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Asymptotically efficient estimation of a static cointegrating regression represents a critical requirement 
for later development of valid inferential procedures. Existing methods, such as fully-modified ordinary 
least-squares (FM-OLS), canonical cointegrating regression (CCR), or dynamic OLS (DOLS), that are 
asymptotically equivalent, require the choice of several tuning parameters to perform parametric or 
nonparametric correction of the two sources of bias that contaminate the limiting distribution of the 
OLS estimates and residuals. The so-called Integrated Modified OLS (IM-OLS) estimation method, 
recently proposed by Vogelsang and Wagner (2011), avoids these inconveniencies through a simple 
transformation (integration) of the system variables in the cointegrating regression equation, so that it 
represents a very appealing alternative estimation procedure that produces asymptotically almost 
efficient estimates of the model parameter. In this paper we study the performance of this estimator, 
both asymptotically and in finite samples, in the case of near cointegration when mechanism generating 
the error term of the cointegrating regression equation represents a certain generalization of the I(0) 
assumption in the standard case. Particularly, we consider three different specifications for the error 
term that generate a stationary sequence with finite variance in large samples, but are nonstationary for 
small sample sizes, and a fourth specification known as a stochastically trendless process that 
represents an intermediate situation between ordinary stationarity and nonstationarity and that 
determines what has been termed as stochastic cointegration. With this, we characterize the limiting 
distribution of the IM-OLS estimator, determining the main differences with respect the reference case 
of stationary cointegration, and evaluate its performance in finite samples as measured by bias and root 
mean squared error through a small simulation experiment. 
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Introduction 
 
Since the seminal work of Engle and Granger 
(1987), theoretical and empirical analysis of 
cointegrating regressions have become a 
commonly used tool for analyzing integrated 
variables. The structure of the integrated 
variables, and in particular that of the 
regressors, plays an important role in 
determining the distributional properties of the 
estimators in these regression equations. It is 
also relevant to consider the role of the 
stochastic properties of the error term in the 
cointegrating regression model, particularly 
when we consider that can follows a highly 
persistent but stationary process. In any of these 
situations, the usefulness and optimality 
properties of some existing estimation methods 
could be questioned. Another characteristic of 
the regressors, many times not considered, is 
when they contain some deterministic 
component and it is not explicitly taken into 
account in specifying the cointegrating 
regression model and in determining the 
limiting distribution of these estimators, as has 
been indicated by Hansen (1992a). 
 

Given that the use of the basic OLS 
estimator presents serious problems in many of 
the most important practical situations, 
particularly under endogeneity of the regressors 
and serially correlated error terms, there has 
been proposed a number of alternative 
estimation procedures whose main 
disadvantage is the need to make some choices 
on tuning parameters that are fundamental to 
their implementation. Recently, Vogelsang and 
Wagner (2011) have proposed a very simple 
alternative procedure, the integrated-modified 
OLS (IM-OLS) estimator, that seems to work 
as well as the other procedures when consider a 
standard framework of analysis.  

 
 

In this paper we are interested in 
exploring the performance of this new estimator 
under a no standard framework when the error 
term of the cointegrating regression model is 
perturbed in several ways. 

 
In this paper we derive the limiting 

distribution of the OLS and IM-OLS estimators 
under this no standard situations, and also 
perform a simulation experiment to evaluate 
their behavior in small samples, with particular 
attention to the small sample bias induced by 
the parameters characterizing the behavior of 
the error term. 

 

1 The model, assumptions and preliminary 
results 

 
We assume that the observed time series tY  and 
X ,k t , with X ,k t  a k-dimensional vector with k ≥ 
1, are generate according to the following 
unobserved components model 
 

X d
0, 0,

, , ,

ηt tt

k t k t k t

dY Ê ˆ Ê ˆÊ ˆ ˜ ˜˜ Á ÁÁ = +˜ ˜˜ Á ÁÁ ˜ ˜˜Á ˜ ˜Á ÁË ¯ˉ Ë ¯ˉ Ë ¯ˉη
                (1) 

 
Where d0, ,( , )t k td ¢ ¢, with 

d , 1, ,( ,..., )k t t k td d ¢= , is the deterministic 
component of each series, and 0, ,(η , )t k t¢ ¢η  is the 
zero mean stochastic trend component. It is 
assumed that 0, ,(η , )t k t¢ ¢η  is generated by the 
potentially cointegrated triangular system 
 
0, ,η t k k t tu¢= +β η                 (2) 

 
, ,Δ k t k t=η ε                  (3) 

 
By combining (1) and (2) we get the 

following relation 
 



 
Article                                                                                                                 ECORFAN Journal 
OPTIMIZATION                                                                              December 2013 Vol.4 No.11 1158-1179               
 
	
  

	
  

1160 

ISSN-Print: 2007-1582- ISSN-On line: 2007-3682 
ECORFAN® All rights reserved. 
	
  

Afonso J. Asymptotic and finite-sample properties of a 
new simple estimator of cointegrating regressions under 
near cointegration. 	
  

d X0, , ,( )t t k k t k k t tY d u¢ ¢= -­‐ + +β β               (4) 
 
With c (1, )k k¢ ¢= -­‐ β  the unknown 

cointegrating vector. Next, in order to complete 
the specification of the cointegrating regression 
equation (4) we introduce a very general 
assumption on the structure of the nonstochastic 
time trends d0, ,( , )t k td ¢ ¢. 

 
Assumption 2.1. Deterministic trend 

components 
 
We assume that , , ,i ii t i p p td ¢= α τ , with 

, ii pα  a ( 1) 1ip + ¥  vector of trend coefficients, 
with , (1, ,..., )i

i

p
p t t t ¢=τ , pi ≥ 0, for each i = 0, 1, 

…, k. By defining p = max(p0, p1, …, pk), then 
we can write , , ,i t i p p td ¢= α τ , with 

0, ,( : )
i ii p i p p p-­‐¢ ¢ ¢=α α , and , , ,( : )

i ip t p t p p t-­‐¢ ¢ ¢=τ τ τ , so 
that d A, , ,k t k p p t= τ , where A , 1, ,( ,..., )k p p k p ¢= α α . 
 

Under this assumption 2.1, we get the 
following standard specification of the 
cointegrating regression model 
 

X, ,t p p t k k t tY u¢ ¢= + +α τ β                (5) 
 

Where A0, ,p p k p k¢= -­‐α α β . With this 
choice for the order of the polynomial trend 
function, we ensure that the OLS estimator of 

kβ  and the OLS residuals are free of the trend 
parameters A ,k p . Taking into account that the 
vector of trending regressors in (5), 
m X, ,( , )t p t k t¢ ¢= τ , can be decomposed as 
 

        (6) 
 
 

Where 1/2
, ,k tn k tn-­‐=η η , with Wn  a 

(p+1+k)×(p+1+k) nonstochastic and non-
singular weighting matrix, where 

,[ ] , ,[ ] ( ) (1, ,..., )pp nr n p n p nr p r r r ¢= Æ =τ Γ τ τ , and 
1

, (1, ,..., )pp n diag n n-­‐ -­‐=Γ , then 
m , , ,( , )t n p tn k tn¢ ¢ ¢= τ η  is stochastically bounded for 
t = [nr] as n→∞, such as 
m m B[ ], ( ) ( ( ), ( ))nr n p kr r r¢ ¢ ¢fi = τ , with m(r) a full-
ranked process in the sense that 
m m1

0 ( ) ( ) 0r r dr¢Ú >  a.s. Thus, given the OLS 
estimator of the parameter vectors in (2.5), 

, ,
ˆˆ( , )p n k n¢ ¢ ¢α β , the scaled and normalized OLS 

estimation error, , ,
ˆ ˆ ˆ( , )n p n k n¢ ¢ ¢=Θ Θ Θ , can be 

represented as 

      (7) 
 
Where the exponent v will take different 

values depending on the stochastic properties of 
the cointegrating error term, tu , as will be 
stated later. Besides the assumptions 
concerning the deterministic trend components 
of the observed time series, in order to complete 
the usual specification of the cointegrating 
regression and to obtain the limiting results 
characterizing the OLS estimators and residuals 
in the standard cases analyzed in the literature, 
we introduce the following assumption 
concerning the behavior of the error 
components tu  and ,k tε  in (2) and (3). In this 
case, we assume that the cointegrating error 
sequence tu  is driven by a particular function 
of an underlying error sequence υt  that we 
describe as follows. 
 
 
 

	
   0
m Wm

A A I

1 1
, , , 1, ,

,1 1
,, , , , , , ,

p n p tn p n p k p tn
t n t n

k tnk p p n p tn k t k p p n k kn

-­‐ -­‐
+

-­‐ -­‐

Ê ˆ Ê ˆÊ ˆ˜ ˜Á Á ˜Á˜ ˜= = =Á Á ˜Á˜ ˜ ˜Á Á ˜Á˜ ˜Á Á+ Ë ¯ˉË ¯ˉ Ë ¯ˉ
Γ τ Γ τ

ηΓ τ η Γ

	
   A

m m m

1
, , , , ,

1/2
, ,

1
(1 )

, , ,
1 1

ˆˆ ˆ[( ) ( )]ˆ
ˆ ˆ( )

(1/ )

v
p n p p n p n p k p k n kv

n n v
k n k k n k

n n
v

t n t n t n t
t t

n
n

n

n n u

-­‐

+

-­‐
-­‐ -­‐

= =

Ê ˆÊ ˆ-­‐ ¢-­‐ + -­‐ ˜Á˜Á ˜˜ Á= =Á ˜˜ ÁÁ ˜˜Á -­‐ Á ˜-­‐Ë ¯ˉ Ë ¯ˉ
Ê ˆ̃Á ¢= ˜Á ˜Á ˜Ë ¯ˉÂ Â

W
α α Γ α α β β

Θ
β β β β
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Assumption 2.2. Error components. It is 
assumed that ,(υ , )t t k t¢ ¢=ζ ε  is a zero mean 
covariance stationary process that satisfy 
sufficient regularity conditions to verify the 
following multivariate invariance principle such 
that 

 (8) 
 
Where BMB 1 1( ) ( )k kr+ += Ω  is a k+1-

dimensional Brownian process with covariance 
matrix Ω  such that, B W1/2

1 1( ) ( )k kr r+ += Ω , and 
W W1 υ.( ) ( ( ), ( ) )k k kr W r r+ ¢= , with υ. ( )kW r  and 
W ( )k r  two standard independent Wiener 
processes, and Ω  a positive definite covariance 
matrix.25 The covariance matrix Ω  is given by 
the long-run covariance matrix of the sequence 

tζ , 
 

 
 
Where Δ  is the one-sided long-run 

covariance matrix defined as 
1 υυ υ

υ1 1

δ
lim [ ]

n t
k

n s t
k kkt s

n E-­‐
Æ•

= =

Ê ˆ̃Á¢= + = = ˜Á ˜ÁË ¯ˉÂ Â Δ
Δ Σ Λ ζ ζ

Δ Δ

 
With 

2
υ υ

υ

σ[ ] k
t t

k kk

E
Ê ˆ̃Á¢= = ˜Á ˜̃ÁË ¯ˉ

σ
Σ ζ ζ

σ Σ
 

The short-run covariance matrix, and 
1

1 υυ υ

υ2 1

λ
lim [ ]

n t
k

n s t
k kkt s

n E
-­‐

-­‐
Æ•

= =

Ê ˆ̃Á¢= = ˜Á ˜ÁË ¯ˉÂ Â Λ
Λ ζ ζ

Λ Λ
 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
25 This assumption is imposed, rather than derive from 
more primitive assumption, since it is a standard result 
that holds under general conditions, such as a linear 
process driven by an iid or martingale difference 
sequence as in Phillips and Solo (1992). 
 

Making use of the upper triangular 
Cholesky decomposition of Ω  we have that 

B1υ υ. υ( ) ( ) ( )k k kk kB r B r r-­‐¢= + ω Ω , with 

υ. υ. υ.( ) ω ( )k k kB r W r= , and 2 2 1
υ. υ υ υω ωk k kk k

-­‐¢= -­‐ ω Ω ω  
the conditional long-run variance of υ. ( )kB r , 

2 2
υ. υ. υ. υω [ ( ) ] [ ( ) ( )]k k kE B r E B r B r= = , where υ. ( )kB r  

and B ( )k r  are independent, that is, 
B 0υ.[ ( ) ( )]k k kE r B r = . 

 
The assumption that Ω  is positive 

definite is a standard, but important, regularity 
condition which implies that ,k tη  (and hence 
X ,k t ) is a non-cointegrated integrated process 
(no subcointegration) and rules out 
multicointegration under a stable long-run 
relation between tY  and X ,k t . For the initial 
values 0υ  and ,0kη , we assume the sufficiently 
general conditions 0υ = (1)pO , and ,0kη = 1/2( )po n
, which include the particular case of constant 
finite values. 

 
Among all the elements described 

above, the off-diagonal k×1 vector υkΔ  in the 
one-sided long-run covariance matrix is of 
particular relevance in determining de limiting 
behavior of the OLS estimator in (7) under 
standard stationary cointegration, that is, when 
the long-run equilibrium error is stable. In this 
case, when υt tu =  or, more generally, when tu  
is any stationary transformation of υt , such as 

1φ υt t tu u -­‐= +  with |φ| < 1 and fixed, it is well 
known that the key component determining the 
limiting distribution of the OLS estimator of the 
cointegrating vector kβ  is given, from (7) with 
v = 1/2, by 
 

G1/2 1/2
,

1

( ) ,
n

k t t ku ku
t

n n u-­‐ -­‐

=

fi +Â η Δ               (9) 

 

	
  
B B BB

[ ]
,υ 1/2

1 υ
, 1

( )
( ) ( ) ( ( ), ( ) )( )

nr
n

n t k k
n k t

B r
r n r B r rr

-­‐
+

=

Ê ˆ̃Á ¢= = fi =˜Á ˜̃ÁË ¯ˉ Â ζ

	
   2
1υ υ

υ 1 1

ω lim [ ]
n n

k
n t s

k kk t s

n E-­‐
Æ•

= =

Ê ˆ¢ ˜Á ¢ ¢= = = +˜Á ˜̃ÁË ¯ˉ Â Âω
Ω ζ ζ Δ Λ

ω Ω
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With 1
υ( ) (1 φ) ( )uB r B r-­‐= -­‐ , 

 
 

And 
 

 
Where

1
υ 1 ,(1 φ) ( φ [ υ ])j

ku k j k t t jE-­‐ •
= -­‐= -­‐ + ÂΔ Δ ε , and 

υ υ υk k k= +Δ σ Λ . In this case, the OLS 
estimator is consistent at the rate n 
(superconsistent), but under endogeneity of the 
regressors the vector kuΔ  introduces an 
asymptotic bias and the limiting distribution is 
not a zero mean Gaussian mixture.26 For the 
trend parameters pα  appearing in the 
cointegrating regression model (5), this 
framework does not allow their consistent 
estimation in the presence of deterministically 
trending integrated regressors (see, e.g., Hansen 
(1992a). As it follows from (7), and under 
standard cointegration, the composite trend 
parameters A ,p k p k¢+α β  can be estimated 

consistently at the usual rate 1/2n , but the 
limiting distribution of the OLS estimator 

A, , ,
ˆˆ p n k p k n¢+α β  also depends on the nuisance 

parameters measuring the degree of 
endogeneity of the regressors.  

 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
26 Given that the first term in (2.9) can be decomposed as 
1 1 1
0 0 .( ) ( ) (1 ) ( ) ( )k u k ks dB s s dB s−

υ∫ = −φ ∫B B  
1 1 1
0(1 ) ( ) ( )k k kk ks d s− −

υʹ′+ −φ ∫ B B Ω ω , then under strict 
exogeneity of the regressors, k kυ = 0ω , this stochastic 
integral behaves as a Gaussian mixture random process, 
where the remaining nuisance parameters can be 
removed by simple scaling. 

Despite this last result, the OLS 
residuals are exactly invariant to the trend 
parameters, and allows for consistent estimation 
of the equilibrium error sequence under 
standard stationary cointegration.27  

 
However, the limiting distribution of 

some commonly used residual-based statistics 
and functionals is plagued of these nuisance 
parameters, invalidating the inferential 
procedures based on standard normal 
asymptotic theory. On the other hand, under 
non-stationarity of the long-run relationship 
among tY  and X ,k t  (no cointegration), the 
limiting results are quite different. Particularly, 
when the equilibrium error sequence 

0, ,ηt t k k tu ¢= -­‐ β η  contains a unit root, that is 

1 υt t tu u -­‐= + , with 1/2
[ ] υ( )nrn u B r-­‐ fi , then we 

get the following limiting result 
B3/2 1/2 1

1 , 0( ) ( ) ( )n
t k t t k un n u s B s ds-­‐ -­‐
=Â fi Úη  when 

taking v = −1/2 in (7), determining the 
inconsistent estimation of the cointegrating 
vector kβ , while that the OLS estimator of 

A ,p k p k¢+α β  diverge at the rate 1/2n .  
 
 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
27 From equation (2.1) and Assumption 2.1, we have that 
the observation t for the set of k deterministically 
trending integrated regressors can be decomposed as 

1
, , , , ,k t k p p n p tn k t

−= +X A Γ τ η , which gives that the sequence 
of OLS residuals from (2.5) can be written as 

1 (1/ 2 ) 1/ 2
, , , , , , , ,

ˆ ˆˆˆ ( ) ( [( ) ( )]) [ ( )]v v v v
t p t p tn p n p n p k p k n k k t k n ku k u n n n n− − − + +ʹ′ ʹ′ ʹ′= − − + − − −Aτ Γ α α β β η β β

 
Making use of (2.7) or, alternatively given that (2.5) may 
be rewritten as , , ,

ˆ ˆ
t p k kt p t pY uʹ′= +Xβ , with ,t̂ pY , 

, ,
ˆ
kt p kt p=X η  and ,t pu  the OLS detrended error terms ut, 

then we have that 
(1/ 2 ) 1/ 2

, , , ,
ˆˆ ( ) [ ( )]v v

t p t p kt p k n ku k u n n− + +ʹ′= − −η β β . 

	
  G B B B
1 1

1 1
υ. υ

0 0
( ) ( ) (1 φ) ( ) ( ( ) ( ))ku k u k k k kk ks dB s s d B r r-­‐ -­‐¢= = -­‐ +Ú Ú ω Ω

	
  
, , ,0 ,

1 1 1 1

1

, ,
0 1

(1/ ) [ ] ( / )(1/ ) (1/ ) [ ]

(1/ ) [ ] [ (1)·∙ (1)]

n n n t

ku n k t t k t k t t
t t t j

n n
p

k t j t p n u ku ku ku
j t j

n E u E n n u n E u

n E u E o B

= = = =

-­‐

-­‐
= = +

Ï ¸Ô ÔÔ Ô= = +Ì ˝Ô ÔÔ ÔÓ ˛
Ï ¸Ô ÔÔ Ô= + Æ = +Ì ˝Ô ÔÔ ÔÓ ˛

Â Â Â Â
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Δ η η ε
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Once established these theoretical 
results, there remains to consider the 
fundamental question of consistently 
discriminate in practice between these two 
situations making use of some of the existing 
testing procedures for the null of no 
cointegration against cointegration (see, e.g., 
Phillips and Ouliaris (1990) and Stock (1999) 
for a review). Alternatively we could test the 
opposite hypotheses, with cointegration as the 
null, by making use of the procedures proposed, 
among others, by Shin (1994), Choi and Ahn 
(1995), McCabe, Leybourne and Shin (MLS) 
(1997), Xiao (1999), Xiao and Phillips (2002) 
or Wu and Xiao (2008).  

 
This is not the topic analyzed in this 

paper, but it must be stated that all these last 
testing procedures are based on asymptotically 
efficient estimates of the model parameters in 
the sense that this estimators asymptotically 
eliminate both the endogeneous bias and the 
non-centrality parameter appearing in (9). 
These estimation methods are based on several 
modifications to OLS and include the fully 
modified OLS (FM-OLS) approach of Phillips 
and Hansen (1990) and Kitamura and Phillips 
(1997), and the canonical cointegrating 
regression (CCR) method of Park (1992), 
which are based on two different nonparametric 
corrections. Also, it must be mentioned the 
dynamic OLS (DOLS) approach of Phillips and 
Loretan (1991), Saikkonen (1991) and Stock 
and Watson (1993) which is based on a 
parametric correction consisting on augmenting 
the specification of the cointegrating regression 
(5) with leads and lags of the first difference of 
the regressors.28  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
28 Pesaran and Shin (1997) examines a further 
modification of the two-sided underlying distributed lag 
model in the DOLS approach, incorporating a number of 
lags of the dependent variable and eliminating the terms 
based on leads of the first differences of the regressors. 
That is, they propose to use a traditional autoregressive 

A major drawback of any of these 
procedures is the choice of several tuning 
parameters, such as a kernel function and a 
bandwidth for long run variance estimation for 
FM-OLS or CCR estimation, and the number of 
leads and lags for the DOLS procedure. All the 
above mentioned testing procedures for the null 
hypothesis of stationarity make use of the 
residuals obtained from one of these 
alternatives.29  

 
Even though these estimators are 

considered asymptotically equivalent, there 
may be sensible differences in their use in finite 
samples. 

 
Kurozumi and Hayakawa (2009) study 

the asymptotic behaviour of the asymptotically 
efficient estimators cited above under a m local-
to-unity framework for describing moderately 
serially correlated equilibrium errors in a 
standard cointegrating regression equation, 
which is similar to the formulation in (2.12) 
with ρ ρ 1 /m c m= = -­‐ , where m→∞, and 
m/n→0 as n→∞. This formulation imply that 
ρ ρm=  approaches 1 at a slower rate that does 
the n local-to-unity system, and it seems to be a 
more convenient tool of analysis when we 
relate the properties of the estimators for the 
cointegrating regression model with the local 
power properties of cointegration tests. We 
reserve the consideration of this case for further 
investigation. 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
distributed lag (ARDL) model for the analysis of long-
run relations and find several interesting results for the 
estimators of the long-run coefficients in terms of its 
consistency and asymptotic distribution. 
29 Particularly, the Shin’s (1994) and MLS (1997) test 
statistics are based on DOLS residuals, while that the 
testing procedure proposed by Choi and Ahn (1995) 
makes use of the feasible CCR residuals. The test 
statistics proposed by Xiao (1999), Xiao and Phillips 
(2002) and Wu and Xiao (2008) employ the FM-OLS 
residuals. 
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After this discussion, the following 
assumption presents four alternative 
characterizations of the cointegrating, or 
equilibrium, error sequence representing 
different slight departures from the stationarity 
assumption underlying the standard stationary 
cointegration result. 
 

Assumption 2.3. Cointegrating error 
sequence 
We assume that the error sequence in (2.5), tu , 
is given by any of the following alternative 
characterizations: 

(a) A moving average (MA) unit root under 
n local-to-unity asymptotics 
 

Δ (1 θ )υt tu L= -­‐ , 1θ 1 λn-­‐= -­‐ , λ [0,λ]Œ       (10) 
(b) A local-to-finite variance process 

α,1/α 1/2
λυ υt t t tu b

an -­‐= +              (11) 

 
With (π)tb iidB:  a Bernoulli random 

sequence, mutually independent of υt  and α,υ t , 
where α,υ t  is an iid sequence of symmetrically 
distributed infinite variance random variables, 
with distribution belonging to the normal 
domain of attraction of a stable law with 
characteristic exponent α ∈ (0,2), denoted as 
α,υ (α)t ŒND . 

 
(c) An autoregressive (AR) unit root under n 
local-to-unity asymptotics with a highly 
persistent initial observation 
(1 ρ ) υt tL u-­‐ = , 0 0 ρ υss su •

= -­‐= Â , 
ρ ρ 1 /n c n= = -­‐ , c > 0              (12) 
 
(d) A stochastically integrated process 
 

v h, ,υt t q t q tu ¢= +                (13) 
 
 

With h h, , 1 ,q t q t q t-­‐= + ξ  a q-dimensional 
integrated process, and v , ,(υ , , )t t q t q t¢ ¢ ¢=ζ ξ  a 
2q+1-dimensional mean zero stationary 
sequence. 

 
The process considered in part (a) was 

first proposed by Jansson and Haldrup (2002) 
as a way to introduce a notion of near 
cointegration, and further exploited by Jansson 
(2005a, b) to derive point optimal tests of the 
null hypothesis of cointegration, when λ = 0, 
based on efficient tests for a unit MA root.  

 

The mixture process in part (b) was 
proposed by Cappuccio and Lubian (2007) to 
assess the performance of some commonly used 
nonparametric univariate test statistics for 
testing the null hypothesis of stationarity of an 
observed process, so that in this paper we 
extended their results to determine the effects of 
an infinite variance error in a cointegration 
framework. Making use of the distributional 
results obtained by Paulauskas and Rachev 
(1998), Caner (1998) propose how to test for no 
cointegration under infinite variance errors.  

 
These two first cases represent 

departures from the standard cointegration 
situation, preserving the same rates of 
consistency for the estimates as in the 
referenced case but determining some relevant 
changes in the asymptotic null distributions of 
the estimators. Case (c) is a slight modification 
of the well known local-to-unity approach to 
stationarity, where a stationary sequence is 
modelled as a first-order AR process with a root 
that approaches one with the sample size but 
that strictly less than one in finite samples.  
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For a finite sample size, the behavior is 
governed by the parameter c, determining the 
degree of persistence of the innovations to the 
process (Phillips, 1987). Elliott (1999) and 
Müller (2005) propose to extend the high 
persistence behavior of the strictly mean 
reverting error process in finite samples to the 
initial observation as well and to investigate its 
effects on the size and power properties of 
some tests for a unit root and for stationarity. 
Here this characterization is used to represent 
no cointegration when c = 0, or asymptotic no 
cointegration for a fixed c > 0 and n→∞, while 
a fixed value of c > 0 indicates stationary 
cointegration for a finite sample size. Finally, 
case (d) represents a generalized version of the 
heteroskedastic cointegrating regression model 
of Hansen (1992b) as has been proposed by 
McCabe et.al. (2006).30 These authors consider 
the case where the unobserved stochastic trend 
components of the observed model variables in 
(1) can be decomposed as follows 
 

 
 
Where w w, , 1 ,m t m t m t-­‐= + υ  is a m×1 

vector integrated process, with initial value 
w h 1/2 δ

,0 ,0, ( )m q pO n -­‐=  for any 0 δ 1/2< £ , mΠ  
is a (k+1)×m real matrix with rank k, and ,m tυ  
(m×1), tε  (k+1)×1, and Vt  (k+1)×q are mean 
zero stationary processes which may be 
correlated. Given the linear combination of 
such a vector, ck t¢η , with c (1, )k k¢ ¢= -­‐ β  as in 
equation (2), then the error term tu  can be 
decomposed as follows 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
30 See also Harris et.al. (2002), and McCabe et.al. (2003) 
for the treatment of some particular cases of this general 
model of stochastic cointegration. 
 

    (14) 
 
With cm m k¢=π Π , cυt k t¢= ε , and 

v V c,q t t k¢= . In this setup, the condition 
0m m=π  is interpreted as stochastic 

cointegration, with kβ  the stochastically 
cointegrating vector. If in addition we set 
v v, ,[ ] 0q t q tE ¢ = , then we get what can be called 

as stationary cointegration, with v 0,q t q=  
corresponding to the case of standard stationary 
cointegration.31 Otherwise, if v v, ,[ ] 0q t q tE ¢ > , 
then the equilibrium error term is said to be 
heteroskedastically integrated and the variables 
in (2.1) are said to be stochastically 
cointegrated. The definition of stochastic 
cointegration nests standard cointegration and 
heteroskedastic cointegration. Hansen (1992b) 
calls the last additive term in (2), v h, ,q t q t¢ , a bi-
integrated process, while that McCabe et.al. 
(2003) establish the long-run memoryless 
property of this type of processes through 
stating that the optimal s step ahead forecasts, 
in the sense of minimizing the mean square 
error, converge to the unconditional mean as 
the forecast horizon s increases. This means 
that the behavior of the process up to time t has 
negligible effect on its behavior into the infinite 
future. The presence of the stochastic trend 
component h ,q t  induces long memory in the 
product process, but the effect of shocks on the 
level of the process is transitory rather than 
permanent, justifying the so-called 
stochastically trendless property of this type of 
processes. It is this property that gives meaning 
to the concept of common heteroskedastic 
persistence.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
31 If this additional condition is extended to 1,t k q+=V 0 , 
then the variables are all integrated and cointegrated in 
the Engle-Granger (EG) sense. 
 

	
   v
w Vh w hV

0, 0, 0 ,0,
, , , ,

, ,, ,

η εt t q tm
t m m t t t q t m t q t

k t k tk m kq t

Ê ˆÊ ˆ ¢Ê ˆ Ê ˆ¢ ˜˜˜ ˜ ÁÁÁ Á ˜= = + + = + +˜˜ ˜ ÁÁÁ Á ˜˜˜ ˜ Á˜ ˜ÁÁ Á˜ ˜ÁË ¯ˉ Ë ¯ˉË ¯ˉ Ë ¯ˉ
π

η Π ε
η εΠ

	
   c w v V h
c w c c Vh w v h

0, , , 0, , 0 , , ,

, , , , ,

( ) ε ( )
υ

t k t m k k m m t t k k t q t k kq t q t

k m m t k t k t q t m m t t q t q t

u ¢ ¢ ¢ ¢ ¢ ¢= = -­‐ + -­‐ + -­‐
¢ ¢ ¢ ¢ ¢= + + = + +
η π β Π β ε β

Π ε π
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Once stated this underlying structure of 
the unobserved trend components in tη , there 
is an additional technical reason supporting the 
concept of stochastic cointegration. This 
argument makes use of the concept of 
summability, originally introduced by Gonzalo 
and Pitarakis (2006). As can be seen from 
part(d) in Proposition 2.1, under stochastic 
cointegration, the partial sum process of the 
sequence of equilibrium errors is dominated by 
this last component that is summable of order 
1/2, while that the stochastically integrated 
trend components 0,η t  and ,k tη  are summable 
of order 1. This formulation implies the 
generalization of the traditional concept of 
stationary cointegration allowing for 
equilibrium errors that are not purely stationary 
but display a lower degree of persistence that 
the underlying common stochastic trend as 
measured by a lower order of summability. 

 
Finally, for a further justification of the 

theoretical and empirical relevance of this 
specification, we may refer to the work of Park 
(2002), Chung and Park (2007), and Kim and 
Lee (2011), where it is introduced the concept 
of nonlinear and nonstationary 
heteroskedasticity (NNH) describing a 
conditionally heteroskedastic process given by 
a nonlinear function of an integrated processes. 
This formulation represents a convenient 
generalization of the nonstationary regression 
by Hansen (1995) allowing for nonstationary 
regressors, and as an alternative to the class of 
highly persistent dynamic conditional 
heteroskedastic processes. Following Park’s 
(2002) approach, the last term in (13) can be 
interpreted as the simplest particular version of 
the heterogeneity generating functions (HGF) 
that are asymptotically homogeneous (the 
identity function in our case). 

 
 
 

The following lemma states the basis to 
obtain the main results of this paper concerning 
the limiting behavior of the OLS estimator in 
(7) and of the alternative estimator that will be 
presented and examined in the next section. 
 

Lemma 2.1. Given the error term of the 
static linear cointegrating regression equation, 

tu , in (2.5), then: 
(a) When generated according to 
Δ (1 θ )υt tu L= -­‐ , with 1θ 1 λn-­‐= -­‐ , λ [0,λ]Œ , 
as in Assumption 2.3(a) and under Assumption 
2.2, then we have 
 

    (15) 
 

with λ υ υ( ) ( ) λ ( )dU r dB r B r= + . 
 

(b) When generated according to the local-to-
finite variance process in 2.3(b), then 

[ ] [ ]
1 2 2

α, α, 1,α 2,α
1 1

υ , υ ( ( ), ( ))
nr nr

n t n t
t t

a a V r V r-­‐ -­‐

= =

Ê ˆ̃Á fi˜Á ˜Á ˜Ë ¯ˉÂ Â  

 
with norming sequence 1/α

na an= , and where 

1,α( )V r  is the Lévy α-stable process on the 
space D[0,1], with 2,α( )V r  its quadratic 
variation process, 2

2,α 1,α( ) ( )V r V r=  

0 1,α 1,α2 ( ) ( )r V s dV s-­‐-­‐ Ú , with 1,α ( )V r-­‐  the left limit of 
the process 1,α( )V r  in r. Then, we have 
 

1/2
[ ] α,λ υ 1,α( ) ( ) λ ( )nrn U U r B r V r-­‐ fi = +             (16) 

 
And 

    (17) 
 

For any 0 < π ≤ 1, with G υk  and υkΔ  as 
in (9). 

	
   [ ]
1/2 1/2

[ ] λ υ υ
01

( ) ( ) λ ( )
nr r

nr t
t

n U n u U r B r B s ds-­‐ -­‐

=

= fi = +Â Ú

	
   { }G B B
1

1/2
, υ υ 1,α 1,α

01

λ (1) (1) ( ) ( )
n

k tn t k k k k
t

n u V s dV s-­‐

=

fi + + -­‐Â Úη Δ
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(c) When generated according to (1 ρ ) υt tL u-­‐ =
, with ρ ρ 1 /n c n= = -­‐ , c ≥ 0, as in Assumption 
2.3(c) and under Assumption 2.2, then we have 
that 
 

1/2
[ ] 0 υ υ,( ) ω ( 1)ξ ( )cr
nr cn u u e J r-­‐ -­‐ fi -­‐ +           (18) 
 
Where 1ξ [0,(2 ) ]N c -­‐: , and 

( )
υ, 0 υ( ) ( )r r s c
cJ r e dB s-­‐= Ú

( )
υ 0 υ( ) ( )r r s cB r c e B s ds-­‐= + Ú  is an Ornstein-

Uhlenbeck process, which is independent of ξ. 
Further, as c > 0 tends to zero, this is 
continuous in c and converges to υ,0 υ( ) ( )J r B r= . 

 
(d) When generated according to 

v h, ,υt t q t q tu ¢= + , with h h, , 1 ,q t q t q t-­‐= + ξ  a q-
dimensional integrated process, and 

v , ,(υ , , )t t q t q t¢ ¢ ¢=ζ ξ  a 2q+1-dimensional mean 
zero stationary sequence satisfying the 
functional central limit theorem as in (8).  
 
Then 

 
 
Where for the last term we have that 

        (19) 
 
With B ( )q r  and V ( )q r  two q-

dimensional Brownian processes given by the 
weak limits of 1/2 [ ]

1 ,
nr
t q tn-­‐ =Â ξ  and v1/2 [ ]

1 ,
nr
t q tn-­‐ =Â

, respectively, and v,0 0 , ,Δ [ ]q j q t j q tE•
= -­‐¢= Â ξ  

v0 , ,( [ ])j q t q t jTr E•
= -­‐¢= Â ξ . Thus, 

1/2 1/2
[ ] ( )nr pn U O n-­‐ =  and 

v h1 1 [ ]
[ ] 1 , ,

nr
nr t q t q tn U n-­‐ -­‐

= ¢= Â  1/2( )pO n-­‐+  under 
stochastic cointegration. 

 

Proof. For the result in part (a), see 
Appendix A. For the results in part (b), see 
Lemmas 2.1 and C.1 in Cappuccio and Lubian 
(2007) for (16), and Appendix B for (17). These 
results make clear that the weighted sum of the 
two component processes in (2.11) allows to 
obtain these composite results. If, instead, we 
consider α,υ λ υt t t tu b= + , then the infinite 
variance process will dominate the behavior of 
the scaled partial sum process as can be seen 
from the following decomposition 

 

 
 
With no finite limiting results available 

in this case. For the result (18) in part (c), see 
Lemma 2 in Elliott (1999). With c > 0, the 
weak limit of the covariance-stationary series ut 
is 1/2

[ ] , υ υ,( ) ω ξ ( )cr
nr u c cn u M r e J r-­‐ fi = + , which is 

a stationary continuous time process.  
 
Finally, the result in part(d) follows 

from standard application of the convergence to 
stochastic integrals of a stochastically trendless 
process.  

 
 
Remark 2.1. Given that υ( )B r  can be 

decomposed as Bυ υ.( ) ( ) ( )k k kB r B r r¢= + γ , with 
1

υk kk k
-­‐=γ Ω ω , then the limiting process λ( )U r  in 

(2.15) can be decomposed as 
Bλ υ. ,λ ,λ( ) ( ) ( )k k kU r B r r¢= + γ , with 

υ. ,λ υ. 0 υ.( ) ( ) λ ( )r
k k kB r B r B s ds= + Ú  and 

B B,λ( ) ( )k kr r=  B0λ ( )r
k s ds+ Ú .  

 
 
 
 
 
 

	
  
v h

[ ] [ ]
(1 ) (1/2 ) 1/2 1

[ ] , ,
1 1

υ
nr nr

v v v
nr t q t q t

t t

n U n n n n-­‐ -­‐ -­‐ -­‐ -­‐ -­‐

= =

Ï ¸ Ï ¸Ô Ô Ô ÔÔ Ô Ô Ô¢= +Ì ˝ Ì ˝Ô Ô Ô ÔÔ Ô Ô ÔÓ ˛ Ó ˛
Â Â

	
   h
v h v v B V

[ ] [ ] [ ]
,01 1/2 1

, , , , , ,0
01 1 1 1

( ) ( ) Δ
nr nr nr t rq

q t q t q t q j q t q q q
t t t j

n n n s d s r
n

-­‐ -­‐ -­‐

= = = =

¢
¢ ¢ ¢= + fi +Â Â Â Â Úξ

	
   [ ]
1/2 1/α 1/2 1/α 1 1/α 1/2

[ ] ,υ α,
1

( ) λ ( ) υ ( )
nr

nr n t t p
t

n U B r an an b O n-­‐ -­‐ -­‐ -­‐

=

= + =Â
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Similarly, the limiting processes α,λ( )Z r  
and υ, ( )cJ r  in (16) and (17) can also be written 
as Bα,λ υ. 1,α( ) ( ) ( ) λ ( )k k kZ r B r r V r¢= + +γ , and 

υ, υ. ,( ) ( )c k cJ r J r=  J , ( )k k c r¢+ γ , with υ. , ( )k cJ r  an 
Ornstein-Uhlenbeck process defined on υ, ( )cB r , 
that is ( )

υ. , υ. 0 υ.( ) ( ) ( )r r s c
k c k kJ r B r c e B s ds-­‐= + Ú , and 

similarly for J , ( )k c r  based on the k-dimensional 
Brownian process B ( )k r .  

 
The first two cases considered 

determine a modification of the standard 
formulation of stationary cointegration, but are 
susceptible to produce consistent estimation 
results. 

 
 The next result establish the 

consistency rate and weak limit distribution of 
the OLS estimator in (7) in the cases (10)-(12). 

 
Proposition 2.1(a) Under Assumption 

2.2 and the generating mechanism given in (10) 
and (11) for the cointegrating error term, we 
have that the limiting distribution of the OLS 
estimator of the cointegrating regression 
equation in (5) is given by 

 

     (20) 
 
Where m B( ) ( ( ), ( ))p kr r r¢ ¢ ¢= τ . T(r) and 

Hk(1) are given by υ 0 υ( ) ( ) ( )rT r T r B s ds= = Ú , and 

H B10 υ(1) ( ) ( )k k s B s ds= Ú  when tu  is generated 
as in (10), while 1,α( ) ( )T s V r=  and 

H B B
1

1,α 1,α
0

(1) (1) (1) ( ) ( )k k kV s dV s= -­‐ Ú  

 
 
 

When tu  is generated as in (11). (b) 
Under Assumption 2.2, and the generating 
mechanism given in (12) for the cointegrating 
error term, then the limiting distribution for the 
OLS estimator of the cointegrating regression 
equation (5) is given by 
 

	
  (21) 
Where 

m m m
1 1 1

, υ υ,
0 0 0

( ) ( ) ω ξ ( ) ( ) ( )cs
u c cs M s ds e s ds s J s ds= +Ú Ú Ú  (22) 

Proof. The results follows directly from 
parts (a)-(c) of Lemma 2.1, and the continuous 
mapping theorem. 

 
From (20), it is evident that the direct 

impact of the cases (a) and (b) in Assumption 
2.3 on the limiting distribution of the OLS 
estimator is through the value of the parameter 
λ, indicating the degree of persistence of the 
error sequence tu  in case (a), and the relative 
importance of the infinite variance component 
in case (b). The final effect will be different in 
each case due to the very different behavior and 
properties of the terms T(s) and Hk integrating 
the last component in (2.20). 

 
The question of assessing the impact of 

these choices on the FM-OLS, CCR and DOLS 
estimators is not considered here, and it is left 
as an extension of the above results in future 
research. On the other hand, the results from 
(2.21)-(2.22) indicate that the impact of a 
highly persistent initial observation introduce 
an additional perturbation into de asymptotic 
behavior of the OLS estimator, which is 
inconsistent for the cointegrating vector kβ .  

 
 
 
 

	
  

( )

A

0
m m

G H

1/2 1
, , , ,
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1 1 11
10 υ 0

0 υυ
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n

s dB s s dT ss s ds

-­‐

-­‐
+

Ê ˆ¢-­‐ + -­‐ ˜Á ˜Á ˜Á ˜Á ˜-­‐Ë ¯ˉ
Ï ¸Ê ˆ Ê ˆÔ ÔÊ ˆÚ Ú˜ ˜Ô ÔÁ Á˜Á¢ ˜ ˜fi + +˜Á ÁÌ ˝Á˜ ˜˜Á ÁÁ˜ ˜Á ÁÔ ÔË ¯ˉË ¯ˉ Ë ¯ˉÔ ÔÓ ˛
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Without the consideration of this 
additional source of persistence, the case of 
stationary but highly persistent error terms in 
finite samples determinate limiting 
distributional results that are equivalent to what 
are obtained under no cointegration. 

 
Remark 2.2. As has been established in 

Harris et.al. (2002) (part (ii) of Theorem 1), the 
result in (19) is only of application for the OLS 
estimator in (7) under stationary cointegration (
v v, ,[ ] 0q t q tE ¢ =  and V 0 1,t k q+π ) and only if 

V 0,[vec( )υ ]kq kq t t kqE= πσ . In this case we get 

,
ˆ( ) (1)k n k pn O-­‐ =β β , and 

A1
, , , ,

ˆˆ[( ) ( )] (1)p n p n p k p k n k pO
-­‐ ¢-­‐ + -­‐ =Γ α α β β , so 

that 1/2
,ˆ ( )p n p pO n-­‐-­‐ =α α  in the case of 

stochastically integrated regressors (V 0, ,kq t k qπ
) containing a deterministic trend component (
A 0, , 1k p k p+π ). Thus, the relevant results for the 
limiting distribution of the OLS estimators in 
(7) are given by 1 [ ] 1/2

1 , ( )nr
t p tn t pn u O n-­‐ -­‐
=Â =τ , and 

32 

 
 

Under heteroskedastic cointegration 
with stochastically integrated regressors, that is 
when v v, ,[ ] 0q t q tE ¢ > , then it can be proved that 

3/2 1/2
1 , ( )n

t p tn t pn u O n-­‐ -­‐
=Â =τ , and 

 

 
 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
32 The details of the derivation of these results in our 
more general setup, not included in this paper, can be 
requested from the author. 
 

Which determine that 

,ˆ ( )p n p pO n-­‐ =α α , and ,
ˆ (1)k n k pO-­‐ =β β . In 

order to obtain consistent estimation results in 
this case, Harris et.al. (2002) propose to utilize 
an instrumental variable (IV) technique by 
defining m X, ,( , )t s p t s k t s-­‐ -­‐ -­‐¢ ¢ ¢= τ , s ≥ 0, and using 
mt m-­‐  for s > 0 as an instrument with 

m m m
1

,

1 1,

ˆ ( )
ˆ ( )

n n
p n

t s t t s t
t s t sk n

s
Y

s

-­‐

-­‐ -­‐
= + = +

Ê ˆ Ê ˆ˜ ˜Á Á ¢˜ ˜=Á Á˜ ˜Á Á ˜Á˜Á Ë ¯ˉË ¯ˉ
Â Â

α

β
 

 
The so-called AIV(s) (asymptotic IV) 

estimator. With this estimator we have that the 
parameter kqσ  is replaced by 

V, ,[vec( )υ ]kq s kq t s tE -­‐=σ , where 0,kq s kqÆσ  if 
we let s→∞. As a consequence, this estimator 
should be consistent by letting s = s(n)→∞, and 
s/n→0 as n→∞. These authors require that s = 
O(n1/2). However, the limiting distribution of 
this estimator is contaminated by the presence 
of the parameters v, , ,[ ]q i j i q t q t jE•

= -­‐¢= ÂΛ ξ , for i 
= 0, 1, due to the endogeneity of the 
stochastically integrated regressors, so to obtain 
a useful result in practical applications it must 
be imposed the extra exogeneity condition 
v V c 0, , , ,[ ] [ ]q t q t j t k q t j q qE E-­‐ -­‐¢ ¢ ¢= =ξ ξ  for all j = 0, 

±1, ±2, ... These authors argue that any other 
existing standard procedure for asymptotically 
efficient estimation of the model parameters in 
this setup will work as usual. Particularly, given 
that the feasible FM-OLS and CCR estimators 
require the use of a consistent estimator of the 
long-run covariance matrix Ω  based on the 
sequence ,( , )t t k tu ¢ ¢=ζ ζ , with 

V V, , , , , , , 1Δ Δ ( )k t k t k m m t k t kq t kq t-­‐= = + + -­‐ζ η Π υ ε
h V, 1 , ,q t kq t q t-­‐ + ξ , it may be expected seriously 
biased estimates given that, in general, 

0 1[ ]t kE +πζ , with 

v h v h v, , , ,0 , ,
1

[ ] [ ] [ ] [ ]
t

t q t q t q t q q t q j
j

E u E E E
=

¢ ¢ ¢= = + Â ξ  
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k tn t q t k k kq p q k k kq
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n u n n O n s ds-­‐ -­‐

= =

Ï ¸Ô ÔÔ Ô= ƒ + fi ƒÌ ˝Ô ÔÔ ÔÓ ˛
Â Â Úη σ σ
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V V h V V, , , 1 ,0 , , 1 , ,[ ] [( ) ] [ ] [ ]k t kq t kq t q kq t q t kq t q tE E E E-­‐ -­‐= -­‐ + -­‐ζ ξ ξ
, where [ ] ( )tE u O t= , and [ ] 0tE u =  only under 
the above exogeneity condition and also 
v h, ,0[ ]q t qE ¢ = c V h ,0[ ] 0k t qE¢ = , that trivially holds 

if h 0,0q q= . Thus, only a kernel-type estimator 
defined as the sample analog of 

1 1(1/ ) n n
n t s t sn = = ¢= Â Â %%%Ω ζ ζ , with [ ]t t tE= -­‐%ζ ζ ζ , 

can produce the desired results. Next section is 
devoted to the analysis of an alternative 
estimation method to those considered here, 
which has been recently proposed by 
Vogelsang and Wagner (2011), that allows for a 
unified treatment of all the different data 
generating processes treated in this section and 
represents a very interesting and easy to use 
estimation procedure for cointegrating 
regression models. 
 
2 An alternative asymptotically almost 
efficient estimation method 
	
  
The new estimator of a cointegrating regression 
model proposed by Vogelsang and Wagner 
(2011) is based on a simple transformation of 
the model variables and allows to obtain an 
asymptotically unbiased estimator of the 
cointegrating vector kβ  in (5), with a zero mean 
Gaussian mixture limiting distribution under 
standard stationary cointegration. The first step 
requires to rewrite the cointegrating regression 
model in (5) as 
 

S S, ,t p p t k k t tS U¢ ¢= + +α β              (22) 
 
Where 1

t
t j jS Y== Â , S , 1 ,

t
p t j p j== Â τ , 

S X, 1 ,
t

k t j k j== Â , and 1
t

t j jU u== Â  are obtain by 
applying partial summation on both sides of (5). 
This formulation can be called the integrated-
cointegrating regression model, where the 
vector of transformed trending regressors in 
(22), g S S, ,( , )t p t k t¢ ¢ ¢= , can be factorized as: 

0 S
g W gHA I

1
, 1, , 0

,1
,, , ,

(1/ )p n p k p tn
t n t n

k tnk p p n k k

n n
n n n

-­‐
+

-­‐

Ê ˆÊ ˆ˜Á ˜Á˜= =Á ˜Á˜ ˜Á ˜Á˜Á Ë ¯ˉË ¯ˉ
Γ

Γ
        (23) 

Where S S1 1
, , 1 , , ,

t
p t p n j p jn p n p tn

-­‐ -­‐
== Â =Γ τ Γ , 

S A S H, , , ,k t k p p t k t= + , with H H, ,(1/ )k tn k tn n= , 
and H , 1 ,

t
k t j k t== Â η , as it comes from 

Assumption 2.1. The OLS estimators of pα  
and kβ  from (22) are exactly invariant to the 
trend parameters in X ,k t , and partial summing 
before estimating the model performs the same 
role that the nonparametric correction used by 
FM-OLS to remove kuΔ  in (9), but still leaves 
the problem caused by the endogeneity of the 
regressors. The solution pointed by these 
authors only requires that X ,k t  be added as a 
regressor to the partial sum regression (22), that 
is 
 

S S X, , ,t p p t k k t k k t tS e¢ ¢ ¢= + + +α β γ             (24) 
 
With X ,t t k k te U ¢= -­‐ γ . Thus, (24) can be 

called the integrated modified (IM) 
cointegrating regression equation. When the 
integrated regressors do not contain any 
deterministic components (that is, d 0,k t k=  in 
(1), with A 0, , 1k p k p+=  under Assumption 2.1), 
which is the case considered in Vogelsang and 
Wagner (2011), then the augmented vector of 
regressors in (24), g S S X, , ,( , , )t p t k t k t¢ ¢ ¢ ¢= , can be 
factorized as 

    (25) 
Where g ,t n  is stochastically bounded, 

with: 
 

	
   0 0S S
g S 0 I 0 H W g

X 0 0 I

1
, 1, 1,, ,

1
, , 1 , , , ,

, ,, 1 , ,

(1/ )p n p k p kp t p tn

t k t k p k k k k k tn n t n

k t k tnk p k k k k

n n
n n

n

-­‐
+ +

+

+

Ê ˆÊ ˆ Ê ˆ˜Á˜ ˜Á Á˜Á˜ ˜Á Á˜˜ ˜ÁÁ Á˜= = =˜ ˜ÁÁ Á˜˜ ˜Á ˜Á Á˜ ˜Á ˜Á Á˜ ˜Á Á˜ÁË ¯ˉ Ë ¯ˉË ¯ˉ

Γ
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g
g g g B

B B

0

[ ], 0

( )( )
( ) ( ) ( )

( ) ( )

r
pp

r
nr n k k

k k

s dsr
r r s ds

r r

Ê ˆÚÊ ˆ ˜Á ˜˜ ÁÁ ˜˜ ÁÁ ˜˜ ÁÁfi = = Ú ˜˜ ÁÁ ˜˜ ÁÁ ˜˜̃ Á ˜ÁË ¯ˉ ˜ÁË ¯ˉ

τ

            (26) 

Where, as with (6), it is verified that 
g g1

0 ( ) ( ) 0r r dr¢Ú > . In the case of 
deterministically trending integrated regressors, 
that is with A 0, , 1k p k p+π , then the vector of 
regressors in (24), g S S X, , ,( , , )t p t k t k t¢ ¢ ¢ ¢= , is 
decomposed as 

 
0

g W g A S
A

1
1 1

, , , ,
1

, , ,

[(1/ ) ](1/ )
[(1/ ) ]

p

t n t n k p p n p tn

k p p n p tn

n n
n

+
-­‐

-­‐

Ê ˆ̃Á ˜Á ˜Á ˜= + Á ˜Á ˜Á ˜Á ˜ÁË ¯ˉ
Γ

Γ τ

 

 
Where 1

,(1/ ) p nn -­‐Γ  is O(n−
1/2) in the case 

of stochastic regressors containing at most a 
constant term, that is p = 0, and O(n1/2) for any 
p ≥ 1. Thus, at the expense to develop an 
appropriate treatment in the general case, we 
proceed under the assumption that A 0, , 1k p k p+=  
or, when A 0, , 1k p k p+π  that 

g W g1 1/2
, ( )t n t n O n-­‐= +  for p = 0. This 

formulation allows to write the scaled and 
normalized bias vector from OLS estimation of 
(24), which is called the integrated modified 
OLS estimator (IM-OLS), as 

      (27) 
 

Taking into account that the error term 
in the augmented integrated representation of 
the cointegrating regression equation (24) is 
given by: 

 
 

A A, , , , ,t t k k t k k p p t t k k p p te U z¢ ¢ ¢= -­‐ -­‐ = -­‐γ η γ τ γ τ  
Then A(1 ) (1 ) (1 ) 1

, , ,
v v v

t t k k p p n p tnn e n z n-­‐ -­‐ -­‐ -­‐ -­‐ -­‐ -­‐¢= -­‐ γ Γ τ , 
with (1 ) (1 ) (1/2 )

,
v v v

t t k k tnn z n U n-­‐ -­‐ -­‐ -­‐ -­‐ -­‐ ¢= -­‐ γ η , where 
under the cointegration assumption (with v = 
1/2) we get B1/2

[ ] .( ) ( ) ( )nr u k k u kn z B r r B r-­‐ ¢fi -­‐ =γ  
Whenever 1

k ku kk ku
-­‐= =γ γ Ω ω , where the second 

equality comes from the decomposition 
B1.( ) ( ) ( )u u k ku kk kB r B r r-­‐¢= + ω Ω , with 

1
. υ.( ) (1 φ) ( )u k kB r B r-­‐= -­‐ , 1

υ(1 φ)ku k
-­‐= -­‐ω ω , and 

B 0.[ ( ) ( )]k u k kE r B r = . This is also the weak limit 
of 1/2

[ ]nrn e-­‐  whenever A 0, , 1k p k p+=  or when p = 
0, where 1

0, 0, 1n tn
-­‐ = =Γ τ , while that when 

A 0, , 1k p k p+π  and p ≥ 1 we have that 

A1/2 1 1/2
, , , ( )pk k p p n p tnn O n-­‐ -­‐ -­‐ +¢ =γ Γ τ , and this term 

will dominate the behavior of 1/2
tn e-­‐ . On the 

other hand, under no cointegration (with v = 
−1/2), we have 3/2 3/2 1( )t t pn z n U O n-­‐ -­‐ -­‐= + , and 
this term will dominate the limiting behavior of 

3/2
tn e-­‐  unless p ≥ 2 when A 0, , 1k p k p+π . 

 
Under standard stationary cointegration, 

where 1φ υt t tu u -­‐= + , with 0 φ 1£ < , υt  as in 
Assumption 2.2 and v = 1/2 in equation (27), 
the consistency rates of the estimators of the 
trend parameters pα  and the cointegrating 
vector kβ  are the usual ones for the OLS 
estimator in (7). More importantly, what is 
especially remarkable is that the asymptotic 
distribution of the IM-OLS estimator in (27) is 
zero mean mixed Gaussian, but with a different 
conditional asymptotic variance compared to 
that of the FM-OLS estimator. From Theorem 2 
in Vogelsang and Wagner (2011), the limiting 
distribution under cointegration of the scaled 
and centered IM-OLS estimator of ( , , )p k k¢ ¢ ¢ ¢α β γ  
is given by 

	
  

W

g g
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(1 ) 1 1/2
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n
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   (28) 
 
Where the limiting random vector 0%Θ  

can also be written as 

      (29) 
 
With G g0( ) ( )rr s ds= Ú  in (29). The 

correction for endogeneity based on the 
inclusion of the original regressors in the 
integrated-cointegrating regression works 
because it is of same stochastic order that tU  
under cointegration and all the correlation is 
soaked up into the vector parameter 

1
ku kk ku

-­‐=γ Ω ω . On the other hand, under 
standard no cointegration when the 
cointegrating error term is a fixed unit root 
process, that is when 1 υt t tu u -­‐= +  with φ = 1 
and v takes the value v = −1/2, then we get 

        (30) 
With υ 0 υ( ) ( )rT r B s ds= Ú , that can be 

decomposed as 
Bυ 0 υ. 0 υ( ) ( ) ( ) ·∙r r

k k kT r B s ds s ds¢= Ú + Ú γ  
gυ. υ( ) ( )k k kT r r¢= + γ , with 1

υ υk kk k
-­‐=γ Ω ω , so that 

the limiting random vector 1%Θ  can also be 
written as 

( )
0

g g g
0

11 1 1
1

υ υ.
0 0

( ) ( ) ( ) ( )
p

k k

k

r r dr r T r dr
-­‐+Ê ˆ̃Á ˜Á ˜ ¢Á= +˜Á ˜Á ˜̃ÁË ¯ˉ

Ú Ú%Θ γ  

With g G G1 1
0 υ. 0 υ.( ) ( ) [ (1) ( )] ( )k kr T r dr r B r drÚ = Ú -­‐  

 
 
 
 
This result indicates that, besides the 

change in the rates of convergence of the 
estimates and in the Gaussian process driving 
the mixed Gaussian distribution, there is an 
additional asymptotic bias term affecting the 
IM-OLS estimator of the cointegrating vector 

kβ  in the case of endogenous regressors (
0υk kπω ). 
 
Next result establish the limiting 

distribution and properties of the IM-OLS 
estimator in equation (27) under the 
Assumption 2.3 concerning the behavior of the 
cointegrating error sequence tu . 
 

Proposition 3.1. Under Assumptions 2.2 
and 2.3 for the cointegrating error term, then 
for the IM-OLS estimator of ( , , )p k k¢ ¢ ¢ ¢α β γ  
computed from (24) we have that: 

 
(a) For v = 1/2, and tu  given in Assumption 
2.3(a)-(b), then 

         (31) 
With 0%Θ  as in (28)-(29), where 

υ 0 υ( ) ( )rT r B s ds= Ú  in the case of the Assumption 
2.3(a), and υ 1,α( ) ( )T r V r=  in case of the 
Assumption 2.3(b). Also, in the cases of the 
Assumption 2.3(c)-(d) we have that ( )n pO n=%Θ , 
and ( )n pO n=%Θ , respectively. 

 
(b) For v = −1/2, and tu  generated as in 
Assumption 2.3(c), then 
 

            (32) 
Where , 0 , υ 0 0 υ,( ) ( ) ω ξ ( )r r cs r

u c u c cT r M s ds e ds J s ds= Ú = Ú + Ú , 
with 0 (1/ )(1 )r cs rce ds c eÚ = -­‐ -­‐ . 
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(c) For v = 0, with tu  generated as in 
Assumption 2.3(d), and standard integrated 
regressors with V 0, ,kq t k q= , then 

      (33) 
 
Where the limiting random process 

( )qT r  given by B V0 ,0( ) ( ) ( ) Δr
q q q qT r s d s r¢= Ú + . 

 
Proof. These results simply follows 

from Lemma 2.1, the continuous mapping 
theorem, with 

1/2 1/2
[ ] [ ] ,[ ] υ. υ( ) λ ( )nr nr k k nr n kn e n U B r T r-­‐ -­‐ ¢= -­‐ fi +γ η

, in the cases of the Assumption 2.3(a)-(b), and 
the same development as in the proof of 
Theorem 2 in Vogelsang and Wagner (2011). 

 
Remark 3.1. From part (a) of 

Proposition 3.1, equation (31), in the case of the 
local-to-unity MA root in Assumption 2.3(a), 
we get gυ υ. υ( ) ( ) ( )k k kT r T r r¢= + γ , where 

υ. 0 υ.( ) ( )r
k kT r B s ds= Ú , 1

υ υk kk k
-­‐=γ Ω ω , and g ( )k r  is 

given in equation (26). Then, it is immediate to 
rewrite equation (31) as 
 

 
 
Where the second term above 

determines an asymptotic bias component in the 
limiting distribution, while that the last 
multiplicative term can also be written as 
g G G1 1

0 υ. 0 υ.( ) ( ) [ (1) ( )] ( )k kr T r dr r B r drÚ = Ú -­‐ , as in 
equation (39). As can be seen from equations 
(38) and (40), for any λ > 0, this limiting 
distribution is a mixture of the corresponding 
ones under standard cointegration and no 
cointegration given above.  

Also, denoting by 

g(1 ) (1 )
, ,( )v v
t p t t n nn e k n e-­‐ -­‐ -­‐ -­‐ ¢= -­‐ %% Θ  the sequence of 

scaled OLS residuals (IM-OLS residuals) from 
estimating the IM cointegrating regression in 
(34), then we get the following limiting 
distribution 

               (34) 
With 
g g g0 1 1 1

0 0 υ.( ( ) ( ) ) ( ) ( )T ks s ds s T s ds-­‐¢= Ú Ú%Θ , so that it 
is free of the effect of the additive limiting bias 
component while that the two additive 
components in the last line of (35) have the 
same structure and are not mutually 
independent. Additionally, from part (b) of the 
Proposition 3.1, we have that the last term in 
equation (32) can be decomposed as 

 

 
 
So that the IM-OLS estimators has the 

usual divergence rates as under standard no 
cointegration, but with limiting distribution 
given by 

 

 
Where the first term can be interpreted 

as a stochastic bias-type component, while that 
the second one resembles the limiting 
distribution under standard no cointegration, 
with υ( )B r  replaced by υ, ( )cJ r . 

 
Remark 3.2. The condition imposed on 

the integrated regressors in the framework of 
stochastic cointegration in part(c) is to simplify 
the calculations needed to obtain the limiting 
distribution and to preserve a similar structure 
that in the standard case. Thus, given that we 
can write 
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w V h1/2 1/2 1/2 1/2
, , , , , ,k t k m m t k t kq t q tn n n n-­‐ -­‐ -­‐ -­‐= + +η Π ε

, then with V 0, ,kq t k q=  we have that 

 
with B B,( ) ( )k k m ms s= Π  in g( )r . 
 

These results makes clear that each of 
the alternatives considered will produce a 
different effect on the corresponding limiting 
distribution and, consequently, on the stochastic 
properties and behavior not only of the IM-OLS 
estimators but also on any other statistic based 
on it. However, from these limiting results it is 
not easy to deduce the impact on the precision 
of these estimates. Thus, in order to complete 
these findings we also present the results of a 
small simulation experiment designed to 
evaluate the finite sample estimation error of 
this estimator through the computation of the 
bias and RMSE for each of this alternatives 
describing the stochastic properties of the error 
term in a cointegrating regression equation. 

3 Finite sample results 
 
To evaluate this finite sample properties in 
parts (a), (b) in Proposition 3.1, we use the 
same model as in Vogelsang and Wagner 
(2011)for k = 2, with , , 1 ,k t k t k t-­‐= +η η ε , where 

C, ,( )k t k k tL=ε e , C I C, 1( )k k k kL L= + , and 
C 1 11 22( , )k diag c c= , with c11 = c22 = 0.5, while 
that for the error term tu  we use 

1 ,ρ υt t t k k tu u -­‐ ¢= + + γ e , 
 
With 1 2(γ ,γ )k ¢=γ  controlling the 

degree of endogeneity of the regressors, and the 
iid sequence ,(υ , )t k t¢ ¢e  that follows a 
multivariate standard normal. Particularly, we 
set (1,1)k ¢=β , and γ = γ1 = γ2 = 0, 0.3.  

 
The results for this case are shown in 

Table 1 of Appendix C. On the other hand, to 
evaluate the performance of the IM-OLS 
estimator under heteroskedastic cointegration 
we use the same model as in Harris et.al. 
(2002), with 

w h0, 0,01
2, 2,

11,1, 11 1,

η ε 0 0π 0
0η π 0 ε

t tt
t t

tt t t

Y
vX

Ê ˆ Ê ˆ Ê ˆÊ ˆ Ê ˆ˜ ˜ ˜˜ ˜Á Á ÁÁ Á= = + +˜ ˜ ˜˜ ˜Á Á ÁÁ Á˜ ˜ ˜˜ ˜Á Á˜ ˜ ÁÁ ÁË ¯ˉ Ë ¯ˉ Ë ¯ˉË ¯ˉ Ë ¯ˉ
 

 
Where , , 1 ,ε φε , 0,1i t i t i te i-­‐= + = , 

11, 11, 1 2,φ λt t tv v e-­‐= + , 1, 3,Δ t th e= , and 

1, 4,Δ t tw e= , with 11, 1, 0, 1,β ε βεt t t t tu v h= -­‐ + -­‐ , 
for the cointegrating error term, where 

01 11β π /π=  under stochastic cointegration. 
Also, for the noise components we assume that 

0 R0, 4, 5 5 5,5( ,..., ) ( , )t t te e N¢= :e , where 
R5,5 , , 0,1,...,4(ρ )i j i j== , with , , ,ρ [ ]i j i t j tE e e= . We 
set the values 0,3 1,3ρ ρ 0.5= = , 0,1ρ 0.25= , 

0,2 1,2 ,4ρ ρ ρ 0i= = = , i = 0, 1, 2, 3, and 

2,3ρ 0,0.5=  where this last correlation 
coefficient measures the degree of endogeneity 
of regressors. For the AIV estimator we set 

1/2
, [ ], 1,2,3i n ik c n i= = , with 1 0.75c = , 

2 1.00c = , 3 1.25c =  for the lag order. In both 
cases we evaluate the performance of the 
integrated-OLS (I-OLS) and the IM-OLS 
estimators computed from (32) and (33), 
respectively. 

 
From Table 1, we can see that the IM-

OLS estimator always outperforms the standard 
OLS results in terms of finite sample bias, but 
with a higher RMSE, for increasing values of λ 
in case 2.3(a). Very similar results are obtained 
in the case of the infinite-variance mixture 
process in 2.3(b), even under exogeneity of the 
regressor. In the last case of highly persistent 
but stationary equilibrium errors in finite 
samples,  

 
Table 1.C, both estimators are biased 
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with a slightly lower bias for the IM-OLS 
estimator. When u0 = Op(1), and particularly 
u0= 0, the results are absolutely comparable to 
these in terms of the finite sample bias, with a 
slight, but systematic, reduction of the RMSE 
due to the lower degree of persistence. 

 
 
From Table 2, in the case of the finite 

sample performance of the AIV and IM-OLS 
estimators, the IM-OLS estimator performs as 
well as the AIV estimator in almost all the 
situations, except under endogeneity of the 
regressor and high correlation in 11,tv , where the 
AIV estimator, specially designed to taking into 
account for this effect, slightly outperforms the 
new estimator considered here. 
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Appendixes 
 
A. Proof of Lemma 2.1(a). Using the 
representation Δ ( )υt n tu c L= , then we can write 

0 1( ) υt
t n j ju u c L == + Â . Making use of the 

Beveridge-Nelson (BN) decomposition of the 
first-order lag polynomial ( )nc L  with 

1θ 1 λn-­‐= -­‐ , we have that ( ) 1 θnc L L= -­‐  
11 θ θ( 1) λ θ( 1)L n L-­‐= -­‐ -­‐ -­‐ = -­‐ -­‐ , which gives 

1/2 1/2
1 0 0λ ( υ ) θυ θυt

t j j tu n n u-­‐ -­‐
== Â + + -­‐ . 

Then, the scaled partial sum of ut, 
1/2 1/2 [ ]

[ ] 1
nr

nr t tn U n u-­‐ -­‐
== Â , weakly converges to 

λ( )U r  by direct application of Assumption 2.2. 

B. Proof of Lemma 2.1(b). Making use of the 
decomposition of tu  as in (11) we trivially have 
that 

 
 

Where for the first term we have the 
same result as in (9) using υt tu = , while that 
for the second term we have that it can be 
written as 

 
 
As in Lemma 1 in Paulauskas and 

Rachev (1998). Then, the desired result follows 
by the joint convergence of each of these 
functionals to their corresponding weak limits. 
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Table 1.B. Finite sample bias and RMSE of the OLS, I-OLS and IM-OLS estimators of β1, n = 100 
Case (B) Local-to-finite variance process, α = 1.5 

   OLS I-OLS IM-OLS  OLS I-OLS IM-OLS 
  λ Panel A. Bias  Panel B. RMSE 
ρ = 0.0 γ = 0.0 0.10 0.00003 −0.00097 −0.00088  0.0300 0.0416 0.0437 
  0.20 −0.00060 −0.00081 −0.00057  0.0382 0.0554 0.0484 
  0.30 0.00028 −0.00046 −0.00020  0.0720 0.0604 0.0559 
  0.40 0.00123 0.00052 −0.00010  0.0483 0.0750 0.0738 
  0.50 0.00078 0.00208 0.00199  0.0468 0.0742 0.0786 
  1.00 0.00061 0.00070 −0.00048  0.1029 0.2368 0.2028 
 γ = 0.3 0.10 0.01164 0.00151 −0.00027  0.0345 0.0485 0.0414 
  0.20 0.01181 0.00066 0.00019  0.0415 0.0605 0.0597 
  0.30 0.01185 0.00167 0.00108  0.0485 0.0781 0.0649 
  0.40 0.01279 0.00276 0.00133  0.0486 0.0787 0.0721 
  0.50 0.01209 0.00195 0.00114  0.0510 0.0748 0.0691 
  1.00 0.01163 0.00059 0.00031  0.1074 0.1918 0.1016 
ρ = 0.3 γ = 0.0 0.10 0.00066 0.00111 0.00062  0.0371 0.0565 0.0547 
  0.20 0.00015 0.00015 0.00073  0.0444 0.1152 0.0800 
  0.30 0.00040 0.00010 0.00041  0.0422 0.0667 0.0654 
  0.40 −0.00026 −0.00029 0.00048  0.0543 0.0824 0.0769 
  0.50 0.00143 −0.00048 −0.00152  0.1325 0.1133 0.0898 
  1.00 −0.00328 −0.00008 −0.00129  0.1567 0.1739 0.1569 
 γ = 0.3 0.10 0.02008 0.00221 0.00127  0.0493 0.0662 0.0553 
  0.20 0.02124 0.00290 0.00211  0.1047 0.0676 0.0708 
  0.30 0.01969 0.00227 0.00109  0.0623 0.0766 0.0700 
  0.40 0.02130 0.00345 −0.00028  0.0809 0.1068 0.1127 
  0.50 0.01973 0.00035 −0.00030  0.0669 0.1338 0.1147 
  1.00 0.02038 0.00225 0.00048  0.0979 0.1761 0.1699 
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C. Simulation results 
 

 
Table 1 
 
 
 
Table 1.b 

 
 

 

 
 
 

Table 1.A. Finite sample bias and RMSE of the OLS, I-OLS and IM-OLS estimators of β1, n = 100 
Case (A) MA unit root under n local-to-unity asymptotics 

   OLS I-OLS IM-OLS  OLS I-OLS IM-OLS 
  λ Panel A. Bias  Panel B. RMSE 
ρ = 0.0 γ = 0.0 1 −0.00011 −0.00003 0.00013  0.0267 0.0398 0.0378 
  2 0.00051 0.00039 0.00015  0.0267 0.0414 0.0395 
  3 −0.00091 −0.00143 −0.00065  0.0286 0.0461 0.0429 
  4 0.00034 0.00041 0.00115  0.0301 0.0498 0.0471 
  5 0.00011 0.00040 0.00018  0.0324 0.0537 0.0507 
  10 −0.00010 −0.00079 −0.00013  0.0455 0.0861 0.0763 
 γ = 0.3 1 0.01477 0.00378 0.00274  0.0342 0.0435 0.0360 
  2 0.01778 0.00754 0.00618  0.0361 0.0472 0.0391 
  3 0.02092 0.01064 0.00925  0.0388 0.0518 0.0438 
  4 0.02340 0.01364 0.01236  0.0418 0.0555 0.0471 
  5 0.02652 0.01721 0.01454  0.0448 0.0607 0.0516 
  10 0.04198 0.03247 0.03146  0.0641 0.0952 0.0829 
ρ = 0.3 γ = 0.0 1 −0.00085 −0.00021 −0.00073  0.0364 0.0545 0.0531 
  2 0.00019 −0.00015 −0.00011  0.0374 0.0565 0.0550 
  3 0.00015 0.00076 0.00046  0.0400 0.0627 0.0597 
  4 0.00043 −0.00011 −0.00070  0.0417 0.0711 0.0668 
  5 0.00165 0.00206 0.00213  0.0454 0.0791 0.0711 
  10 0.00073 0.00136 0.00112  0.0661 0.1267 0.1128 
 γ = 0.3 1 0.02299 0.00570 0.00458  0.0490 0.0643 0.0527 
  2 0.02818 0.01123 0.01035  0.0523 0.0676 0.0561 
  3 0.03264 0.01611 0.01445  0.0571 0.0720 0.0620 
  4 0.03581 0.01957 0.01907  0.0591 0.0773 0.0690 
  5 0.04081 0.02569 0.02416  0.0647 0.0872 0.0754 
  10 0.06063 0.04727 0.04458  0.0914 0.1369 0.1187 

 

Table 1.C. Finite sample bias and RMSE of the OLS, I-OLS and IM-OLS estimators of β1, n = 100 
Case (C) AR local-to-unity root and high persistence, u0 = Op(n−1/2) 

   OLS I-OLS IM-OLS  OLS I-OLS IM-OLS 
  c Panel A. Bias  Panel B. RMSE 
ρ = 0.0 γ = 0.0 1 0.00516 0.00569 −0.00076  0.3380 0.6761 0.5863 
  2 0.00309 0.00344 0.00215  0.3024 0.6180 0.5506 
  3 −0.00206 −0.00303 0.00066  0.2728 0.5461 0.4807 
  4 0.00114 0.00237 0.00222  0.2475 0.4877 0.4356 
  5 −0.00300 −0.01230 −0.00912  0.2248 0.4439 0.3969 
  10 −0.00243 0.00284 0.00035  0.1600 0.3015 0.2751 
 γ = 0.3 1 0.27185 0.26264 0.26708  0.4384 0.7736 0.6746 
  2 0.23169 0.21143 0.21699  0.3936 0.6688 0.5959 
  3 0.21151 0.18603 0.19207  0.3628 0.6140 0.5324 
  4 0.18963 0.15766 0.16007  0.3292 0.5587 0.4803 
  5 0.17236 0.13321 0.13827  0.3090 0.5140 0.4504 
  10 0.12102 0.07778 0.08145  0.2277 0.3582 0.3063 
ρ = 0.3 γ = 0.0 1 0.00359 0.00737 0.00973  0.4689 0.9324 0.8213 
  2 0.00263 0.01379 0.00568  0.4163 0.8412 0.7467 
  3 0.00322 0.00499 0.00176  0.3663 0.7306 0.6457 
  4 0.00552 0.02035 0.01937  0.3386 0.6801 0.6087 
  5 0.01248 0.01921 0.01723  0.3126 0.6258 0.5611 
  10 0.00474 0.00732 0.00815  0.2264 0.4268 0.3956 
 γ = 0.3 1 0.36510 0.35872 0.36815  0.5989 0.9968 0.8914 
  2 0.34023 0.32872 0.33163  0.5510 0.9195 0.8238 
  3 0.28632 0.25705 0.26476  0.5003 0.8318 0.7471 
  4 0.26499 0.21921 0.23548  0.4589 0.7440 0.6668 
  5 0.24230 0.18946 0.20133  0.4310 0.7236 0.6279 
  10 0.17118 0.10890 0.12016  0.3174 0.4974 0.4328 

 

Table 1.B. Finite sample bias and RMSE of the OLS, I-OLS and IM-OLS estimators of β1, n = 100 
Case (B) Local-to-finite variance process, α = 1.0 

   OLS I-OLS IM-OLS  OLS I-OLS IM-OLS 
  λ Panel A. Bias  Panel B. RMSE 
ρ = 0.0 γ = 0.0 0.10 0.00098 0.00094 0.00058  0.0747 0.0980 0.0905 
  0.20 −0.00531 −0.00733 −0.00787  0.3362 0.4272 0.4150 
  0.30 0.01171 0.03165 0.03437  0.9818 1.4617 1.5600 
  0.40 −0.00772 −0.00705 −0.00319  0.5296 0.7593 0.7488 
  0.50 0.00753 0.00571 −0.00213  0.3902 0.7871 0.7316 
  1.00 −0.04686 0.09637 0.03942  2.0277 11.0871 6.0260 
 γ = 0.3 0.10 0.00918 −0.00323 −0.00672  0.1062 0.1526 0.2891 
  0.20 0.00430 −0.00018 −0.00694  0.7481 0.9946 1.0094 
  0.30 0.02252 0.03624 −0.01807  0.5379 2.4175 1.2893 
  0.40 0.03819 0.04805 0.04222  1.2524 2.8126 2.5005 
  0.50 0.03405 0.00279 −0.00002  2.6439 0.7495 1.1833 
  1.00 −0.01565 0.01585 0.02489  2.2374 1.6647 2.2443 
ρ = 0.3 γ = 0.0 0.10 −0.01296 −0.01109 −0.00875  0.6542 0.5336 0.5114 
  0.20 0.00255 −0.00467 −0.00111  0.1494 0.5570 0.3301 
  0.30 0.00157 0.00449 0.00829  0.2629 0.4152 0.4414 
  0.40 0.00762 0.00953 0.01343  0.5200 0.5780 0.6077 
  0.50 0.07859 0.08516 0.10830  6.1917 5.5190 8.0634 
  1.00 0.06707 0.19270 0.23362  4.2177 14.1266 16.7206 
 γ = 0.3 0.10 0.02081 0.01041 0.00263  0.2011 0.6788 0.4197 
  0.20 0.01469 −0.00373 −0.00577  0.2230 0.3045 0.3668 
  0.30 0.01852 0.00066 0.00184  0.3395 0.4656 0.4784 
  0.40 0.00966 −0.01392 −0.00435  0.5061 0.7540 0.3778 
  0.50 0.02908 0.02655 0.02374  0.5599 0.9811 1.0204 
  1.00 0.02143 0.00733 −0.00350  0.8300 0.9785 1.0673 
 

Table 1.c 
	
  



 
Article                                                                                                                 ECORFAN Journal 
OPTIMIZATION                                                                              December 2013 Vol.4 No.11 1158-1179               
 
	
  

	
  

1179 

ISSN-Print: 2007-1582- ISSN-On line: 2007-3682 
ECORFAN® All rights reserved. 
	
  

Afonso J. Asymptotic and finite-sample properties of a 
new simple estimator of cointegrating regressions under 
near cointegration. 	
  

 
Table 2 
 
 

Table 1.d 
	
  


