is needed.

 Special Issue on Improvements in Information Systems and Technologies

-30-

Another interesting feature would be the existence of object

hierarchies, in which transformations applied to one object are

propagated onto its child objects, but not the opposite. The

construction of this hierarchy could be based on the depth of

the objects.

As noticed during the usability evaluation, implementing

common functionalities such as clipboard to duplicate objects

and undo/redo capabilities is extremely important to improve

the system‘s usability and reduce user‘s frustration

Another requested feature is the ability to perform a scale or

rotation operation individually. A possible and familiar

solution would be the use of a modifier key to restrict the

action to a single operation. Every time this key is pressed, the

system could check if the mouse movement was mainly radial

or tangential, doing only a scale or rotation operation,

respectively. This concept could also be applied to restrict the

movement of objects to horizontal, vertical and 45 degree

translations.

Nevertheless, we think that current state of

SketchyDynamics already enables it to be integrated and used

to develop exciting applications.

REFERENCES

[1] Rubine, D.: Specifying Gestures by Example. SIGGRAPH Computer

Graphics, Volume 25 Issue 4, 329 -337 (1991)

[2] Plimmer, B., Freeman, I.: A toolkit approach to sketched diagram

recognition. Proceedings of the 21st British HCI Group Annual

Conference on People and Computers: HCI.but not as we know it (BCS-

HCI '07) 1, 205-213 (2007)

[3] Pereira, J., Branco, V., Jorge, J., Silva, N., Cardoso, T., Ferreira, F.:

Cascading recognizers for ambiguous calligraphic interaction.

Eurographics Workshop on Sketch-Based Interfaces and Modeling

(2004)

[4] Stahovich, T.: Pen-based Interfaces for Engineering and Education.

Sketch-based Interfaces and Modeling, 119-152 (2011)

[5] Fonseca, M., Pimentel, C., Jorge, J.: CALI: An online scribble

recognizer for calligraphic interfaces. AAAI Spring Symposium on

Sketch Understanding, 51-58 (2002)

[6] Wobbrock, J., Wilson, A., Li, Y.: Gestures without libraries, toolkits or

training: a $1 recognizer for user interface prototypes. 20th annual ACM

symposium on User interface software and technology (UIST '07), 159-

168 (2007)

[7] Anthony, L., Wobbrock, J.: A lightweight multistroke recognizer for

user interface prototypes. Graphics Interface 2010 (GI '10), 245-252

(2010)

[8] Lee, W., Kara, L., Stahovich, T.: An efficient graph-based recognizer for

hand-drawn symbols. Computers & Graphics 31, 554-567 (2007)

[9] Vatavu, R.-D., Grisoni, L., Pentiuc, S.-G.: Gesture Recognition Based

on Elastic Deformation Energies. Gesture-Based Human-Computer

Interaction and Simulation 5085, 1-12. (2009)

[10] Sezgin, T., Davis, R.: HMM-based efficient sketch recognition. 10th

international conference on Intelligent user interfaces (IUI '05), 281-283

(2005)

[11] Alvarado, C., Davis, R.: Resolving Ambiguities to Create a Natural

Computer-Based Sketching. Proceedings of IJCAI-2001, 1365-1371

(2001)

[12] Kamel, H., Shonoda, M., Refeet, M., Nabil, R.: Free-Hand Sketch

Recognition For Visualizing Interactive Physics. (Accessed 2012)

Available at: http://code.google.com/p/sketch-recognition-simulation-

tool

[13] Purho, P.: Crayon Physics Deluxe. (Accessed 2012) Available at:

http://crayonphysics.com

[14] Costa, A., Pereira, J.: SketchTester: Analysis and Evaluation of

Calligraphic Gesture Recognizers. 20º Encontro Português de

Computação Gráfica (20ºEPCG) (2012)

[15] Costa, A.: SketchyDynamics: Apoio à Produção de Sistemas Baseados

em Interfaces Caligráficas para a Simulação da Dinâmica de Corpos

Rígidos (M.S. thesis). School of Engineering (ISEP), Polytechnic of

Porto, Portugal (2012)

Abílio Costa received his MSc in Computer Science Engineering at the

School of Engineering, Polytechnic of Porto (ISEP-IPP), in 2012, where he

also accomplished his graduation. Currently working on the graphics and

rendering engine of a new product at NDrive, he has experience in user

interfaces and computer graphics.

João P. Pereira earned his BSc, MSc and PhD in Electrical and Computer

Engineering from the Faculty of Engineering of the University of Porto

(FEUP).

He is currently teaching at the Computer Science Department of the School of

Engineering, Polytechnic of Porto (ISEP-IPP), and researching at the

Knowledge Engineering and Decision Support Research Center (GECAD).

His main areas of interest are Computer Graphics and Human-Computer

Interaction.

