
 Special Issue on Improvements in Information Systems and Technologies

-38-



Abstract — Scientific computing over the Internet can suit

many activities that have not, in the authors’ opinion, been

explored enough in general. Resources such as executables,

languages, packages, can be used from a remote computing

system. In this study, largely based on academic practice, a

simple illustrative example in Geometry is implemented on a

distributed system that outsources the computing-intensive tasks

to remote servers that may be located in other universities or

companies, linked to grids and clusters and so on. The software

stack and software developed to support the communication is

explained in detail. The architecture developed stresses the

interoperability of the software, and a suitable high degree of

decoupling between components hosted in various locations. The

results of this study motivate further work and serve a practical

purpose that may be useful to everyone doing scientific

computing.

Keywords — Internet, remote executables, Scientific

computing, university-industry links.

I. INTRODUCTION

ANY areas of scientific computing can be addressed over

the Internet, but this approach has not, in general — in

these authors’ opinion — been appropriately explored, all the

more if compared with most uses of that ubiquitous

communication network. One of the authors has, since more

than a decade, intensively used this mode of computing in

research and teaching at his university work, in domains

related to Mathematics, namely Operational Research,

Statistics or Chemical Engineering. The computing has been

mainly done in a server of the university’s information

technology centre, intended typically to host faculty and

students’ webpages. The present study, largely based on that

previous academic practice, focuses on the establishment of a

link between two universities, one supposedly wishing to

execute software made available by the other. This would also

apply to any two entities, such as a set of two companies or a

university-company linkage (a particular application of [5]).

In the Internet context, resources adequate to the particular

technical purpose, such as executables, languages, or

packages, can be used, if accessible at this level with due

permissions, from a remote computing system.

The Internet affords nowadays an unprecedented ease of

communication at a very low cost, so that a step can be taken

to reap benefits from using remote resources. There are, of

course, many resources for computing on the Web, dealing

with small tasks, ranging from conversions of units to more

complex mathematical problems. Regarding scientific

computing over the Web, an extensive example of this activity

in the academic environment is the original work by Ponce

([7]), containing a large number of (Fortran) programs to solve

problems dealing with Hydraulics and related areas in Civil

Engineering. These applications are presumably (as all of our

previous work) deployed wholly on single nodes, which also

host the web interface and logic. Building on such projects as

the excellent one referred above and our own previous

projects, the present work intends to take this topology into a

next stage, allowing further decoupling of components, by

introducing an intermediate communication layer between

distributed nodes, which together form the web computing

system.

Internet-based computing as an everyday activity has been

deemed by one of the authors indispensable to his activities as

a tool in the academic practice, and a gateway to the

university-industry linkage — widely praised but often scanty

— in an era of cheap information technology gear.

The present study is based on a simple, yet surprising,

illustrative example in Geometry — an example that might be

used in a lecture — chosen both to be clear to a wide

readership and to avoid beclouding the underlying software

structure. Thus: the problem is started in a webpage of one

entity; and the computation is done, without the user‘s

perception, at another machine (suggesting the extension to

more), allowing a certain software to be accessed.

In the following sections: the illustrative example is briefly

described in its mathematical aspects; the developed resolution

based on network computing is presented, with the

implemented software architecture to support it; and finally

some conclusions are drawn about the proposed solution and

system developed.

II. ILLUSTRATIVE EXAMPLE

A problem in Geometry, otherwise conceived as a simple

template for more applied cases, was chosen as an illustrative

An Example in Remote Computing Over the

Internet applied to Geometry

Ferreira, M
1
 and Casquilho, M.

2

1
 Department of Computer Science and Engineering,

Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
2
 Centre for Chemical Processes, Department of Chemical Engineering,

Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal

M

DOI: 10.9781/ijimai.2013.235

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-39-

example for the technique. Let the minimum distance be

sought between points A, source, and B, destination, as seen in

Fig. 1, both on the X-axis, passing by point P, to be

determined, on the half line s making an angle  with the

horizontal axis. The problem is treated in [1] and solved by

simple differential calculus. The analytical solution for

P = (X, Y) is given in (1).

 2

21

sec
11

2

11










xxX
 (1)

Fig. 1. Route from A to B, passing by

P on s, for minimum distance.

With tanXY  , (1) leads to (2):

2

21

21 cos2
xx

xx
X




 2sin2
21

21

xx

xx
Y




(2)

More concisely, in polar coordinates, (, ), with   , the

radial coordinate is





cos2

coscos2cos

21

21

2

21

21

xx

xx

xx

xx
X
















(3)

The interest of this problem — the reason it was chosen —

lies in the unexpected result as  decreases towards 0. In

Fig. 2, the optimum routes are shown, to which correspond the

optimum positions of P, for various descending values of ,

always with x1 = 1 and x2 = 3. The results come from the

authors’ website ([2]). Now, intuition would possibly lead  to

the arithmetic mean of x1 and x2.

Fig. 2. Optimum routes for = 60, 40, 20, 10° (from left to right).

Observation of the sequence in Fig. 2, however, disputes

intuition, and confirms (3):  tends to the harmonic mean of

x1 and x2. Images for small angles, 5 and 2°, in Fig. 3, show

the limiting  to be not 2, the arithmetic mean of x1 = 1 and

x2 = 3, but 1.5, their harmonic mean.

The adequacy of the arithmetic mean in its own right should

be noted (for  = 0), notwithstanding, by verifying that, just by

letting x1 and x2 grow indefinitely, with  12 xx (

constant), the harmonic mean tends to the arithmetic mean, as

seen in (4).

  

2
1

1

2
1

2

1

11

2

11
lim

1

1

1

1

11

11

11
1

x

x

x

x

xx

xx

xxx













































(4)

Considering the infinitesimal
1x , (4) becomes (5), where the

arithmetic mean is now visible (21   x).

 

2

1

22

1

2
1

11
lim

1

1

2

1

1
1

1

1

1
































x
xx

x
x

x
x

x

(5)

Another interesting property of the optimum routes is that,

for varying  (with fixed x1, x2), the locus of the optimum

points P is a circle with radius  2121 xxxxR  (same

physical units of the x’s, of course) centred at (0, R), here

R = 3/4. These facts, out of the scope of this study,

corroborate the adequacy of the Internet also to openly reveal

noteworthy features.

III. SOFTWARE ARCHITECTURE

This study is based on previous applications for many types

of scientific problems and expands their capacity using the

Internet, following past and current academic practice. In this

work, we developed a decentralized computing architecture,

distributed on a network, using the HTTP protocol to

communicate between the servers, in what is usually known as

a web4 service. The architecture is composed by servers

playing two separate roles:

a) a front end role, providing the computing

services to the clients, with a simple, practical web

interface that can be easily accessed through any

browser; and

4 In web (as attributive) or Web, the Chicago Manual of Style Online ([4])

was roughly followed.

 Special Issue on Improvements in Information Systems and Technologies

-40-

 = 5, 2° (from left to right).

b) a back end role, receiving the computing tasks

from the front end and having the required

software to execute them.

The remote call may incur a substantial delay, depending

only on the network latency, and mainly the complexity of the

problem and computing power of the remote server machine.

The back end addresses must be known to the front end

servers, so that they can be located on the public network.

Likewise, the front end must be publicly accessible to the

users/clients, and have a well-known address.

In the architectural layout described, both the front and

back end servers are highly decoupled between them and from

the other servers, having no structural dependencies on any

single network point [no SPOF5 (e.g., [4])]. Therefore, they

can be easily brought up and down, and change location,

without disturbing the overall functioning of the system, which

grants a very valuable comparative advantage. The only

requirement for the system to work is just one front end and

one back end servers online at any given time.

The decoupling is highly beneficial for two reasons: i) load

balancing of requests between the front ends, and of

computing tasks between the back ends; and ii) fault tolerance

against possible node crashes.

The front end and the back end support parallel

task/requests that require a separation and isolation of

execution contexts. This is guaranteed by the HTTP server

and the script engine used, which is PHP, with additional

safeguards required in the code to carefully avoid any conflict

in the resources used (filenames, etc.).

The system is illustrated in this study with the geometric

example above, implemented on an Internet link between two

semi-closed local networks, the Sigma cluster of IST, and the

web servers of FCUL, following the steps described in the next

two subsections.

The IST server is deployed on a cluster of AMD64 Opteron

processors (2.4 GHz) running Debian Linux, Apache 2.2.16,

and PHP 5.3.3-7. The FCUL server runs on a cluster of i386

Intel Xeon processors with Red Hat Linux, Apache 2.2.3 and

PHP 5.1.6.

5 ―single point of failure‖

Local execution

The starting point of the study, based on previous work

done, was a system deployed in a single local server. This

system combines the front end and back end functionalities

locally. This is a simple case scenario that served to develop

and test the basic computing service.

The system uses the following five files in turn:

a) Webpage, such as [2], in a well-known address of

a front end server — It is a PHP file containing an

HTML ‗form‘ to receive the user‘s data, which is

then sent via an HTTP POST method to a

processing PHP script (following item);

b) PHP script ‗interface.php‘, which

1. Extracts the user‘s arguments from the HTTP

request;

2. Launches the required program in a new process (via

PHP‘s ‗proc_open‘) with redirected streams to new

process pipes, open to the calling PHP process;

3. Feeds it with the given arguments through the child

process read pipe;

4. Waits to read the output of the called program from

the other, write pipe; and

5. Closes the pipes and terminates the child process.

c) Binary program (‗angDist.exe‘, compiled from a

Fortran 90 source), which also writes to the output

stream the data required for a graphic to be

created afterwards.

Now, the ‘interface.php’ script [in b)] constructs a dynamic

webpage from:

a) ‗interfacetop.php‘ (constant), the top of the

webpage;

b) body (main) section, in HTML ‗pre‘ format, with

the results of the program call, and (typically) a

graphic with plotted results, closing HTML

bottom.

The screenshots are shown in Fig. 4 for the user data and in

Fig. 5 for the results of the computation.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-41-

Fig 4.. Webpage for the user data..

Fig. 5. Webpage for the results.

A. Remote execution

The remote execution mode is the focus of the present work.

In this mode, the computing component was distributed to a

remote network allowing for a scalable expansion of the

system by adding more computing nodes. The decoupling

adopted thus requires the development of a middle-ware

communication layer between the web-interface (front-end)

and the computing nodes (back-end). The decoupled

architecture also provides scalability for the front-end,

allowing the deployment of multiple interface nodes, scaling

up according to the number of incoming requests. The

accessible web front-end is available in [3]. The system can

be easily deployed throughout many nodes, which can be

switched on and off depending on the desired system

throughput and efficiency.

Starting from the local execution system described in the

previous section, the interface between the computing program

and the web front end was greatly modified to support the

distribution of both parts, mainly the computing intensive

tasks. A muddle-ware was developed to implement the

network communication, with the required transfers and

conversions of data. The process of service lookup by the

remote servers is done by a semi-static approach, i.e., a list of

hostnames of the known service providers, contacted in

sequence until a live one replies.

To the desired end, the following changes were made:

a) Refactoring the PHP complete service module,

into two separate modules: a local front end

component, and a back end web service

interface for the remote program;

b) The front end interface loads the list of known

back end servers‘ addresses, and polls them to

find one available;

c) The front end makes an HTTP request to the

available server, by invoking the PHP script on

the back end. The front end forwards the input

data using the HTTP POST method, specifying

in the request which service is required (i.e.,

‗angDist‘ in the example);

d) The back end interface calls the binary program

in a manner similar to the local execution mode,

executing the requested task in isolation in that

node;

e) The back end sends the results back to the front

end, i.e., both the main results and the

parameters of the to-be-created graphic,

formatted following a well-defined template,

and packaged in the same HTTP response body;

f) The front end process receives the output of the

task, and unpacks the two blocks of data (results

and graphic‘s parameters), which have been pre-

formatted accordingly; and

g) The front end retains the responsibility of

generating the graphic with the parameters

received from the remote request, using the

GNU tool gnuplot.

The choice was made not to send the graphic itself over the

Web, for it could lead to problems of text data encoding (one

of the tenets of web services being the use of textual ASCII

data), and it would considerably increase the messages’

payload size.

The results for the user are, of course, the same as

previously. A different HTML background image was chosen

to differentiate between a service running in local execution

mode (the front end at IST) and another in remote mode (the

one at FCUL [3]). The remote execution network is

schematically shown in Fig. 6.

The system performed as expected, namely, the

communication latency introduced by the network was

negligible when compared to the typical computing time for

scientific problems, and it is a constant delay depending only

on the size of input and output data, and the underlying

network infrastructure.

The remote execution mode is the focus of the present work.

In this mode, the computing component was distributed to a

remote network allowing for a scalable expansion of the

system by adding more computing nodes. The decoupling

adopted thus requires the development of a middle-ware

communication layer between the web-interface (front-end)

and the computing nodes (back-end). The decoupled

architecture also provides scalability for the front-end,

allowing the deployment of multiple interface nodes, scaling

up according to the number of incoming requests. The

accessible web front-end is available in [3]. The system can

be easily deployed throughout many nodes, which can be

 Special Issue on Improvements in Information Systems and Technologies

-42-

switched on and off depending on the desired system

throughput and efficiency.

Starting from the local execution system described in the

previous section, the interface between the computing program

and the web front end was greatly modified to support the

distribution of both parts, mainly the computing intensive

tasks. A muddle-ware was developed to implement the

network communication, with the required transfers and

conversions of data. The process of service lookup by the

remote servers is done by a semi-static approach, i.e., a list of

hostnames of the known service providers, contacted in

sequence until a live one replies.

To the desired end, the following changes were made:

a) Refactoring the PHP complete service module,

into two separate modules: a local front end

component, and a back end web service

interface for the remote program;

b) The front end interface loads the list of known

back end servers‘ addresses, and polls them to

find one available;

c) The front end makes an HTTP request to the

available server, by invoking the PHP script on

the back end. The front end forwards the input

data using the HTTP POST method, specifying

in the request which service is required (i.e.,

‗angDist‘ in the example);

d) The back end interface calls the binary program

in a manner similar to the local execution mode,

executing the requested task in isolation in that

node;

e) The back end sends the results back to the front

end, i.e., both the main results and the

parameters of the to-be-created graphic,

formatted following a well-defined template,

and packaged in the same HTTP response body;

f) The front end process receives the output of the

task, and unpacks the two blocks of data (results

and graphic‘s parameters), which have been pre-

formatted accordingly; and

g) The front end retains the responsibility of

generating the graphic with the parameters

received from the remote request, using the

GNU tool gnuplot.

The choice was made not to send the graphic itself over the

Web, for it could lead to problems of text data encoding (one

of the tenets of web services being the use of textual ASCII

data), and it would considerably increase the messages’

payload size.

The results for the user are, of course, the same as

previously. A different HTML background image was chosen

to differentiate between a service running in local execution

mode (the front end at IST) and another in remote mode (the

one at FCUL [3]). The remote execution network is

schematically shown in Fig. 6.

Fig. 6. Remote execution network.

The system performed as expected, namely, the

communication latency introduced by the network was

negligible when compared to the typical computing time for

scientific problems, and it is a constant delay depending only

on the size of input and output data, and the underlying

network infrastructure.

IV. CONCLUSIONS

The present study inherits former extensive work in scientific

computing over the Internet by one of the authors, akin to the

work by [7]. Our work has been done in one server of IST,

where the webpages and their respective executables are

located. The study extrapolates that approach to a two-server

solution permitting a webpage on a new server, at FCUL, to

access an executable placed on the other server, at IST,

without the user’s perception. The access is governed by two

PHP scripts, each placed in one of the servers.

This shows the ease of use of an executable in a remote locus

possessing required resources (executables, languages,

packages), thus avoiding the breach of the source webpages’

style. With the current ease of communication, this points to

the use of remote software among collaborating entities, such

as companies or universities or in the university-industry

linkages. Thus, some software components topologically

isolated from a web gateway or from unsecure locations

outside its LAN may be accessed by a trusted web server and

provided to the worldwide web users.

ACKNOWLEDGMENT

The research was done at (1.st author) the Department of

Computer Science and Engineering and (2.nd author) Centro

de Processos Químicos (Centre for Chemical Processes),

Department of Chemical Engineering, both of the Technical

University of Lisbon, Lisbon, Portugal. Thanks are due to the

CIIST (Centro de Informática, Informatics Centre) of Instituto

Superior Técnico and, for their special effort, CI of Faculdade

de Ciências (Faculty of Sciences) of the Lisbon University.

REFERENCES

[1] Casquilho, M., Buescu, J.: A minimum distance: arithmetic and

harmonic means in a geometric dispute, International J. of Mathematical

Education in Science and Technology, 147, 399–405 (2011).

[2] Ferreira, M., http://web.ist.utl.pt/ist11038/compute/com/Fx-

angdistImg.php

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-43-

[3] Ferreura, M., http://webpages.fc.ul.pt/~maxxxxxxxxx/compute/Fx-

angdistRemote.php

[4] Chicago Manual of Style Online (The),

http://www.chicagomanualofstyle.org/

[5] Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud

computing: distributed internet computing for IT and scientific research,

Internet Computing, IEEE, 13(5), 10–13 (2009).

[6] Dooley, K.: Designing large-scale LAN‘s. O‘Reilly Media, Inc.,

Sebastopol, Ca. (USA) (2002).

[7] Ponce, V. M.: Vlab, http://onlinecalc.sdsu.edu/, San Diego State

University.

Miguel Ferreira was born in Lisbon, Portugal, in 1979.

He got his M. Sc. in Computer Engineering from Instituto

Superior Técnico, Technical University of Lisbon, Lisbon,

Portugal, in 2013.

Miguel Casquilho was born in Lisbon, Portugal, in 1948.

He got his M. Sc. from Instituto Superior Técnico,

Technical University of Lisbon, Lisbon, Portugal, in 1971

and his PhD in the same subject and University. He has

been an Assistant Professor till 2012, now retired, and has

worked in scientific computing on the Internet in

modelling, simulation and optimization in Operations

Research, Quality Control, and Computing. Prof. Dr.Casquilho is a member

of the Union of Portuguese Engineers, and of the American Society for

Quality.

