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Asymptotically efficient estimation of a static cointegrating regression represents a critical requirement
for later development of valid inferential procedures. Existing methods, such as fully-modified ordinary
least-squares (FM-OLS), canonical cointegrating regression (CCR), or dynamic OLS (DOLS), that are
asymptotically equivalent, require the choice of several tuning parameters to perform parametric or
nonparametric correction of the two sources of bias that contaminate the limiting distribution of the
OLS estimates and residuals. The so-called Integrated Modified OLS (IM-OLS) estimation method,
recently proposed by Vogelsang and Wagner (2011), avoids these inconveniencies through a simple
transformation (integration) of the system variables in the cointegrating regression equation, so that it
represents a very appealing alternative estimation procedure that produces asymptotically almost
efficient estimates of the model parameter. In this paper we study the performance of this estimator,
both asymptotically and in finite samples, in the case of near cointegration when mechanism generating
the error term of the cointegrating regression equation represents a certain generalization of the I(0)
assumption in the standard case. Particularly, we consider three different specifications for the error
term that generate a stationary sequence with finite variance in large samples, but are nonstationary for
small sample sizes, and a fourth specification known as a stochastically trendless process that
represents an intermediate situation between ordinary stationarity and nonstationarity and that
determines what has been termed as stochastic cointegration. With this, we characterize the limiting
distribution of the IM-OLS estimator, determining the main differences with respect the reference case
of stationary cointegration, and evaluate its performance in finite samples as measured by bias and root
mean squared error through a small simulation experiment.
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Introduction In this paper we are interested in

Since the seminal work of Engle and Granger
(1987), theoretical and empirical analysis of
cointegrating regressions have become a
commonly used tool for analyzing integrated
variables. The structure of the integrated
variables, and in particular that of the
regressors, plays an important role in
determining the distributional properties of the
estimators in these regression equations. It is
also relevant to consider the role of the
stochastic properties of the error term in the
cointegrating regression model, particularly
when we consider that can follows a highly
persistent but stationary process. In any of these
situations, the usefulness and optimality
properties of some existing estimation methods
could be questioned. Another characteristic of
the regressors, many times not considered, is
when they contain some deterministic
component and it is not explicitly taken into
account in specifying the cointegrating
regression model and in determining the
limiting distribution of these estimators, as has
been indicated by Hansen (1992a).

Given that the use of the basic OLS
estimator presents serious problems in many of
the most important practical situations,
particularly under endogeneity of the regressors
and serially correlated error terms, there has
been proposed a number of alternative
estimation procedures whose main
disadvantage is the need to make some choices
on tuning parameters that are fundamental to
their implementation. Recently, Vogelsang and
Wagner (2011) have proposed a very simple
alternative procedure, the integrated-modified
OLS (IM-OLS) estimator, that seems to work
as well as the other procedures when consider a
standard framework of analysis.
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exploring the performance of this new estimator
under a no standard framework when the error
term of the cointegrating regression model is
perturbed in several ways.

In this paper we derive the limiting
distribution of the OLS and IM-OLS estimators
under this no standard situations, and also
perform a simulation experiment to evaluate
their behavior in small samples, with particular
attention to the small sample bias induced by
the parameters characterizing the behavior of
the error term.

1 The model, assumptions and preliminary
results

We assume that the observed time series Y, and
Xk,t >

1, are generate according to the following
unobserved components model

g = go e g‘l
Where (d,,.dg,)e, with

d,, = (dy,,d,, )0, s the

component of each series, and (n,,,m§,)¢ is the

with X, , a k-dimensional vector with k =

I!lll)

(1

deterministic

zero mean stochastic trend component. It is
assumed that (ny,,mg¢,)¢ is generated by the

potentially cointegrated triangular system
o = Py, + U, (2)
M. =€, 3)

By combining (1) and (2) we get the
following relation

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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Y= (dy, - BEd,,)* BEX,, + 1 @ Where m,, = *n,,, wih W, a

With ¢, = (1,- B§)¢ the unknown
cointegrating vector. Next, in order to complete
the specification of the cointegrating regression
equation (4) we introduce a very general
assumption on the structure of the nonstochastic
time trends (d, ,,dg, )¢.

Assumption 2.1. Deterministic trend
components

We assume that d,, = af,t,, with

a,, a (p,+ 1)¥1 vector of trend coefficients,

i,p;

with ¢, , = (L,t,...,t")4, p; = 0, for each i =0, 1,
..., k. By defining p = max(po, p1, ..., pr), then

we can  write d,=atx,,, with
a,,= (af, :0¢ )¢ and T,, = (v¢,:T¢ , )¢, so
thatd,, = A, T, ,, where A, = (a, ,...,.Q, )¢

Under this assumption 2.1, we get the
following standard specification of the
cointegrating regression model

Y= o, + BEX,, + u, )

Where o, = a,,- AfB,. With this

choice for the order of the polynomial trend
function, we ensure that the OLS estimator of
B, and the OLS residuals are free of the trend

parameters A, . Taking into account that the

vector of trending regressors in (5),
m, = (v, X§,), can be decomposed as

£ -1 " -1 cR A
rp,nrp,tn < rp,n 0p+ 1k ~ACpn
m, = It <= T Jnl s = wm,
k.p p,ntp,m + nk,t k.p™ pn n k.k k,tn (6)
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(pt1+k)x(p+1+k) nonstochastic and non-

singular weighting matrix, where
T:p,[nr]n = rp,ntpl[nr] A Tp (r) = (1, r,...,rp)¢, and
Fp,n = diag(l,n' 1""’n-p)’ then

m, = (t§, ,mf, )¢ is stochastically bounded for

t = [nr] as n—>00, such as
m,, fi m(r)= (v§(r),Bf(r))¢, with m(r) a full-
ranked  process in the sense that
U, m(r)mqr)dr> 0 a.s. Thus, given the OLS
estimator of the parameter vectors in (2.5),
(&gn,f}gn)d, the scaled and normalized OLS

estimation error, @, = (ég:,n'ég:,n)q:’ can be

represented as

kn B~ ”UM(BM - B .

B [ ot P
= él/n)A mr,nmrd,:ng n t V)A mr,nur
t=1 t=1 (7)

Where the exponent v will take different
values depending on the stochastic properties of
the cointegrating error term, u,, as will be

stated later. Besides the assumptions
concerning the deterministic trend components
of the observed time series, in order to complete
the usual specification of the cointegrating
regression and to obtain the limiting results
characterizing the OLS estimators and residuals
in the standard cases analyzed in the literature,
we introduce the following assumption
concerning the behavior of the error
components U, and g, , in (2) and (3). In this

case, we assume that the cointegrating error
sequence u, is driven by a particular function

of an underlying error sequence v, that we
describe as follows.

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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Assumption 2.2. Error components. It is
assumed that T, = (u,,ef,)¢ is a zero mean
covariance stationary process that satisfy
sufficient regularity conditions to verify the

following multivariate invariance principle such
that

B,(r)= B"’U(r)§= n 1/2,[&] €. fi B,,,(r)=(8,(r),B,(r)9
G ®)

Where B,,,(r)= BM,,,(€2) is a k+1-
dimensional Brownian process with covariance
matrix Q such that, B,,,(r)= Q"*W,_,,(r), and
W)= W, (r),W.(r)9, with W (r)
W.(r)
processes, and Q a positive definite covariance

.25 . . . .
matrix.” The covariance matrix Q is given by
the long-run covariance matrix of the sequence

T

and

two standard independent Wiener

A

Q= g‘;’i ;"f@: lim .. m ﬁ f\ E[C5d= A+ A

kv ki t=1 s=1

Where A is the one-sided long-run
covariance matrix defined as

A

a4 A
A= 2+ A=im,,. 0 A A HEzg= £ A
t=1 s=1 v Bk
With
ol O -~
2: E[tht(t]zéu Zka
ku Sk

The short-run covariance matrix, and

. -1 LAl A}\uu Auk:
A=lim .. n'A A E[CCY= g\ A=
ku

t=2 s=1 kk

* This assumption is imposed, rather than derive from
more primitive assumption, since it is a standard result
that holds under general conditions, such as a linear
process driven by an iid or martingale difference
sequence as in Phillips and Solo (1992).
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Making use of the upper triangular
Cholesky decomposition of € we have that

B,(r)= B, (r)+ o, 'B,(r), with
B, ()= w, W, (r), and w}, = w;- ofQ o,
the conditional long-run variance of B ,(r),
w’, = E[B, (r)’]1= E[B,,(r)B,(r)], where B, (r)
and B, (r) are that s,
E[B,(r)B,,(n]=0,.

independent,

The assumption that Q is positive
definite is a standard, but important, regularity
condition which implies that m),, (and hence

X,.) is a non-cointegrated integrated process
(no  subcointegration) and rules out

multicointegration under a stable long-run
relation between Y, and X, .. For the initial

values v, and m, ,, we assume the sufficiently
general conditions u,=0,(1), and n, ,~o,(n"?)

, which include the particular case of constant
finite values.

Among all the elements described
above, the off-diagonal kx1 vector A, in the
one-sided long-run covariance matrix is of
particular relevance in determining de limiting
behavior of the OLS estimator in (7) under
standard stationary cointegration, that is, when
the long-run equilibrium error is stable. In this
case, when u, = v, or, more generally, when v,

is any stationary transformation of v, , such as
u, = ¢u, , + u, with |¢p| < 1 and fixed, it is well

known that the key component determining the
limiting distribution of the OLS estimator of the
cointegrating vector P, is given, from (7) with
v=1/2, by

A
n 1/ZA (n_ 1/2nk,t )ut ﬁ Gku + Aku' (9)
t=1

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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With B,(r)= (1- ¢) 'B,(r),
B QlBk(s)dBu(sh (o 1Q1Bk(s)d(su_k(r)+ ofQ,'B,(r))

And

r= WA el ) gnko/ﬂ(l/f)A 0B 0/ A Fle, )

. t=1 j=1
= w%l/n)A Ele,,. ‘Uf% Elo,(1)-B,, (N E" A, = O, + A,
Where
-1 Ao i
Aku = (1_ (b) (Aku + A j=1 d)JE[Sk,tUt. J])ﬁ and
A, =0,+A,,. In this case, the OLS

estimator is consistent at the rate =n
(superconsistent), but under endogeneity of the
regressors the vector A, introduces an

asymptotic bias and the limiting distribution is
not a zero mean Gaussian mixture.”® For the
trend parameters o, appearing in the

cointegrating regression model (5), this
framework does not allow their consistent
estimation in the presence of deterministically
trending integrated regressors (see, e.g., Hansen
(1992a). As it follows from (7), and under
standard cointegration, the composite trend
parameters o, + Af P, can be estimated

consistently at the usual rate n'?, but the
limiting distribution of the OLS estlmator

a,,+ AfB,, also depends on the nuisance

parameters measuring the degree of
endogeneity of the regressors.

*® Given that the first term in (2.9) can be decomposed as
Jo B (5)dB, (s) = (1-¢)" [, B,(s)dB,  (s)

+(1-9)" [} B,(s)dB, (s) Q;w,,, then under strict
exogeneity of the regressors, ,, =0, this stochastic
integral behaves as a Gaussian mixture random process,
where the remaining nuisance parameters can be

removed by simple scaling.
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Despite this last result, the OLS
residuals are exactly invariant to the trend
parameters, and allows for consistent estimation
of the equilibrium error sequence under
standard stationary cointegration.”’

However, the limiting distribution of
some commonly used residual-based statistics
and functionals is plagued of these nuisance
parameters, invalidating the inferential
procedures based on standard normal
asymptotic theory. On the other hand, under
non-stationarity of the long-run relationship
among Y, and X,, (no cointegration),
limiting results are quite different. Particularly,
when the equilibrium error sequence

u,=n,,- Bm,, contains a unit root, that is

— . -1/2
u=u,,+uv, with n

u,, fi B,(r), then we
get the following limiting result
n A7 (m Y, ), fi U;B,(s)B,(s)ds when

taking v = -1/2 in (7), determining the
inconsistent estimation of the cointegrating
vector B,, while that the OLS estimator of

o, + Af B, diverge at the rate n*’?

" From equation (2.1) and Assumption 2.1, we have that
the observation ¢ for the set of k& deterministically

trending integrated regressors can be decomposed as
=A, pI‘ T pm +M,,» Which gives that the sequence
of OLS residuals from (2.5) can be written as

U (k) ll -n Tpln(n rplt[ a’p n -0 )+AA]1 ﬁ/{ n ﬁA) ”_“‘JZH.)TII:’.I[UMH(Bk,n _61()]

Making use of (2.7) or, alternatively given that (2.5) may

L , A
Y, =BX,, tu,,, with Y

be rewritten as i
P

A

X, =M., and u, , the OLS detrended error terms u,,
then we have that
ﬁt’p (k) - ut p —(l/2+1)nll(t p 1/2+v (BA . Bk)]

Afonso J. Asymptotic and finite-sample properties of a

new simple estimator of cointegrating regressions under
near cointegration.
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Once established these theoretical
results, there remains to consider the
fundamental = question  of  consistently
discriminate in practice between these two
situations making use of some of the existing
testing procedures for the null of no
cointegration against cointegration (see, e.g.,
Phillips and Ouliaris (1990) and Stock (1999)
for a review). Alternatively we could test the
opposite hypotheses, with cointegration as the
null, by making use of the procedures proposed,
among others, by Shin (1994), Choi and Ahn
(1995), McCabe, Leybourne and Shin (MLS)
(1997), Xiao (1999), Xiao and Phillips (2002)
or Wu and Xiao (2008).

This is not the topic analyzed in this
paper, but it must be stated that all these last
testing procedures are based on asymptotically
efficient estimates of the model parameters in
the sense that this estimators asymptotically
eliminate both the endogeneous bias and the
non-centrality parameter appearing in (9).
These estimation methods are based on several
modifications to OLS and include the fully
modified OLS (FM-OLS) approach of Phillips
and Hansen (1990) and Kitamura and Phillips
(1997), and the canonical cointegrating
regression (CCR) method of Park (1992),
which are based on two different nonparametric
corrections. Also, it must be mentioned the
dynamic OLS (DOLS) approach of Phillips and
Loretan (1991), Saikkonen (1991) and Stock
and Watson (1993) which is based on a
parametric correction consisting on augmenting
the specification of the cointegrating regression
(5) with leads and lags of the first difference of
the regressors.™

* Pesaran and Shin (1997) examines a further

modification of the two-sided underlying distributed lag
model in the DOLS approach, incorporating a number of
lags of the dependent variable and eliminating the terms
based on leads of the first differences of the regressors.
That is, they propose to use a traditional autoregressive
ISSN-Print: 2007-1582- ISSN-On line: 2007-3682
ECORFAN® All rights reserved.
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A major drawback of any of these
procedures is the choice of several tuning
parameters, such as a kernel function and a
bandwidth for long run variance estimation for
FM-OLS or CCR estimation, and the number of
leads and lags for the DOLS procedure. All the
above mentioned testing procedures for the null
hypothesis of stationarity make use of the
residuals obtained from one of these
alternatives.”

Even though these estimators are
considered asymptotically equivalent, there
may be sensible differences in their use in finite
samples.

Kurozumi and Hayakawa (2009) study
the asymptotic behaviour of the asymptotically
efficient estimators cited above under a m local-
to-unity framework for describing moderately
serially correlated equilibrium errors in a
standard cointegrating regression equation,
which is similar to the formulation in (2.12)
with p=p,_=1- ¢/m, where m—, and
m/n—>0 as n—>o. This formulation imply that
p= p,, approaches 1 at a slower rate that does

the n local-to-unity system, and it seems to be a
more convenient tool of analysis when we
relate the properties of the estimators for the
cointegrating regression model with the local
power properties of cointegration tests. We
reserve the consideration of this case for further
investigation.

distributed lag (ARDL) model for the analysis of long-

run relations and find several interesting results for the

estimators of the long-run coefficients in terms of its

consistency and asymptotic distribution.

** Particularly, the Shin’s (1994) and MLS (1997) test

statistics are based on DOLS residuals, while that the

testing procedure proposed by Choi and Ahn (1995)

makes use of the feasible CCR residuals. The test

statistics proposed by Xiao (1999), Xiao and Phillips

(2002) and Wu and Xiao (2008) employ the FM-OLS

residuals.

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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After this discussion, the following
assumption presents four alternative
characterizations of the cointegrating, or
equilibrium, error sequence representing
different slight departures from the stationarity
assumption underlying the standard stationary
cointegration result.

Assumption 2.3. Cointegrating error
sequence
We assume that the error sequence in (2.5), U,,
is given by any of the following alternative
characterizations:
(a) A moving average (MA) unit root under
n local-to-unity asymptotics

Au, = (1- 8L, 8=1- n "\, ACGHO,A]  (10)
(b) 4 local-to-finite variance process

A
Uu=u+———bu (11)
t t anl/(x— 1/2 TtTa,t

With b,: iidB(r) a Bernoulli random

sequence, mutually independent of v, and v_,,

where v, is an iid sequence of symmetrically
distributed infinite variance random variables,
with distribution belonging to the normal
domain of attraction of a stable law with
characteristic exponent o. € (0,2), denoted as

U, END(a).

(¢) An autoregressive (AR) unit root under n
local-to-unity  asymptotics with a  highly
persistent initial observation

(1- pLlu, = v,,u,= A ,p'v_,,
p=p,=1-¢c/n,c>0 (12)

(d) 4 stochastically integrated process

u=u+v¢h (13)
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With h,,=h,, ,+E_, a g-dimensional
integrated process, and T, = (v,,v§,,E§,)¢ a

2g+1-dimensional ~mean zero  stationary
sequence.

The process considered in part (a) was
first proposed by Jansson and Haldrup (2002)
as a way to introduce a notion of near
cointegration, and further exploited by Jansson
(2005a, b) to derive point optimal tests of the
null hypothesis of cointegration, when A = 0,
based on efficient tests for a unit MA root.

The mixture process in part (b) was
proposed by Cappuccio and Lubian (2007) to
assess the performance of some commonly used
nonparametric univariate test statistics for
testing the null hypothesis of stationarity of an
observed process, so that in this paper we
extended their results to determine the effects of
an infinite variance error in a cointegration
framework. Making use of the distributional
results obtained by Paulauskas and Rachev
(1998), Caner (1998) propose how to test for no
cointegration under infinite variance errors.

These two first cases represent
departures from the standard cointegration
situation, preserving the same rates of
consistency for the estimates as in the
referenced case but determining some relevant
changes in the asymptotic null distributions of
the estimators. Case (c) is a slight modification
of the well known local-to-unity approach to
stationarity, where a stationary sequence is
modelled as a first-order AR process with a root
that approaches one with the sample size but
that strictly less than one in finite samples.

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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For a finite sample size, the behavior is
governed by the parameter ¢, determining the
degree of persistence of the innovations to the
process (Phillips, 1987). Elliott (1999) and
Miiller (2005) propose to extend the high
persistence behavior of the strictly mean
reverting error process in finite samples to the
initial observation as well and to investigate its
effects on the size and power properties of
some tests for a unit root and for stationarity.
Here this characterization is used to represent
no cointegration when ¢ = 0, or asymptotic no
cointegration for a fixed ¢ > 0 and n—o, while
a fixed value of ¢ > 0 indicates stationary
cointegration for a finite sample size. Finally,
case (d) represents a generalized version of the
heteroskedastic cointegrating regression model
of Hansen (1992b) as has been proposed by
McCabe et.al. (2006).*° These authors consider
the case where the unobserved stochastic trend
components of the observed model variables in
(1) can be decomposed as follows

_ Aotz _ _ &m: 0t~ g:q,t:
n = 2= rImwm,t tE+ Vrhq,r - g EWhe t g =+ g, th,t
k,t k,m kit kgt

Where W, =W tv,, is a mx1

mt- 1
vector integrated process, with initial value

W,0.h, = 0,(n"'*°) for any 0< 6£ 1/2, II
is a (kt1)xm real matrix with rank &, and v,
(mx1), €, (k+1)x1, and V, (k+1)xq are mean

zero stationary processes which may be
correlated. Given the linear combination of

such a vector, ¢fn,, with ¢, = (1,- Bf)¢ as in
equation (2), then the error term u, can be
decomposed as follows

3% See also Harris et.al. (2002), and McCabe et.al. (2003)
for the treatment of some particular cases of this general
model of stochastic cointegration.
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u, = C}?’Iz = (ngm - ﬁgrlk,m)wm,t + 80,{ - Bﬂsk,t + (ng,t - ﬁqu,t)hq,t
= CEIIme,t + cﬂ;ez + thhq,t = ngwm,t + Ut + Vg:,thq,t (14)

With & =II¢c,, v, =cfe, and
v,.= V&, In this setup, the condition
x, =0, is stochastic
cointegration, with f, the stochastically

interpreted  as

cointegrating vector. If in addition we set
E[v§,.v,.]= 0, then we get what can be called

as stationary cointegration, with v_ =0,

corresponding to the case of standard stationary
cointegration.”’ Otherwise, if E[v§,v,.]> 0,

then the equilibrium error term is said to be
heteroskedastically integrated and the variables
in (2.1) are said to be stochastically
cointegrated. The definition of stochastic
cointegration nests standard cointegration and
heteroskedastic cointegration. Hansen (1992b)
calls the last additive term in (2), v¢h_,, a bi-

integrated process, while that McCabe et.al.
(2003) establish the long-run memoryless
property of this type of processes through
stating that the optimal s step ahead forecasts,
in the sense of minimizing the mean square
error, converge to the unconditional mean as
the forecast horizon s increases. This means
that the behavior of the process up to time ¢ has
negligible effect on its behavior into the infinite
future. The presence of the stochastic trend
component h_, induces long memory in the

q.t’

product process, but the effect of shocks on the
level of the process is transitory rather than
permanent, justifying the so-called
stochastically trendless property of this type of
processes. It is this property that gives meaning
to the concept of common heteroskedastic
persistence.

U If this additional condition is extended to V, =0, -

then the variables are all integrated and cointegrated in
the Engle-Granger (EG) sense.

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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Once stated this underlying structure of
the unobserved trend components in 1, , there

is an additional technical reason supporting the
concept of stochastic cointegration. This
argument makes use of the concept of
summability, originally introduced by Gonzalo
and Pitarakis (2006). As can be seen from
part(d) in Proposition 2.1, under stochastic
cointegration, the partial sum process of the
sequence of equilibrium errors is dominated by
this last component that is summable of order
1/2, while that the stochastically integrated
trend components n,, and m,, are summable

of order 1. This formulation implies the
generalization of the traditional concept of
stationary ~ cointegration  allowing for
equilibrium errors that are not purely stationary
but display a lower degree of persistence that
the underlying common stochastic trend as
measured by a lower order of summability.

Finally, for a further justification of the
theoretical and empirical relevance of this
specification, we may refer to the work of Park
(2002), Chung and Park (2007), and Kim and
Lee (2011), where it is introduced the concept
of nonlinear and nonstationary
heteroskedasticity =~ (NNH)  describing a
conditionally heteroskedastic process given by
a nonlinear function of an integrated processes.
This formulation represents a convenient
generalization of the nonstationary regression
by Hansen (1995) allowing for nonstationary
regressors, and as an alternative to the class of
highly  persistent  dynamic  conditional
heteroskedastic processes. Following Park’s
(2002) approach, the last term in (13) can be
interpreted as the simplest particular version of
the heterogeneity generating functions (HGF)
that are asymptotically homogeneous (the
identity function in our case).
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The following lemma states the basis to
obtain the main results of this paper concerning
the limiting behavior of the OLS estimator in
(7) and of the alternative estimator that will be
presented and examined in the next section.

Lemma 2.1. Given the error term of the
static linear cointegrating regression equation,
u,, in (2.5), then:

(a) When  generated  according  to
Au, = (1- OL)u, with 8=1- n"'A, ACHO,A],
as in Assumption 2.3(a) and under Assumption
2.2, then we have

B,(r)+ }\[I B,(s)ds

[nr]

larl
nu . =n? A ufi Ulr)=
e (15)

with dU, (r)= dB,(r)+ AB,(r).

(b) When generated according to the local-to-
f nite variance process in 2.3(b), then

1 i -2 i 2 :
é A Uat' A Uat"’fl a(r)'VZ,a(r))

Ve and where

with norming sequence a, = an
V.. (r) is the Lévy o-stable process on the
space  D[0,1], with 'V, (r) its quadratic
variation process, V, (r)= Vfla(r)
- 22UV, (s)dV, . (s), with V; (r) the left limit of
the process V, ,(r) in r. Then, we have

n U, fi U, (r)= B,(r)+ AV, (r) (16)

[nr]

And
7R G 8, A8, - B (s, (9]
17)
For any 0 <m < 1, with G,, and A, as
in (9).
Afonso J. Asymptotic and finite-sample properties of a
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(c) When generated according to (1- pL)u, = v,
, with p=p,=1- ¢/n, ¢ =0, as in Assumption
2.3(c) and under Assumption 2.2, then we have
that

- 1/2(

n U, - U fi wy (e - 1§+ S (r) (18)

Where £: N[O,(2¢) ']. and

J,(r)= U e" “dB( )

= B (r)+ cU’ 9)<B (s)ds is an Ornstein-
Uhlenbeck process, which is independent of E.
Further, as ¢ > 0 tends to zero, this is
continuous in ¢ and converges to J, (r)= B,(r).

(d) When  generated  according  to
u=v,+v$h, , with h ,=h . +E aq-
dimensional integrated  process, and
C. = (v,,v§,,E$.)¢ a 2q+1-dimensional mean

zero Sstationary sequence  satisfying  the
functional central limit theorem as in (8).

Then
E lar] A
o V)U[nr] v V)g 1/ZA U, + n gn 1A VSEr t
'
Where for the last term we have that
1A veh,, = gn 1/zAv +n AAE&,quﬁ qB(s)ﬂdV s)+ b, (19)

With B, (r) and V. (r) o g-
dimensional Brownian processes given by the
weak limits of m "> A€ and n A"y

q,t t=1 qt
, respectively, and A, ,= A}=OE[§§J_ Varl
= A Tr(Elv, ES. ])- Thus,
n ?U,,,= 0,(n"?) and
n,,=n A" veh,,  +0,n*?)  under

stochastic cointegration.
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Proof. For the result in part (a), see
Appendix A. For the results in part (b), see
Lemmas 2.1 and C.1 in Cappuccio and Lubian
(2007) for (16), and Appendix B for (17). These
results make clear that the weighted sum of the
two component processes in (2.11) allows to
obtain these composite results. If, instead, we
consider u, = v, + Abyu,,, then the infinite

variance process will dominate the behavior of
the scaled partial sum process as can be seen
from the following decomposition

1/2U

[nr]

[ar]
= B, ,(r)+ Aan*'® Y2(@n*y A bu
t=1

e = 00"

With no finite limiting results available
in this case. For the result (18) in part (c), see
Lemma 2 in Elliott (1999). With ¢ > 0, the
weak limit of the covariance-stationary series u,

is nY2u,, fi M, (r)= wge” + J, (r), which is

a stationary continuous time process.

Finally, the result in part(d) follows
from standard application of the convergence to
stochastic integrals of a stochastically trendless
process.

Remark 2.1. Given that B (r) can be
B, (r)+ ygB,(r), with
v, = Q. 'w,,, then the limiting process U, (r) in

decomposed as B (r)=

(2.15) can be decomposed as
U)\ (f) = Bu.k,)\(r) + YﬂBk,;\(f), Wlth
B,ialr)= B, (r)+ AU, B, (s)ds and

B, ,(r)= B,(r) +\U;B,(s)ds.

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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Similarly, the limiting processes Z_, (r)
and J, (r) in (16) and (17) can also be written
as  Z,,(r)= B, (r)+ yB,(r)+ AV, (r), and
Jy (=4, (r) +y§J, (r), with J (r) an
Ornstem Uhlenbeck process defined on B (r),
that is J,, (r)= B,,(r)+ cUye"” B, (s)ds, and
similarly for J, (r) based on the k-dimensional
Brownian process B, (r).

The first two cases considered
determine a modification of the standard
formulation of stationary cointegration, but are
susceptible to produce consistent estimation
results.

The next result establish the
consistency rate and weak limit distribution of
the OLS estimator in (7) in the cases (10)-(12).

Proposition 2.1(a) Under Assumption
2.2 and the generating mechanism given in (10)
and (11) for the cointegrating error term, we
have that the limiting distribution of the OLS
estimator of the cointegrating regression
equation in (5) is given by

g“zr;,;udw- a,)+ Af,B,,- B
"(ﬁk Bk

. W T, (5)0B, (5) e "%JT (s)dr(sé@
1([_!m(s)m(s) s %” g; T+ 1,01 @ (20)

Where wm(r)= (v§(r),B§(r))¢. T(r) and
Hy(1) are given by T(r)= T,(r)= U, B,(s)ds, and
H, (1)= U,B,(s)B,(s)ds when u, is generated
as in (10), while T(s)=V, ,(r) and

H,(1)= V,, (B, 1) (] B,(6)dV,,(s)

ISSN-Print: 2007-1582- ISSN-On line: 2007-3682
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When u, is generated as in (11). (b)

Under Assumption 2.2, and the generating
mechanism given in (12) for the cointegrating
error term, then the limiting distribution for the
OLS estimator of the cointegrating regression
equation (5) is given by

g YTle,,- a H AP ﬁ””%]) (c‘)ﬂlm(s)m(s)cﬂs)lelm(s)Mw(s)ds
(! .

(21)
Where

qlm(s)lwu’c(s)dﬂ wuﬁ[,fe“m(s)dﬁ [Im(s)lulc(s)ds (22)

Proof. The results follows directly from
parts (a)-(c) of Lemma 2.1, and the continuous
mapping theorem.

From (20), it is evident that the direct
impact of the cases (a) and (b) in Assumption
2.3 on the limiting distribution of the OLS
estimator is through the value of the parameter
A, indicating the degree of persistence of the
error sequence U, in case (a), and the relative

importance of the infinite variance component
in case (b). The final effect will be different in
each case due to the very different behavior and
properties of the terms 7(s) and H; integrating
the last component in (2.20).

The question of assessing the impact of
these choices on the FM-OLS, CCR and DOLS
estimators is not considered here, and it is left
as an extension of the above results in future
research. On the other hand, the results from
(2.21)-(2.22) indicate that the impact of a
highly persistent initial observation introduce
an additional perturbation into de asymptotic
behavior of the OLS estimator, which is
inconsistent for the cointegrating vector B, .

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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Without the consideration of this
additional source of persistence, the case of
stationary but highly persistent error terms in
finite samples determinate limiting
distributional results that are equivalent to what
are obtained under no cointegration.

Remark 2.2. As has been established in
Harris et.al. (2002) (part (ii) of Theorem 1), the
result in (19) is only of application for the OLS
estimator in (7) under stationary cointegration (
Elv§,v, ]=0 and V,m0,,, ) and only if

o,, = Elvec(V,,,)u,]T 0. In this case we get
JnB.,- B)=0,(1). and

r;:;[(dp,n - ap)+ Aﬂ;p(Bk,n - Bk)]z Op(l)a SO

that &, - a,=0,(n*?) in the case of

stochastically integrated regressors (V,, , 0, .
) containing a deterministic trend component (

A,,m0, ). Thus, the relevant results for the

limiting distribution of the OLS estimators in

; -1 A [or] = -1/2
(7) are given by n *A"}x_ u, = O,(n *'?), and
32

Wl 0= gl/mf\ 00,5 1,080, + 0,0 {g®or 16,
t=1 ' t=1 ’ ' 9 '

Under heteroskedastic ~ cointegration
with stochastically integrated regressors, that is
when E[v§,v_,]> 0, then it can be proved that

-3/2 A n _ -1/2
n* AL T, U= 0,(n 7)), and

n 32 f; Newll; = (1/n)A (n ?hg, f 1, )Elvec(V,, V¢, 1(n V*h, )+ O,(n )

fi [I(Bq(s)q I,  Elvec(V,, V¢, 1B, (s)ds

% The details of the derivation of these results in our
more general setup, not included in this paper, can be
requested from the author.
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Which determine that
G,,- a,=0,n), and B, - B,=0,(1). In

pon
order to obtain consistent estimation results in
this case, Harris et.al. (2002) propose to utilize
an instrumental variable (IV) technique by
defining m,__ = (v¢, ,, X§, )¢, s = 0, and using

m, . for s> 0 as an instrument with

t-

A=

B (sf B a e
p,n\2I5
g = A ml’- Smlqg A mt- S)/t

k,n (S)- =s+1 t=s+1

The so-called AIV(s) (asymptotic IV)
estimator. With this estimator we have that the

parameter O, is replaced by

O, = Elvec(V,, . v ], where o, A0, if

q,t- s
we let s—>o0. As a consequence, this estimator
should be consistent by letting s = s(n)—>%, and
s/n—0 as n—o. These authors require that s =
O(n"?). However, the limiting distribution of
this estimator is contaminated by the presence
of the parameters A, = A;ﬂE[VqltEg’t_ ;1, for i

= 0, I, due to the endogeneity of the
stochastically integrated regressors, so to obtain
a useful result in practical applications it must
be imposed the extra exogeneity condition
EIv, &, 1= EIVRES, 1= 0,, for all j = 0,

x1, £2, ... These authors argue that any other
existing standard procedure for asymptotically
efficient estimation of the model parameters in
this setup will work as usual. Particularly, given
that the feasible FM-OLS and CCR estimators
require the use of a consistent estimator of the
long-run covariance matrix @ based on the

sequence C = (u,Cg)e, with
mOmt + A{':k,t + (qu t Vk

th = t = t- 1)
h,, +’Q5/;q,t§q,t’ it Thay be expected seriously
biased estimates given that, in general,

E[C,]m 0, ., with

P
Elu,]= E[v¢h, 1= E[v¢;h, 1+ A EIVSE, ]

j=1
Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.



1170

Article ECORFAN Journal
OPTIMIZATION December 2013 Vol.4 No.11 1158-1179
", e 2HL/N)S L C
SRR R VST W rha SR
the above exogeneity condition and also Where S’ _TA' © =T'S
E[v¢.h, 1= cfE[V;h,_,]1= 0, that trivially holds P IRA e RN
See=ALS, + H,,with H , = (1/nV/n)H, ,,

if h,, = 0,. Thus, only a kernel-type estimator

defined as the sample analog of
= (/mA L, AL 8 with B=¢ - £[C),
can produce the desired results. Next section is
devoted to the analysis of an alternative
estimation method to those considered here,
which has been recently proposed by
Vogelsang and Wagner (2011), that allows for a
unified treatment of all the different data
generating processes treated in this section and
represents a very interesting and easy to use
estimation  procedure  for  cointegrating
regression models.

2 An alternative asymptotically almost
efficient estimation method

The new estimator of a cointegrating regression
model proposed by Vogelsang and Wagner
(2011) is based on a simple transformation of
the model variables and allows to obtain an
asymptotically unbiased estimator of the
cointegrating vector B, in (5), with a zero mean

Gaussian mixture limiting distribution under
standard stationary cointegration. The first step
requires to rewrite the cointegrating regression
model in (5) as

Se=afS, + BfS + U, (22)

Where s,=A‘.y, S, =A<

=175 p.J’
S..=A' X, ,,and U = A‘_ u, are obtain by
applying partial summation on both sides of (5).
This formulation can be called the integrated-
cointegrating regression model, where the
vector of transformed trending regressors in
(22), g, = (S¢,,S¢,)4, can be factorized as:

ISSN-Print: 2007-1582- ISSN-On line: 2007-3682
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and H, =A‘.m,, a it comes from
Assumption 2.1. The OLS estimators of o,

and B, from (22) are exactly invariant to the

trend parameters in X ., and partial summing

k>
before estimating the model performs the same
role that the nonparametric correction used by
FM-OLS to remove A, in (9), but still leaves

the problem caused by the endogeneity of the
regressors. The solution pointed by these
authors only requires that X, , be added as a

regressor to the partial sum regression (22), that
is

5. = aﬂsp,t + Bﬂsk,t + Yg:Xk,t + e (24)

With e, = U, - y¢X,,. Thus, (24) can be

called the integrated modified (IM)
cointegrating regression equation. When the
integrated regressors do not contain any
deterministic components (that is, d,, = 0, in

(1), with A, =0

which is the case considered in Vogelsang and
Wagner (2011), then the augmented vector of
regressors in (24), g, = (S¢,,S¢,, X¢,)¢, can be

factorized as

; pt ; Fp; 0p+ 1,k 0p+ 1,k ; ; 1/H)Sp’m§
8: = s g =W pe n\/ﬁlk PR U H,, §= Wnlgt,m
k,t_ kp+1 Ok,k \/—Ik k nk,m ) (25)

Where g, is stochastically bounded,

i ps1 Under Assumption 2.1),

1222222

with:

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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” p(r)g A[j(r)‘cp(s)dsg e, =U- Yﬂf’]k,t - YgAk,pr,t =2 Yg;Ak,ptp,t
8, fi 8lr)= g, (r)>= A0 B, (s)dsz (26) Thenp ™ Ve = m "z, - ™ A T v, .,

k(r): Bk(r) =

Where, as with (6), it is verified that
U, g(r)gdr)dr>0. In the case of

deterministically trending integrated regressors,
that is with A, w0, ., then the vector of

regressors in  (24), g, = (S¢,,S¢,,X¢,)¢, is
decomposed as

A

0p+ 1
ko [(L/Nn)T, 0 1(1/n)S,,
Ak,p [(l/ﬁ)r;); ]tp,tn

g = W,g, +

122200 >

Where (1/+/n)T}, is O(n''?) in the case

of stochastic regressors containing at most a
constant term, that is p = 0, and O(n"?) for any
p = 1. Thus, at the expense to develop an
appropriate treatment in the general case, we
proceed under the assumption that A, = 0

k,p+1
or, when A,m0 ., that
g, = Wlg, +0mn?") for p = 0. This

formulation allows to write the scaled and
normalized bias vector from OLS estimation of
(24), which is called the integrated modified
OLS estimator (IM-OLS), as

&;Ln i o‘pé Vr;ziv(&%m - a,
@%: Bkn - n g,n- Bk§: n”“"(&lg,n- Bk)

Q,n- Yk- -1/2“(%’,,' Yk):

A

wrrrreR
1]
S
=
<
5
1 TT

yk,n

A

A ot Py
= gl/n)A gt,ngt,ng (1/n)A gt,nn- . V'et
t=1 t=1 (27)

Taking into account that the error term
in the augmented integrated representation of
the cointegrating regression equation (24) is
given by:
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with n® Yz, =m0, - n W Vg, where
under the cointegration assumption (with v =
1/2) we get m *?z, fi B,(r)- y§B,(r)= B, (r)

Whenevery, = y,, = Q,'®,,, where the second
equality comes from the decomposition
B,(r)=B,,(r)+ ofQ,'B,(r), with
B, (r=@1- ¢)'B,,(r), ®,=(1- ¢) ‘®,,, and
E[B,(r)B,,(r)]= 0. This is also the weak limit
Of n- 1/Ze

. Whenever A, =0 or when p =

[
0, where T,'!=1
Ak,p n 0k,p+1
-1/2 -1 _ - 1/2+p .
nygA, T, T, ., = On ), and this term

will dominate the behavior of n */’e,. On the

k,p+1
=1, while that when
and p = 1 we have that

0,tn

other hand, under no cointegration (with v =
~-1/2), we have n *?z, = n*?U, + 0,(n"*), and
this term will dominate the limiting behavior of

-3/2
n “'“e, unlessp=2when A, 0, ...

Under standard stationary cointegration,
where u, = ¢u, , +v,, with 0£ <1, v, asin
Assumption 2.2 and v = 1/2 in equation (27),
the consistency rates of the estimators of the
trend parameters o, and the cointegrating

vector P, are the usual ones for the OLS

estimator in (7). More importantly, what is
especially remarkable is that the asymptotic
distribution of the IM-OLS estimator in (27) is
zero mean mixed Gaussian, but with a different
conditional asymptotic variance compared to
that of the FM-OLS estimator. From Theorem 2
in Vogelsang and Wagner (2011), the limiting
distribution under cointegration of the scaled
and centered IM-OLS estimator of (a§,Bg,y§)¢

is given by

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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1/21-:7;(&9'" -0, |
.- B I &= ({[enener) (] erBlndr
%,n - Yk (28)

A

[REEEERRR]

Where the limiting random vector &
can also be written as

,1

& = ([ engner] (T160- Gis,,(0)
(ll ] U (29)

With  G(r)= U,g(s)ds in (29). The
correction for endogeneity based on the
inclusion of the original regressors in the
integrated-cointegrating  regression  works
because it is of same stochastic order that U,
under cointegration and all the correlation is
soaked up into the vector parameter
Y. = Q'®w,. On the other hand, under
standard no  cointegration = when  the
cointegrating error term is a fixed unit root
process, that is when u, = u,_ , + v, with ¢ = 1

and v takes the value v = -1/2, then we get

_1/zr;7;(%'n a)~ |
% B i 8= (([unener] (e

n‘l(%,n' Yk) z (30)
With 7 (r)= U] B,(s)ds, that can be
decomposed as

T,(r)= U, B, (s)ds + U, B§(s)ds+y,,
=T,,(r)+ gflrly,, with y, = Q. 'w,, so that

the limiting random vector @& can also be
written as

S

p+1%

&=y, 2+ ([ eginer) (e,
0, -

With U, g(r)T. (r)dr= U;[G(1)- G(r)IB,,(r)dr

This result indicates that, besides the

December 2013 Vol.4 No.11 1158-1179

change in the rates of convergence of the
estimates and in the Gaussian process driving
the mixed Gaussian distribution, there is an
additional asymptotic bias term affecting the
IM-OLS estimator of the cointegrating vector
B, in the case of endogenous regressors (

o, mT0,).

Next result establish the limiting
distribution and properties of the IM-OLS
estimator in equation (27) wunder the
Assumption 2.3 concerning the behavior of the
cointegrating error sequence U, .

Proposition 3.1. Under Assumptions 2.2
and 2.3 for the cointegrating error term, then
Jor the IM-OLS estimator of (a,Bf,yv§)¢

computed from (24) we have that:

(@) For v = 1/2, and u, given in Assumption
2.3(a)-(b), then

T (6, - o f L
@;=§ - B) 6 & (] eriger] e
oo 31)
with & as in (28)-(29), where
T.(r)= U, B,(s)ds in the case of the Assumption
2.3(a), and T|(r)=V,(r) in case of the
Assumption 2.3(b). Also, in the cases of the
Assumption 2.3(c)-(d) we have that @g = 0,(n),
and & = 0,(~/n), respectively.

(b) For v = -1/2, and u, generated as in
Assumption 2.3(c), then

s1

,1/2I;’1n(&9’n- ap)g ) o
éﬁfg B, p 6 8=((enene] ([Jun. o
M, v (32)
Where T, ()= (M, (s)ds= w £ U, e“ds+ Uy, (slds,
with U, e“ds= - (1/c)(1- e").
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(¢) For v = 0, with u, generated as in n % "’%p(k): n % Ve, - gt(],:n@}1 the sequence of

Assumption 2.3(d), and standard integrated

regressors with qu,t =0,,, then
pn(% )
&= (0 Bk) f [q g(r)g(r)¢dr] g
1/2
%n Yk (33)

Where the limiting random process
Tq(r) given by Tq(r)= Ug Bq(s)¢qu(s)+ rh,,

Proof. These results simply follows
from Lemma 2.1, the continuous mapping
theorem, with

-1/2 _ -1/2
,nin t}?[en r%:asgs ofl{ii'é] Asysglzlnm[f)rt]fon 2 3k(g) -(Fbg\Ta(rfc)l
the same development as in the proof of
Theorem 2 in Vogelsang and Wagner (2011).

Remark 3.1. From part (a) of
Proposition 3.1, equation (31), in the case of the
local-to-unity MA root in Assumption 2.3(a),

we  get T(r)=T .+ y§eg/(r), where

T (r)=U;B,,(s)ds, ¥,, = Q' and g(r) is
given in equation (26). Then, it is immediate to
rewrite equation (31) as

& fi & + )\gt:} A(q g(r)g(r)¢dr] q g(r)7,., (r)dr

k

Where the second term above
determines an asymptotic bias component in the
limiting distribution, while that the last
multiplicative term can also be written as
U, g(r)T, (r)dr = UL[G(1)- G(r)IB, (r)dr, as in
equation (39). As can be seen from equations
(38) and (40), for any A > 0, this limiting
distribution is a mixture of the corresponding
ones under standard cointegration and no
cointegration given above.

Also, denoting by
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scaled OLS residuals (IM-OLS residuals) from
estimating the IM cointegrating regression in
(34), then we get the following limiting
distribution

e A B

8, (6 8,0+ ATr)- g«r)g%hgz)i ”(u gtsg«sidf] llg(sir (s)dsg

=8, 00)- g+ NI, (- gir)B) (34)
With

& = (U, g(s)gds)ds) * U, g(s)T,, (s)ds, so that it
is free of the effect of the additive limiting bias
component while that the two additive
components in the last line of (35) have the
same structure and are not mutually
independent. Additionally, from part (b) of the
Proposition 3.1, we have that the last term in
equation (32) can be decomposed as

U &), (dr = - o0/ gna- e)dr+ ([ IGW- GO, (rdr

So that the IM-OLS estimators has the
usual divergence rates as under standard no
cointegration, but with limiting distribution
given by

&fi -, [q glrgl r)lb’r] ulg(r)(l- e")dr+mig(r)g(r)wr)' [I[G(l)- G(N, (dr

Where the first term can be interpreted
as a stochastic bias-type component, while that
the second one resembles the limiting
distribution under standard no cointegration,
with B,(r) replaced by J, (r).

Remark 3.2. The condition imposed on
the integrated regressors in the framework of
stochastic cointegration in part(c) is to simplify
the calculations needed to obtain the limiting
distribution and to preserve a similar structure
that in the standard case. Thus, given that we
can write

3/2H =1L, 3/zAwm,6 ng “8 j— 1A h!}flkk)vec kat

j=1

And

Afonso J. Asymptotic and finite-sample properties of a
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-1/2 -1/2 1/ 2

nom=IL . n " w, +n :+ Vi
, then with Vk =0, we havé that qt
WA (0 H, ) Vg = IO, ( 1/nA(n W, ) g I, + 0,(1)
fi 10, , q(qB (s)ds] (")@rTig,
with B (s)=II B, (s) in g(r).

These results makes clear that each of
the alternatives considered will produce a
different effect on the corresponding limiting
distribution and, consequently, on the stochastic
properties and behavior not only of the IM-OLS
estimators but also on any other statistic based
on it. However, from these limiting results it is
not easy to deduce the impact on the precision
of these estimates. Thus, in order to complete
these findings we also present the results of a
small simulation experiment designed to
evaluate the finite sample estimation error of
this estimator through the computation of the
bias and RMSE for each of this alternatives
describing the stochastic properties of the error
term in a cointegrating regression equation.

3 Finite sample results

To evaluate this finite sample properties in
parts (a), (b) in Proposition 3.1, we use the
same model as in Vogelsang and Wagner
(201Dfor k = 2, with m,, = n,,. , + €, where
&, = Cil)e,. C =1, + CylL,
Ckl = diag(Cll,sz), with Cil1 = Cx»n = 0.5, while
that for the error term u, we use

U= pu.,+ U+ vfe, .,

and

With  y, = (v,,v,)¢ controlling the
degree of endogeneity of the regressors, and the
iid sequence (u,ef,)¢ that follows a

multivariate standard normal. Particularly, we
set B, = (1,1)¢, andy =y, =72=0, 0.3.

The results for this case are shown in
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12, Table 1 of Appendix C. On the other hand, to
hevaluate the performance of the IM-OLS

estimator under heteroskedastic cointegration
we use the same model as in Harris et.al.
(2002) with

o 0 0
- 01 :w + go i’~ g/
g g:n 0 oM

0,1,

Ill

Wheree,, = ¢, , + e,t,
11t ¢)Vlll' 1+ \/7621” Ah

€ and

Aw,, =e,,, with u,=-Bv, th +&,,- Be,,s
for the cointegrating error term, where
B=m,/m, under stochastic cointegration.

Also, for the noise components we assume that
e, = (€,,€,,)¢ Ny(0, R ), where

(plj)lj 0,1,.,4° Wlth pl] = E[elt ]t]

set the values p,,=p,;=05, py,=0.25,
Po, =P, =Pis=0, @ = 0, 1, 2, 3, and
P,;= 0,05 where this last correlation

coefficient measures the degree of endogeneity
of regressors. For the AIV estimator we set

L =1len'?i=1,2,3, with ¢, = 0.75,
¢, =1.00, ¢, = 1.25 for the lag order. In both

cases we evaluate the performance of the
integrated-OLS (I-OLS) and the IM-OLS
estimators computed from (32) and (33),
respectively.

From Table 1, we can see that the IM-
OLS estimator always outperforms the standard
OLS results in terms of finite sample bias, but
with a higher RMSE, for increasing values of A
in case 2.3(a). Very similar results are obtained
in the case of the infinite-variance mixture
process in 2.3(b), even under exogeneity of the
regressor. In the last case of highly persistent
but stationary equilibrium errors in finite
samples,

Table 1.C, both estimators are biased

Afonso J. Asymptotic and finite-sample properties of a
new simple estimator of cointegrating regressions under
near cointegration.
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with a slightly lower bias for the IM-OLS
estimator. When uy = O,(1), and particularly
up= 0, the results are absolutely comparable to
these in terms of the finite sample bias, with a
slight, but systematic, reduction of the RMSE
due to the lower degree of persistence.

From Table 2, in the case of the finite
sample performance of the AIV and IM-OLS
estimators, the IM-OLS estimator performs as
well as the AIV estimator in almost all the
situations, except under endogeneity of the

regressor and high correlation in v,, ., where the

AIV estimator, specially designed to taking into
account for this effect, slightly outperforms the
new estimator considered here.
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Appendixes

A. Proof of Lemma 2.1(a). Using the
representation Au, = ¢, (L)u,, then we can write

u,= uy+ cn(L)A;lu Making use of the
Beveridge-Nelson (BN) decomposition of the

first-order lag  polynomial ¢, (L) with
8=1- n'A, we have that c(L)=1- 6L

=1- 0- B(L- 1)= n""A- B(L- 1), which gives

Y2 (n Y2 A% u,)+ Bu, + u, - Buy.

u = An
Then, the scaled partial sum of 1w,

n*?u =n A"y, weakly converges to

[nr] — t?

U, (r) by direct application of Assumption 2.2.
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B. Proof of Lemma 2.1(b). Making use of the
decomposition of u, as in (11) we trivially have

that

OLS LOLS  IM-OLS OLS LOLS  IM-OLS
) Panel A. Bias Panel B. RMSE

p=00 y=00 010 000003 -0.00097  -0.00088 0.0300 0.0416 0.0437
020 -0.00060  -0.00081  -0.00057 0.0382 0.0354 0.0484

030 000028 -0.00046  -0.00020 0.0720 0.0604 0.0559

040000123 000052 -0.00010 0.0483 0.0750 0.0738

n 2 1 050 000078 000208  0.00199 0.0468 0.0742 0.0786
t 100 0.00061  0.00070  -0.00048 0.1029 02368 0.2028
y=03 010 001164 000151  -0.00027 0.0345 0.0485 0.0414

020 001181 0.00066  0.00019 0.0415 0.0603 0.0597

030 001185 000167  0.00108 0.0485 0.0781 0.0649

040 001279 000276 0.00133 0.0486 0.0787 0.0721

050 001209 000195  0.00114 0.0510 0.0748 0.0691

100 001163 0.00059  0.00031 0.1074 0.1918 0.1016

p=03 y=00 010 000066 000111  0.00062 0.0371 0.0363 0.0547
020 000015 000015  0.00073 0.0444 0.1152 0.0800

0.30 000040 0.00010 000041 0.0422 0.0667 0.0654

040 -0.00026  -0.00029  0.00048 0.0543 0.0824 0.0769

050 000143 -0.00048  -0.00152 0.1325 0.1133 0.0898

100 -0.00328  -0.00008  -0.00129 0.1567 0.1739 0.1569

y=03 010 002008 00021 000127 0.0493 0.0662 0.0553

020 002124 000290  0.00211 0.1047 0.0676 0.0708

030 001969 000227  0.00109 0.0623 0.0766 0.0700

040 002130 000345 -0.00028 0.0809 0.1068 0.1127

0.50 001973 000035  -0.00030 0.0669 0.1338 0.1147

100 0.02038  0.00225  0.00048 0.0979 0.1761 0.1699

Where for the first term we have the
same result as in (9) using u, = v,, while that

for the second term we have that it can be
written as

Varv-1 A 12 Mo, 1/ay- 1 1/ay- 1 1/2
(@'Y A (0 *ny b, = ylan )AbUm+(an )AE Ask,e

t=1 t=1

- éanmx)- 1A bu“;%' 1/2A 8k/~
t=1

A
(aney * A b[ua,gn ”ZA sk/8+ 0,(1)
t=1

As in Lemma 1 in Paulauskas and
Rachev (1998). Then, the desired result follows
by the joint convergence of each of these
functionals to their corresponding weak limits.
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C. Simulation results

08 RIS MOS0 KOS NS

OLS _ 10LS  IMOLS OS5 OIS IMOLS ) Panel A, Bias Panel B. RMSE
) Panel A Bias Panel B. RMSE p=00 =00 010 000098 000094 00008 00747 0090 00905
p=00  y=00 1 -0000I1 -000003 000013 00267 00398 00378 020 -00031 00073 000787 0330 041 0410
§ 8383;: 838?i§ ggggég 83;22 ggm ggig; 030 00171 003165 003437 09818 14617 13600
4000034 000 0S5 0001 0048 00471 0 DML ONOT05 AMBLS 056 7S 048
SO0 000040 000018 004 00T 00507 030000753 OOSTI 000213 0302 0771 07316
10 -0.00010  =0.00079  -0.00013 0.0455 0.0861 0.0763 100 -0.0468  0.09637 003942 200m 110871 6.0260
y=03 1 001477 000378  0.00274 00342 00435 0.0360 1=03 010 000918 -0.00323  -0.00672 01062 01526 02891
2001778 0.00754  0.00618 0.0361 0.0472 0.0391 020 0.00430 -0.00018  -0.00694 (.7481 0.9946 1.0094
300092 001064 000925 00388 00518 00438 030 0025 00364 0087 01 2415 189
4 000 DO 0016 OBAIS 00555 00471 040 OOBI9  OMS0S 002 1M 286 25005
500652 001720 001434 0048 00607 00516
10 004198 00247 003146 0064 0092 00829 050 00305 00079 000002 2649 07495 LI
p=03  y=00 1 -000085 -0.00021  -0.00073 00364 00545 00531 100 -001565 001585 0.02489 L3 L6647 2448
200009 -000015 000011 00374 00565 00550 p=03 =00 010 -0012% 00109 000875 064 0336 05114
3000015 000076 000046 00400 00627 0.0597 020 00055 -000467 -D00II 0144 03570 03301
: ggg?g 33‘323; ggg‘z’zo 83:;1 gg;; gggﬁ 030 00057 00049 00089 02629 0412 04414
A A A J A A 4
00 0mB6 ol ool o6 0l DO OO0 00953 00D 0SHD 05T 067
y=03 1 0mN9 0000 OMSS 000 0068 00527 030 007859 00816 01080 6917 33190 80634
300064 001611 00145 00STL 0070 00620 =03 010 002081 001041 000263 0201 0678 04197
40081 001957 001907 0091 00773 00690 020 001469 00037 000577 0230 03045 03668
5 00081 002569 002416 00647 00872 00754 030 001852 000066 000184 03395 04656 04784
10 006063 004727 00M58 00914 01369 01187 00 N6 000 AW o6l 0% 0T
050 002908 002655 00374 0559 09811 L0
Table 1 100 0043 0003 000350 08300 09785 1067
Table 1.c
Table 1.b , o
S WS MOS0 KOS INOIS
¢ Panel A. Bias Panel B. RMSE
p=00  y=00 1 000516 000569 -000076 03380 06761 03863
2 000309 0.00344  0.0025 0304 06180 05506
300006 000303 0.00066 02128 05461 04807
400014 00037 0,002 0475 04811 04356
5000300 00130 -0.00912 0248 04439 03969
1000043 000284 000035 01600 03015 0271
=03 1 02785 026264 026708 04384 07136 06746
2 03169 020143 021699 03936 06688 05959
3o 02080 0.18603  0.19207 0368 06140 0534
4 01893 0.15766  0.16007 03292 05587 04803
500736 03320 013827 0309 05140 04504
10012002 007778 0.08145 0221 0358 03063
p=03 =00 1 000359 00037 00097 04689 0934 0823
2000263 001379 0.00568 04163 08412 07467
3000322 0.00499  0.0017 03663 07306 06457
400052 002035 0.01937 03386 06801 06087
500148 001920 00173 03126 06258 03611
10000474 000732 0.00815 02264 04268 03956
(=031 036510 0358712 036815 05989 0998 08914
103403 0381 033163 03510 09195 08238
3 02802 025705 0.20476 05003 08318 07471
4026499 020921 0.23548 04589 0740 0.6668
50430 0.18%6 02013 04310 0736 08279
10 01718 01089 012016 0314 04914 04308
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