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Abstract

Finding the optimal distribution of innovation terms to forecast the yield curve or to
price derivatives on fixed-income securities with Monte Carlo simulation is a challenge
that not so many authors have taken up. We investigate the Pareto-Lévy distribution
that fits the U.S. yield curve when the latter experiences different shapes: normal, in-
verse, flat and humped and experiences a volatile environment or not. We show that
the Pareto-Lévy distribution does not improve significantly yield curve forecasting with
Monte Carlo simulation when benchmarked to the Normal distribution but we discov-
ered interesting outcomes concerning the Normal distribution such as its higher per-
formance for fitting the yield curve and its consistency whatever the shape of the yield
curve and whether the interest rate environment is volatile or not. We base our findings
on 2,707 U.S. Treasury yield curves over the 2001-2012 period. Market participants
who use Monte Carlo simulation, in need of a methodological framework to identify
an optimal random number generator that fits the yield curve or in need of an accurate
short term forecast of the yield curve, will find our paper appealing. 
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ajuste de la distribución Pareto-lévy 
a la curva de tipos de interés:  
Una aplicación a la predicción

Rostan, Pierre
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Resumen

Encontrar la distribución óptima de los términos de innovación a la hora de predecir
la curva de tipos de interés o valorar derivados sobre títulos de renta fija mediante si-
mulación Monte Carlo constituye un reto que ha sido aceptado por un escaso número
de investigadores. En este artículo se investiga la distribución de Pareto-Lévy que ajusta
la curva de tipos del Tesoro americano bajo diferentes formas de esta última: inversa,
plana, encorvada, y tanto en ambientes de volatilidad como en entornos de tipos no
volátiles. Se muestra que la distribución de Pareto-Lévy no mejora significativamente
la predicción de la curva de tipos con simulación Monte Carlo respecto a la distribución
Normal; sin embargo, se han descubierto algunos resultados ciertamente interesantes
en lo que se refiere a la distribución Normal, tales como su mejor funcionamiento a la
hora de ajustar la curva de tipos y su consistencia, cualquiera que sea la forma de la
curva y el entorno (de volatilidad o no) de los tipos de interés. Los resultados que se
exponen en este artículo están basados en 2.707 curvas de tipos del Tesoro americano,
en el periodo 2001-2012. Los participantes en el mercado que utilicen simulación
Monte Carlo, ya sea por la necesidad de un marco metodológico para identificar un
generador de números aleatorios óptimos que ajuste la curva de tipos o bien para ob-
tener predicciones precisas a corto plazo, encontrarán este artículo atractivo.

Palabras clave: 

Predicción de la curva de tipos de interés, distribución, tipo de interés, modelo 
Cox-Ingersoll-Rossl, distribución Pareto-Lévy, distribución normal, simulación Monte
Carlo, términos de innovación.
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n 1. Introduction

Forecasting the yield curve is crucial for central banks to implement adequate monetary

policy and for institutional investors to actively manage portfolios because the term struc-

ture is commonly considered as a leading gauge of the economic activity. Our paper pres-

ents a methodological framework to test random numbers generators involved in Monte

Carlo simulation for yield curve fitting and forecasting. As an example, we test the fitting

of the Pareto-Lévy distribution to the distribution of innovation terms of the observed

yield curve. To find the distribution of innovation terms, we interpolate the yield curve

with five hundred points using the cubic spline methodology. We compute the differences

dr. We assume that dr may be modeled with the Cox-Ingersoll-Ross (CIR, 1985) model.

We deduce the innovation terms from the CIR model (refer to equation 3 below). More

than an academic exercise, our aim is to help practitioners identifying an optimal distri-

bution from which random numbers will be drawn to feed Monte Carlo simulation of

the yield curve. Applications are numerous in the fields of pricing fixed income derivatives

and forecasting the yield curve based on Monte Carlo simulation. Our paper will present

an application to yield curve forecasting. Section 2 reviews the literature concerning the

shape of the yield curve, curve fitting and the Pareto-Lévy distribution that may fit the dis-

tribution of innovation terms of the yield curve. In section 3, we present the methodology

in five steps. We present the results in section 4 and we wrap up our findings in section 5. 

n 2. Literature review

2.1. Capturing the shape of the yield curve: curve fitting

In order to explore the distribution of the yield curve, we assume that the shape of the

yield curve may have an impact on the distribution. Economists classify the shape in

four categories: normal, flat, humped and inverted. A “normal” yield curve means that

yields increase as maturity of bills and bonds increases: the yield curve is upward sloping

and reflects expectations that the current economy will grow in the future, i.e. expecta-

tions of a greater inflation in the future. When all maturities have similar yields, we 

observe a flat yield curve. When short-term and long-term yields are equal and medium-

term yields are higher than those of the short-term and long-term, we observe a humped

yield curve. Humped and flat curves indicate uncertainty in the economy. When long-

term yields are lower than short-term yields, we observe an inverted yield curve, signal

of recession. From the above definition, a humped yield curve should be centered on

the 5-year medium maturity where it displays the highest yield. However, if we stick to

this definition, none of the curves in our sample of 2,707 U.S. yield curves is humped.

Table 1 gathers the definitions that we adopt in this paper for normal, flat, humped

and inverted yield curves in order to adjust to the real word. fi
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l Table 1. Classification of the U.S. yield curve in four occurrences

Type of curve: Inverted Else: Flat Else: Humped Else: Normal

Criteria: 1-month rate All rates remain 6-month rate 

is higher than in a range of is higher than

20-year rate 50 basis points 5-year rate

We modify the definition of a humped curve to make it observable: our subsample

of humped curves will comprise curves that are centered on the 6-month yield (the

highest point of the curve), which represent 4% of the sample. Again, to make it

tractable, our definition of a flat curve will comprise yield curves bounded in a range

50 basis points between the highest and the lowest yields. 6% of our sample falls in

this definition. In addition, the inverted yield curve will be the one with a 1-month

yield higher than the 20-year yield whatever the shape of the curve in the midst. 5%

of our sample includes inverted curves. Finally, the normal yield curve will be whichever

curve remaining, i.e. 85% of the curves with a positive slope. 

Table 2 gathers the statistics for each type of curve in our sample.

l Table 2. Counting occurrences among 2,707 observed U.S. yield curves from 
July 31, 2001 to May 24, 2012 

Type of curve: Normal Humped Flat Inverted Total

Number of occurrences: 2,300 104 168 135 2,707

%  of occurrences: 85 4 6 5 100

Figures 1, 2, 3, 4 illustrate examples of normal, humped, flat and inverted yield curves

observed in our sample and based on the definition provided in Table 1. We will analyze

the distribution of innovation terms of the yield curve in the context of its shape.

n Figure 1. A “normal” U.S. yield curve on July, 31 2001- 500-points cubic spline
interpolation
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n Figure 2. A humped U.S. yield curve on June 30, 2006 - 500-points cubic spline
interpolation. Humped means that 6-month rate is higher than 5-year rate 

n Figure 3. A “flat” U.S. yield curve on July 26, 2007 - 500-points cubic spline
interpolation. “Flat” means that yields are bounded in a range 50 basis points 

n Figure 4. An “inverted” U.S. yield curve on April 24, 2007- 500-points cubic
spline interpolation. “Inverted” means that 1-month yield is higher than 20-year
yield whatever the shape of the curve in the midst
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Figure 5 illustrates how the types of yield curve are distributed in our sample. Non-

“normal” curves concentrate between December 27, 2005 and January 17, 2008.

n Figure 5. Plotting the type of yield curve versus time on a sample ranging between
July, 31 2001 and May 24, 2012: non normal curves concentrate between
December 27, 2005 and January 17, 2008

Concerning term structure estimation methods, Zangari (1977) then Lin (2002) in

the footsteps of Zangari (1977) classifies term structure estimation methods into

two groups: theoretical (see section 2.2) and empirical (see section 2.3). Examples

of the first group that models the short interest rate are Vasicek (1977) and Cox,

Ingersoll and Ross (CIR, 1985). The latter model is at the epicenter of our paper.

Although a one-factor model – the short-term interest rate –, we believe that a

methodology implying a simplistic model is easier to reproduce by market

participants and requires fewer assumptions about market factors such as market

risk or correlation between factors. In this paper, we simulate the yield curve by

Monte Carlo simulation using the CIR model. The second group of empirical

methods is independent of any model or theory of the term structure and just tries

to find a close representation of the term structure at any point in time, given some

observed interest rate data. Interpolation and bootstrapping belong to this group.

Finally, a mix of the two groups can be seen in Hull and White (1990) and Heath et

al. (1990) that use an empirically determined yield curve in a theoretical model.

Hagan and West (2006) survey interpolation algorithms that market participants

apply for construction of curves such as forward curves, basis curves, and yield

curves. They review the issue of bootstrapping yield curves. In addition, they

introduce two new interpolation methods: the monotone convex method and the

minimal method, which may solve problems inherent to past methods. In our paper,

we apply the cubic spline interpolation to the observed yield curve. In our sample,

daily yield curves are built from ten observable market yields of U.S. Treasury
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securities (bills and notes) at 1-, 3-, 6-month, 1-,2-,3-,5-,7-,10- and 20-year constant

maturity. Our assumption is that cubic spline of the ten interpolated points should

stick more to reality than linear interpolation. Keller-Ressel and Steiner (2008) show

that the two classical Cox-Ingersoll-Ross (1985) and Vasicek (1977) models are not

flexible enough to accommodate shapes of yield curves that are different from

normal, inverse or humped: ‘curves with a dip (a local minimum), curves with a dip

and a hump’ are examples of shapes not captured by these models. They conclude

that with two-factor models, yield curves with more complex shapes, including a dip

for instance, may be obtained. Dealing with two-factor models such as Fong and

Vasicek (1992) or Longstaff and Schwartz (1992) is obviously not as tractable as

dealing with one-factor models. For example, the CIR one-factor model is

parsimonious and widely-accepted by market participants since it is a good

compromise between presenting some degree of complexity and being easy to use.

In addition, the CIR model has a decisive advantage at step 2 of the methodology:

the innovation terms of five hundred interpolated points of the yield curve are

deduced from the CIR equation (refer to equation 3). A 2-factor model would make

this step problematic, especially when two innovation terms are involved and

correlated with some degree. However, we must acknowledge the limitation of the

CIR model: the dip or local minimum, as underlined by Keller-Ressel and Steiner

(2008), is observed 25% of the time in our sample of 2,707 yield curves where 685

curves display this feature. For example, Figure 6 shows the observed yield curve with

a 6-month yield as local minimum on July 31, 2001. As expected the simulated yield

curve obtained with the CIR model smoothes the dip, which epitomizes the clear

drawback of the model.

n Figure 6. 20-point cubic spline interpolation of the observed yield curve on
July 31, 2001 and one simulated yield curve with the CIR model when a = 0.0583;
m = 0.0643, s = 0.0056

44
I N T E R N AT I O N A L

J O U R N A L  O F  F I N A N C E

A E S T I T I OM A
THE  I E B

fi
tt

in
g 

th
e 

Pa
re

to
-l

év
y 

di
st

ri
bu

ti
o

n 
o

n 
th

e 
yi

el
d 

cu
rv

e:
 a

n 
ap

pl
ic

at
io

n 
to

 f
o

re
ca

st
in

g.
R
os

ta
n,

 P
. a

nd
 R

os
ta

n 
A
.

a
es

t
im

a
t

io
, t

h
e

ie
b

in
t

er
n

a
t

io
n

a
l

jo
u

r
n

a
l

o
f

fi
n

a
n

c
e, 

20
14

. 8
: 3

8-
67

0.065

0.06

0.055

0.05

0.045

0.04

0.035

0.03
0 18161412108642 20 source: the authors

AE8.38-67. ROSTAN_Maquetación 1  24/09/13  15:00  Página 44



2.2. Theoretical methods

‘Theoretical term structure methods typically posit an explicit structure for a

variable known as the short rate of interest, whose value depends on a set of

parameters that might be determined using statistical analysis of market variables’

(Hagan and West, 2006). Finding the optimal distribution of innovation of the

yield curve depends specifically on the theoretical model that will be employed to

simulate the yield curve. For example, by using the CIR model, we deduce the

innovation terms from equation 3. Thus, the values of the three parameters a, m

and s� have a direct impact on the value of the innovations terms. The theory about

modeling interest-rate term structure suggests that the evolution of the yield curve

shape is affected by the level of interest rates, the slope of the term structure, the

curvature and the volatility of the changes: for example read Litterman and

Scheinkman (1991), Chen and Scott (1993), Dai and Singleton (2000), and De

Jong (2000). The term structure relates to the relationship between the interest

rates that shape the yield curve. Vasicek (1977) proposed a mean reverting process

of the short term interest rate:

dr = a (m – r)dt+s dzt (1)

In equation 1, a is the speed of mean reversion, m is the long-term average to which

the short rate is reverting, and s� is the instantaneous volatility of the short rate. All

parameters are assumed constant overtime. Vasicek and Fong (1982) proposed to

model the term structure using exponential splines. For example, the widely used Cox,

Ingersoll and Ross model (CIR, 1985) involves the short rate and its variance to be

proportional to the level of the short rate:

dr = a (m – r)dt+s √r dzt (2)

From equation 2, the innovation term is deduced by rearranging the terms of the

equation:

e = dr –a (m – r)dt (3)
s √r dzt

Therefore the choice of the model has a clear impact on the distribution of

innovation terms. A more complex model could be for example Audrino and De

Giorgi (2007) model which is ‘an affine term structure model that accommodates

nonlinearities in the drift and volatility function of the short-term interest rate.

They derive iterative closed-form formula for the whole yield curve dynamics that

can be estimated using a linearized Kalman filter.’ Another example is presented
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by Audrino and Trojani (2007) who proposed ‘a Functional Gradient Descent

(FGD) estimation of the conditional mean vector and covariance matrix of a

multivariate interest rate series. They apply filtered historical simulation to

compute reliable out-of-sample yield curve scenarios and confidence intervals.

They back-test their methodology on daily USD bond data for forecasting horizons

from 1 to 10 days.’

2.3. Empirical methods

McCulloch (1971) pioneered the estimation of the term structure where coupon

payments were included explicitly in a formal way. He first used quadratic splines

which could be estimated by linear regression, then used cubic splines (1975). A

problem with this approach, as Shea (1984, 1985) noted, is that the forward rate

can become negative. In addition, Shea showed that the resulting yield function

‘tends to bend sharply towards the end of the maturity range observed in the

sample’. Mansi et al. (2001) proposed an exponential function to model the term

structure that ‘depends on the estimation of four parameters fitted by nonlinear

least squares. In comparing the proposed model with current yield-curve-

smoothing models, they found that the proposed model does best overall in terms

of pricing accuracy both in sample and out of sample’. Other ‘empirical studies

have suggested that the evolution of the term structure of interest rates would be

driven by the dynamics of several factors which can be represented by

macroeconomic shocks or be related to the level, slope, and curvature’ (Hong,

2001). To meet these empirical evidences, authors developed multifactor models

such as Bliss (1997), Andersen et al. (1997), Dai and Singleton (2000) and Duffee

(2002). Nelson and Siegel (1987) fitted the observed yield curve with a function

of the time to maturity of the fixed income securities. 

The model has later been modified by Svensson (1995) who estimated the forward

rates mainly using the original Nelson and Siegel model but, in some cases using

an extended version. Dolan (1999) argued that ‘the curvature parameter of the

yield curve, estimated using the Nelson and Siegel (1987) model, could be

predicted using simple parsimonious models’. Fabozzi et al. (2005) tested for

statistical significance in the predictive power of the Nelson and Siegel model when

forecasting yield curve. Bernadell et al. (2005) revisited an early version of Diebold

and Li paper (2003) by adding a regime-switching expansion. Diebold and Li

(2006) applied the Nelson and Siegel model to forecasting by predicting the three

factors which determine the shape of the yield curve with autoregressive models.

Their model was encouraging for forecasting horizons longer than 24 months. In

our paper, we choose the Diebold and Li (2006) model as benchmark at the

chapter of forecasting the yield curve.
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2.4. Exploring the optimal distribution that fits the yield curve: 
the Pareto-Lévy distribution

The Pareto-Lévy (1925) distribution belongs to the family of alpha-stable

distribution (Veillette, 2012) that includes the Gaussian, the Cauchy and the Pareto-

Lévy distributions. It is a four-parameter distribution: ‘the first parameter a ∈ [0,2]
called the characteristic exponent describes the tail of the distribution. The second

parameter is the skewness. It specifies if the distribution is right skewed when �b > 0
or left skewed when b < 0. The last two parameters are the scale (related to the

variance) g > 0, and the location d ∈ ℝ (the mean).’ This distribution is increasingly

popular in finance (Wilmott, 2009) because it fits most of the financial data with

fat tails. It has also the advantage to be a stable distribution, i.e. the sum of

independent random numbers drawn from the distribution follows a Pareto-Lévy

distribution itself. This is a useful property for the distribution of returns. The

normal distribution is a special case of the Pareto-Lévy distribution when a=2 and

b=0 , and with the parameter g equal to half of the variance. In this paper, our

objective is to identify the optimal Pareto-Lévy distribution with the four parameters

that allow the simulated yield curve to fit the observed yield curve. Our intuition

lays on Figure 7 representing the distribution of the innovation terms obtained from

the interpolated observed yield curve on July 31, 2001. The distribution is negatively

skew with fat tails. The Pareto-Lévy should be a good candidate to capture these

features of the distribution. Mittnika and Rachevb (1993) discuss the fact that in

economics and finance literature, stable distributions are virtually exclusively

associated with stable Paretian distributions; in their paper, ‘they adopt a more

fundamental view and extend the concept of stability to a variety of probabilistic

schemes. These schemes give rise to alternative stable distributions, which they

compare empirically using S&P 500 stock return data. In this comparison, the

Weibull distribution, associated with both the nonrandom-minimum and

geometric-random summation schemes dominates the other stable distributions

considered-including the stable Paretian model’. Jin (2007) proposes ‘to fit the

stable distribution to corn cash and futures prices. The stable distribution has been

used as a generalized distributional model that can explain the distributions of asset

returns significantly better than the conventional normal distribution. Using the

stability-under-addition test, Cornew et al. (1984) and So (1987) confirm that a

better correspondence for futures price changes is usually obtained when using the

stable distribution; that is, the distribution more adequately describes futures price

changes (in particular, heavy tails) than does the normal distribution’. Finally,

Coronel-Brizio and Hernández-Montoya (2005) have successfully used the Pareto-

Lévy distribution to describe probabilities associated to extreme variations of stock

markets indexes such as the New York Stock Exchange (DJIA) and the Mexican Stock

Market (IPC) indices.
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n 3. Methodology

We work on a sample of 2,707 U.S. yield curves from July 31, 2001 to May 24, 2012.

To summarize, the methodology has five steps. At step 1, we apply Kladivko’s (2007)

methodology to the calibration of the CIR model (equation 2). We apply a cubic spline

interpolation to the observed yield curve to obtain dr. At step 2, we obtain the innovation

terms from equation 3 using r and dr of the interpolated yield curve and a, m and s�

from step 1. We can thus plot a distribution of innovation terms for every daily observed

yield curve of the sample. At step 3, we fit the distribution of innovation terms to Normal

and Pareto-Lévy distributions. At step 4, we test the Normal and the Pareto-Lévy

distributions with Monte Carlo simulation. The distributions are tested: 1) on the whole

sample; 2) on each of the four subsamples (normal, humped, flat, inverted); 3) on a

volatile versus non-volatile environment. Finally at step 5, we forecast the 20-day forward

yield curve by simulating with Monte Carlo the CIR model (equation 2) a hundred times. 

Step 1
We calibrate equation 2 with the daily observed yield curve, i.e. to find parameters

a, m and s corresponding to the maximization of the log-likelihood function

(equation 4). We apply Kladivko’s (2007) methodology. The log-likelihood function

of the CIR process is:

lnL(θ)=(N–1)ln c + SN–1
i=1  {uti+vti+1+ 0.5qln(  )+ln{Iq(2 uti + vti+1 )} } (4)

Where uti = crti e
–aDt and vti+1 = crti+1 . We find maximum likelihood estimates θ̂ of

parameter vector θ by maximizing the log-likelihood function 4 over its parameter

space:

θ ≡ (â, m̂, ŝ ) = arg max
θ
ln L(θ) (5)

Since the logarithmic function is monotonically increasing, maximizing the log-

likelihood function also maximizes the likelihood function. Refer to Kladivko’s (2007)

methodology, for the practical implementation of the calibration. For technical

implementation, we interpolate the yield curve of ten observations with cubic spline

(de Boor, 1978) to accommodate the Maximum Likelihood Estimate (MLE) that

requires data with regular intervals. The choice of twenty points is purely empirical.

If we use 10 points, we cannot fit curves with abnormal shapes. For example with 10

points, the dip observed on July, 31 2001 will not be captured by the interpolation.

If we choose to interpolate with 500 points, the MLE returns odd estimates of a, m

and s. The choice of 20 points offers tangible values and captures pretty well the dip.

It is a good compromise. Besides, since 20 years / 20 points = 1 year, a, m are annual

rates and s is the annual volatility of the interest-rate. Figure 6 illustrates the 20-point
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cubic spline interpolation and one Monte Carlo simulation of the interest rate when

a = 0.0583, m = 0.0643 and s = 0.0056.

Step 2
We interpolate the observed yield curve with a 500-point cubic spline interpolation.

We then extract a distribution of innovation terms from equation 3. In equation 3,

r and dr are obtained from the interpolated yield curve of 500 points, a, m and s are

computed at step 1; dt = 20 years / 500 = 0.04 year. We obtain a distribution of 500
innovations terms. 

For example, Figure 7 represents the distribution of innovation terms of the

interpolated yield curve observed on July 31, 2001. Based on the test of Jarque-Bera,

since the probability is equal to 0%, the null hypothesis of a Normal distribution is

rejected. The mean is 0.003323, the standard deviation equal to 0.249741, the

skewness –5.61 and the kurtosis 44.939.

n Figure 7. Distribution of innovation terms of the 500-point interpolated yield
curve on July 31, 2001 with a = 0.0583; m = 0.0643, s = 0.0056

The non-normality of the innovation terms pushes us to search an alternative distribution

to the standard Normal distribution. The Pareto-Lévy distribution is a good candidate

to capture skewness and heavy tails as explained in section 2.4 of the literature review.

Step 3
We fit the following theoretical distributions to the observed distribution obtained

at step 2:

l Normal(m ,s) with m the mean and s� the standard deviation.

l Pareto-Lévy(a, b, g, d) with a� the characteristic exponent (the tail of the

distribution); b the skewness; g the scale (related to the variance); and d the

location (the mean). 
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“Fitting” means that we find the parameters of the theoretical distributions. The

methodology of fitting differs with the distribution. We fit the observed distribution

to the Normal distribution using the normfit function of Matlab. This function uses

the iterative process of Maximum-Likelihood Estimation. With the Pareto-Lévy

distribution, we apply the methodology and the algorithm of Veillette (2012) which

fit the theoretical distribution to the observed distribution. The optimization is

based on Koutrouvelis’s (1980, 1981) method. For example, Figure 8 represents

the PDF of the Pareto-Lévy (1.36858, 0.9033, 0.06372, 0.07981) fitted to the

distribution of innovation terms of the interpolated yield curve on July 31, 2001.

As we observe, Figures 7 and 8 share strong similarities.

n Figure 8. PDF of the Pareto-Lévy distribution (1.36858, 0.90332, 0.0637272,
0.0798125) fitted to the distribution of innovation terms of the interpolated yield
curve of July 31, 2001 

We apply the Q-Q plot test of the Normal and Pareto-Lévy distributions to the

observed distribution. ‘The quantile-quantile plot1 is a visual test of goodness of fit

for determining whether two samples come from the same distribution (whether

normally distributed or not): the plot will be linear if they come from the same

distribution. The Q-Q plot has three graphical elements. The pluses are the quantile

of each sample. By default the number of pluses is the number of data values in the

smaller sample. The solid line joints the 25th and 75th percentiles of the samples.

The dashed line extends the solid line to the extent of the sample. It is incorrect to

interpret a linear plot as a guarantee that the two samples come from the same

distribution. But, for assessing the validity of a statistical procedure that depends

on the two samples coming from the same distribution (e.g., ANOVA), a linear

quantile-quantile plot should be sufficient’. Figures 9 and 10 show that the left tail

50
I N T E R N AT I O N A L

J O U R N A L  O F  F I N A N C E

A E S T I T I OM A
THE  I E B

fi
tt

in
g 

th
e 

Pa
re

to
-l

év
y 

di
st

ri
bu

ti
o

n 
o

n 
th

e 
yi

el
d 

cu
rv

e:
 a

n 
ap

pl
ic

at
io

n 
to

 f
o

re
ca

st
in

g.
R
os

ta
n,

 P
. a

nd
 R

os
ta

n 
A
.

a
es

t
im

a
t

io
, t

h
e

ie
b

in
t

er
n

a
t

io
n

a
l

jo
u

r
n

a
l

o
f

fi
n

a
n

c
e, 

20
14

. 8
: 3

8-
67

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

-2.5 10.50-0.5-1-1.5-2
source: the authors

1 http://www.mathworks.com/help/toolbox/stats/qqplot.html Accessed on May 16, 2013.

AE8.38-67. ROSTAN_Maquetación 1  24/09/13  15:00  Página 50



is better captured by the Pareto-Lévy distribution, whereas the Normal distribution

captures well the right tail contrarily to the Pareto-Lévy distribution. 

n Figure 9. July 31, 2001: Quantile-Quantile (QQ) plot of the observed distribution
(X-quantiles) versus the theoretical Normal distribution (0.0033228, 0.249740)
(Y-quantiles) 

n Figure 10. July 31, 2001: Quantile-Quantile (QQ) plot of the observed
distribution (X-quantiles) versus the theoretical Pareto-Lévy distribution (1.3685,
0.9033, 0.06372, 0.07981) (Y-quantiles) 

The fitting of the observed distribution of innovations terms give the following results

in Table 3.
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l Table 3. Fitting the theoretical distributions Normal and Pareto-Lévy to the
observed distribution on July 31, 2001

Theoretical distribution: Normal Pareto-Lévy

µm = 0.0033228 a = 1.36858

s = 0.249740 b = 0.9033

g = 0.06372

d = 0.07981

Figures 11 and 12 illustrate the variability of the distribution parameters over the

sample of 2,707 yield curves when the distribution of observed innovation terms has

been fitted to the Normal and Pareto-Lévy distributions. 

n Figure 11. Variability of the Normal distribution parameters over the sample of
2,707 yield curves when the distribution of observed innovation terms has been fitted
to the Normal distribution Long-term average of m = –0.0043702; long-term average
of s = 0.34738

From Figure 11, we observe that the parameters of the Normal distribution m and

s�are rather stable overtime with a long-term average of –0.0043702 for m and 0.34738
for s�. Clearly, the type of yield curve (normal, humped, flat or inverted) has no impact

on m and s�. On the other side, the volatility of interest rates produced by the credit

crisis has a clear impact on the variability of s�, starting to increase by July 2008 and

reaching a peak at 7.98 in December 2008. m is quiet stable overtime and centered

on zero until September 2008 when it starts to enter in negative territory, steadily
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declining up to –1.61 in December 2011 before coming back to zero in February 2012.

From Figure 11, we can conclude that the standard normal distribution may be a

good candidate by default but on average the random numbers should be drawn

from a Normal (–0.0043702, 0.34738).

n Figure 12. Variability of the Pareto-Lévy distribution parameters over the sample
of 2,707 yield curves when the distribution of observed innovation terms has 
been fitted to the Pareto-Lévy distribution. Long-term averages: a = 1.382977; 
b = 0.237807; g = 0.094706; d = 0.018099 

Finally from Figure 12, we observe the following long-term averages: a = 1.382977; 
b = 0.237807; g = 0.094706; d = 0.018099. g is centered on zero all across the sample

and does not vary much. d is less stable but still centered on its long-term average

that is close to zero. 99% of d‘s are in the interval [–1,+1]. a and b are much 

more volatile. a represents the tails and oscillates in the interval [0,+2], 
b represents the asymmetry and spreads out in the interval [–1,+1]. One very

interesting characteristic of a is the sinusoidal pattern across the sample that attests

a degree of persistence in the time series that could be detected by the Hurst

coefficient: high levels of a are followed by high levels, and conversely for low levels.

During the credit crisis (2008-2009): 1) a is not at its highest – highest is equal to 2 –

but is centred on 1; 2) b is more often in negative territory; 3) g – the variance – sticks

to zero, inversely to the Normal distribution which records higher variances (refer to

Figure 14); 4) d – the mean – records negative values and outliers. The period of ‘non-

normal’ yield curves that we have mentioned between December 2005 and January

2008 is in a cycle of high a, widespread b and close-to-zero-values of g and d. Again,

the type of yield curve (normal, humped, flat or inverted) does not seem to have an

impact on the parameters.
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Step 4
Using Monte Carlo simulation of the CIR model calibrated in step 1, we simulate a

100 times the yield curve with the two theoretical distributions that have been

calibrated in step 3 to fit the observed distribution. 

Figures 13 and 14 illustrate the best simulated yield curve out of one hundred that

minimizes the RMSE using random numbers generators from the Normal and Pareto-

Lévy distributions calibrated on July 31, 2001 as explained in step 3. 

n Figure 13. July 31, 2001: One simulated yield curve with the CIR model with 
a = 0.0583; m = 0.0643, s = 0.0056, 500 steps, that minimizes RMSE = 0.0012 out
of 100 simulations, Random numbers generated with calibrated N(0.00332,0.2497)

n Figure 14. July 31, 2001: One simulated yield curve with the CIR model with 
a = 0.0583; m = 0.0643, s = 0.0056, 500 steps, that minimizes RMSE = 0.0014
out of 100 simulations, Random numbers generated with calibrated Pareto-Lévy
(1.3685, 0.9033, 0.0637, 0.07981)
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In step 4, we answer the following questions: 

l Between Normal and Pareto-Lévy, which distribution works best overall?

l Between Normal and Pareto-Lévy, which distribution works best for a given type of

yield curve:  normal, humped, flat and inverted?

l Between Normal and Pareto-Lévy, which distribution works best for a volatile/non-

volatile interest rates environment?

l Can we generalize the results with a Normal or Pareto-Lévy distribution?

Step 5
We forecast the 20-day forward yield curve by simulating the CIR model (equation

2) a hundred times using a variance reduction technique called the stock dog

technique (see section 3.5). The random numbers generators are based on the five

distributions presented at step 4. We produce yield forecasts based on an underlying

univariate AR(1) specification, as:

drt+h/t = at+h/t (mt+h/t – r)dt+st+h/t√r dz1 (6)

where:

at+h/t = C1 + w1at (7)

mt+h/t = C2 + w2mt (8)

st+h/t = C3 + w3st (9)

Ci and wi are obtained by regressing at on an intercept and at–h, mt on an intercept

and mt–h, and finally st  on an intercept and st–h. The forecasting horizon is h = 20
days. We regress the first set of a, m, s from 1 to 250 days with the set of 250 a, m,

s obtained between 20 and 270 days, then moving forward one-day at a time. The

resulting a, m, s are then plugged in equation 10 in order to compute the forecasted

yield curve in 20 days. During the simulation of equation 6, we have 10 variable time

steps dt with dt = [0.0833, 0.1667, 0.25, 0.5, 1, 1, 2, 2, 3, 10]. We simulate equation 6

a hundred times and compute the average simulated yield curve that becomes the

20-day forecast.

We apply the RMSE criteria (equation 10) to the out-of-sample of 2,416 20-day

forecasted yield curves from September 27, 2002 to May 24, 2012:

RMSE=      S (Forecasted yieldi  –Observed yieldi )2 (10)

3.5. The stock dog technique

Our paper uses a variance reduction technique called the stock dog technique,

developed by Rostan and Rostan (2012) to improve the Monte Carlo simulation
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results. This technique consists in building upper and lower bands during the

simulation, using the information embedded in the shapes of the most 20 recent yield

curves. These bands are built to reflect the intrinsic dynamic forces of the interest rate

market that is responsible of the future shape of the term structure. The choice of the

bands is based on the assumption that the current dynamic forces of the interest rate

market are captured by the level b1t, the slope b2t and the curvature b3t provided by

the Nelson and Siegel model from the 20 most recent daily fitted U.S. Treasury yield

curves. Therefore, the future yield curve shape in 20 days depends partly on the shapes

of the most recent yield curves. Market news occurring in the next 20 days will bring

the final touch to the shape. The choice of the 20 past days is conditional to the

forecasting horizon of 20 days and should be adjusted to the forecasting horizon. We

pick b1t, b2t, b3t, independently among the 20 most recent days such as that, based

on equation 11, their combination maximizes yt(τ) to obtain the upper band and

minimizes yt(τ) to obtain the lower band. Nelson and Siegel model (1987) fit the yield

curve using a three-factor model:

yt(τ) = b1t+ b2t (1–e−ltτ)/(ltτ) + b3t {(1–e−ltτ)/(ltτ) –e−ltτ} (11)

The loadings (i.e. coefficients) of b1t, b2t, b3t, are a function of time and are graphed

in Figure 15. 

n Figure 15. Factor loadings of Nelson and Siegel (1987) model for l = 0.91

From equation 11, the loading of b1t is equal to the constant 1, the loading of b2t is

(1– e−ltτ)/(ltτ) and the loading of b3t is {(1– e−ltτ)/(ltτ) – e−ltτ}. The corresponding 

function of b2t loading starting at 1 decreases gradually overtime. The corresponding

function of b3t loading starts at time zero, then increases to reach a maximum at 1.97
year (when l is set at 0.91), and finally decreases steadily. We obtain l over a period

of 250 days from the first 250 U.S. Treasury yield curves of our database (7/31/2001

to 7/31/2002) by minimizing the average RMSE over the period. We find estimates ̂θ of

parameter vector θ by optimizing equations 12 and 13 over their parameter spaces:
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θ ≡ (b̂1t, b̂2t, b̂3t) = arg maxθ S10
i=1 yi(τ)(θ) (12)

Equation 12 is used to obtain the upper band.

θ ≡ (b̂1t, b̂2t, b̂3t) = arg minθ S10
i=1 yi(τ)(θ) (13)

Equation 13 is used to obtain the lower band.

With Min(bi,t–20:t) <(b̂1t)< Max(bi,t–20:t) for i = 1, 2, 3.

And yi(τ) obtained from equation 11.

The intuition behind the bands is that, in the last 20 days, the more volatile the interest

rate market was, the wider the range of bi values was, the wider the bands will be.

With a volatile market, the shape of the yield curve in 20 days is more likely to be

different from the ones of the most recent yield curves, since the number of possible

combinations of b1t, b2t, b3t increases. Inversely, with a low-volatility market, the

narrower the range of bi values was, the tighter the bands will be. With a limited

number of combinations of bi , the shape of the yield curve in 20 days is more likely

to look the same as the most recent shapes. Therefore, the bands provided by the

“stock dog” technique behave very much like Bollinger bands to reflect the volatility

of the market (refer to Théoret et al., 2005) but capture additional information related

to the shape of the future yield curve. In conclusion, the upper and lower bands are

reasonable limits constructed on intrinsic information obtained from the shapes of

the 20 most recent yield curves, beyond which the current market forces make the 20-

day forecasted yield curve unlikely to be. 

We benchmark the CIR model coupled with the stock dog technique to the Diebold

and Li (2003, 2006) forecasting technique. Diebold and Li (2006) forecast the Nelson

and Siegel factors as univariate AR(1) process. They produce yield forecasts based

on an underlying univariate AR(1) specification, as:

yt+h/t (τ )= b1,t+h/t + b2,t+h/t (1–e−lτ)/(lτ) + b3,t+h/t ((1–e−lτ)/(lτ) –e−lτ) (14) 

where:

bi,t+h/t = Ci + wibit (15)

Ci and wi are obtained by regressing bit on an intercept and bi,t-h .

In our paper, the forecasting horizon is h = 20 days. We regress the first set of b1t, b2t,

b3t from 1 to 250 days with the set of 250 {b1t, b2t, b3t} obtained between 20 and 270
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days, then moving forward one-day at a time. The resulting {b1t, b2t, b3t} are then

plugged in equation 11 in order to compute the forecasted interest-rate in 20 days

corresponding to each maturity of the term structure.

3.6. Database

The database includes market yields of U.S. Treasury securities (bills and notes) at 

1-, 3-, 6-month, 1-,2-,3-,5-,7-,10- and 20-year constant maturity, quoted on investment

basis yields on actively traded non-inflation-indexed issues adjusted to constant

maturities. The U.S. yield curves extend from July 31, 2001 to May 24, 2012 or 2,707

days and are obtained from the Federal Reserve website2. We forecast 2,418 U.S. yield

curves from Sept. 27, 2002 to May 24, 2012. Since the 30-year Treasury constant

maturity series was discontinued on February 18, 2002, and reintroduced on February

9, 2006, we discard the 30-year maturity.

We divide the database in four sub samples. We classify the four occurrences of the

U.S. yield curves, using the criteria presented in Table 1. We count the occurrences of

our sample of 2,707 daily yield curves in Table 2. 

n 4. Results

As explained at step 4, we compute the RMSE between the simulated yield curve and

the observed yield curve. When simulating the curve, we use either the Normal

distribution or the Levy distribution that fit the observed distribution of the daily yield

curve. Calibrating the Pareto-Lévy distribution at step 3 of the methodology leads to

abnormal results in 2.4% of the time (64 out of 2,707 yield curves) when at step 4 we

simulate 100 simulations and keep the simulation with the lowest RMSE. Obviously

a high RMSE is explained by a poor model calibration. In our paper, we consider a

high RMSE when its value is higher than the highest RMSE recorded in the Normal

distribution sample, i.e. equal to 3.54. When calibrating the Pareto-Lévy distribution,

the optimization is based on Koutrouvelis’s (1980, 1981) method which may not

accommodate all types of yield curve (normal, humped, flat and inverted). Indeed,

out of 64 outliers, 62 are normal curve (97%) and 2 inverted curves (3%). We may

deduce that humped and flat curve have no problem with Koutrouvelis’s calibration

process.

Removing the 64 outliers, the results are gathered in Table 4.
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l Table 4. Computing the average RMSE of the best simulated yield curve out of
100 (observed yield curve is the benchmark) over 2,643 days (we remove 61
outliers from our initial sample) for the Normal and the Pareto-Lévy distributions.
Impact on RMSE of the type of curve (normal, humped, flat, inverted) and the
volatile environment on the average RMSE

Overall, based on a test for equality of means, values are significantly different and

the ranking is as follows:

1. Normal distribution with parameters calibrated daily;

2. Normal distribution with long-term averages of parameters given m = -0.004370;  

s = 0.34738;

3. Pareto-Lévy distribution with long-term averages of parameters given a = 1.382977;

b = 0.237807; g = 0.094706; d = 0.018099;

4. Standard Normal distribution N(0,1);

5. Pareto-Lévy distribution with parameters calibrated daily.
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We conclude that, in order to use Monte Carlo simulation to fit the yield curve, we

should fit the observed distribution of innovation terms with the Normal distribution

that has parameters calibrated daily. Using the Normal distribution with m = –0.004370
and s = 0.34738 (long-term averages of parameters) offers a good alternative. Obviously,

if we seek fairly accurate results, the standard Normal distribution makes the deal. We

note that the Pareto-Lévy with long-term averages of parameters is beating the standard

normal distribution. In addition, we analyze the results based on the type of yield curve

and the volatility of the environment. We observe from Table 4 that the type of yield

curve has no impact on the performance of the distributions. The Normal distribution

calibrated daily consistently outperforms the others (except for the humped curve where

the Pareto-Lévy with long-term averages of parameters is best). Concerning the volatility

of the environment, we identify volatile periods from Figure 11 where periods with high

standard deviations computed from the fitting of the Normal distribution indicates

volatile periods: the interest rate environment is highly volatile between June 5, 2008 to

April 23, 2009, November 13, 2009 to January 21, 2010, May 27, 2011 to December,

19 2011. We have 408 volatile days out of 2,643 (14% of the sample). The remaining

periods displays a low-volatile environment. Again, whatever the volatility of the period,

the Normal distribution calibrated daily consistently outperforms the others. 

We may conclude that whatever the shape of the yield curve or the degree of volatility

of the interest-rate environment, the Normal distribution calibrated daily is best to

fit the yield curve using Monte Carlo simulation.

We test the Pareto-Lévy and the Normal distributions in a second test (step 5 of the

methodology) that measures their ability to forecast the yield curve in 20-day. Table 5

illustrates the average RMSE of the 20-day forecasted yield curves versus the observed

yield curve over 2,416 days with random numbers drawn from the Normal and the

Pareto-Lévy distributions using Monte Carlo simulation coupled to the stock dog

technique.  In addition, Table 5 illustrates the impact of 1) the type of curve (normal,

humped, flat, inverted) and 2) the volatile environment on the average RMSE.

Overall, Table 5 shows that the standard Normal distribution N(0,1) used as random

number generator (column 4) offers the lowest RMSE and therefore the highest

precision in forecasting the 20-day forward yield curve, whatever the shape of the

yield curve -except for flat curves where the Diebold and Li (2006) model is best- and

whether the interest-rate environment is volatile or not. 

Based on the Test for Equality of Means between Series, line 1 of Table 5 suggests

that over 2,416 days, the average RMSE is not statistically different between the

forecasts of the 5 random numbers generators and the Diebold and Li (2006)

forecasts. Although, based on standard errors, the standard Normal distribution
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N(0,1) is not statistically a better random number generator than the Normal

distribution with parameters calibrated daily, the Normal distribution with long-

term averages of parameters and the Pareto-Lévy distribution with parameters

calibrated daily, it statistically offers better yield curve forecasts than the Diebold

and Li model (Table 6).

l Table 5. Computing the average RMSE of 20-day forecasted yield curves versus
the observed yield curve over 2,416 days using Monte Carlo simulation coupled to
the stock-dog technique and random numbers drawn from the Normal and the
Pareto-Lévy distributions. Impact of the type of curve (normal, humped, flat,
inverted) and the volatile environment on the average RMSE
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l Table 6. Test for Equality of Means of RMSEs between forecasting the yield curve
with 1) Monte Carlo simulation coupled to the stock-dog technique and random
numbers drawn from N(0,1) and 2) Diebold and Li

Since overall, the standard Normal distribution N(0,1) offers the lowest average RMSE

than the four other distributions (even if most of the time its value is not statistically

different than 3 of them), we may compare the performance of the standard Normal

distribution N(0,1) and the Diebold and Li model (Table 6). From this table, we

conclude that the standard Normal distribution is best for all types of yield curve

shape, except for humped and inverted curves where the two models offers the same

forecast accuracy and during non-volatile environments where again the two models

have equivalent forecasting power. In volatile environments, the standard Normal

distribution N(0,1) returns better forecasts than the Diebold and Li model.

Finally, we can answer the following questions presented at step 4. We based our

answers on Table 5:

l Between Normal and Pareto-Lévy, which distribution works best overall?

Overall, the Pareto-Lévy (with parameters calibrated daily) and the Normal
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distribution (Standard Normal, Normal with parameters calibrated daily and

Normal with long-term averages of parameters) offer the same degree of accuracy

in forecasting the 20-day forward yield curve.

l Between Normal and Pareto-Lévy, which distribution works best for a given type of

yield curve: normal, humped, flat and inverted?

Statistically, Table 5 shows that the Normal distribution (standard) and the Pareto-

Lévy (calibrated daily) offer the same accuracy in forecasting the 20-day forward

yield curve whatever the shape.

l Between Normal and Pareto-Lévy, which distribution works best for a volatile/non-

volatile interest rates environment? 

Table 5 shows that the Normal distribution (standard) and the Pareto-Lévy

(calibrated daily) offer statistically the same accuracy in forecasting the 20-day

forward yield curve whether the interest rates environment is volatile or not. 

l Can we generalize the results with a Normal or Pareto-Lévy distribution?

Since the Pareto-Lévy and the Normal distributions offer the same degree of

accuracy in forecasting the 20-day forward yield curve whatever the yield curve and

whether the environment is volatile or not, it is preferable to use the random

numbers drawn from the standard Normal distribution N(0,1) because it is readily

available in all programming languages and statistical packages. Besides, the

standard Normal distribution offers the highest precision in forecasting the yield

curve (the lowest average RMSE).

n 5. Conclusion

Normal and Pareto-Lévy distributions offer statistically the same precision of yield

curve forecasts (Table 5) but the Normal distribution has a higher accuracy in fitting

the yield curve (Table 4).

The Monte Carlo simulation coupled with the stock dog technique and the standard

Normal distribution used as random numbers generator offers statistically better 20-

day forecasts of the yield curve than the Diebold and Li (2006) model (Table 6).

The type of yield curve (normal, humped, flat or inverted) or the volatile or non-

volatile environment have no impact on the forecasting power of the Normal or

Pareto-Lévy distributions since they offer statistically the same degree of accuracy in

forecasting the yield curve. However, the Normal distribution is superior in fitting the

yield curve whatever the type of curve of whether the environment is volatile or not.

In future researches, we may apply the methodological framework to other

distributions, aside Student’s t-distribution since our early investigation of this
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distribution has not been conclusive for fitting the yield curve. Alternative stable

distributions, such as the Weibull distribution, associated with both the nonrandom-

minimum and geometric-random summation schemes may be tested (Mittnika and

Rachevb, 1993). In addition, we may assess our methodological framework to the

pricing of fixed-income derivatives. Finally, we may investigate other types of interest

rate models to produce a distribution of innovation terms and longer-term forecasting

horizon may be tested. 
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