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RESUMEN  

Frege no se dio cuenta de que el trabajo semántico de los cuantificadores inclu-
ye expresar, debido a las propias dependencias formales entre ellos, dependencias 
reales entre variables. Este error no corregido condujo a una lógica de primer orden 
deficiente, a paradojas en la teoría de conjuntos y a una compresión inadecuada de la 
lógica de orden superior. Un error que comenzó a corregirse tan solo por medio de la 
introducción de la lógica IF. Esta reforma conduce a una lógica de primer orden más 
rica, a una reducción de la lógica de orden superior a un nivel de primer orden, a un 
rechazo de las habituales axiomatizaciones de primer orden de la teoría de conjuntos, 
a un nuevo concepto de probabilidad y a una reevaluación de los resultados de incom-
pletitud, indefinibilidad e indemostrabilidad. 
 
PALABRAS CLAVE: lógica IF, paradojas de teoría de conjuntos, dependencia de cuan-
tificadores, probabilidad. 
 
ABSTRACT  

Frege did not realize that the semantical job of quantifiers includes expressing, 
by their own formal dependencies on each other, actual dependencies between varia-
bles. This uncorrected mistake led to flawed first-order logic, set-theoretical paradox-
es and inadequate grasp of higher-order logic. It began to be corrected only through 
the introduction of IF logic. This reform leads to a richer first-order logic, to a reduc-
tion of higher-order logic to first-order level, to a rejection of the usual first-order axi-
omatizations of set theory, to a new concept of probability, and to a re-evaluation of 
the incompleteness, indefinability, and unprovability results. 
 
KEYWORDS: Independence Friendly Logic, Paradoxes of Set Theory, Quantifier de-
pendence, Probability. 
 
 

I. THE SETTING OF A SCIENTIFIC REVOLUTION 
 

The purpose of this report is to bring to my readers’ attention the ex-
traordinary developments that are going on in the foundations of mathemati-
cal sciences and of scientific philosophy. Ever since Thomas Kuhn’s 1962 
book, The Structure of Scientific Revolutions, the notion of a scientific revo-
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lution has been used and discussed. Many thinkers, the present writer includ-
ed, have been skeptical and have found the concepts Kuhn uses too vague to 
illuminate the nature of major shifts in the developments of actual science. 
Kuhn himself gave up the key term “paradigm” that he originally used. 

No attempt is made in this report to discuss Kuhn’s ideas except by 
pointing out that they have turned out to be uncannily timely. Believers and 
skeptics alike are now finding themselves in the midst of an unmistakable 
revolution. The scientific community in philosophy and in the mathematical 
sciences is facing an unexpected situation. Most mathematicians and most 
philosophers are nevertheless unaware of what is going on. 

This erupting crisis is best viewed from a historical perspective. In 1800, 
mathematics consisted, broadly speaking, of the theory of numbers, the theory 
of numerical functions (analysis), and of geometry. It has since become an ab-
stract science of structures of any kind. The main steps in this development in-
clude prominently the introduction of symbolic logic and of set theory as well 
as the use of the axiomatic method. Modern symbolic logic goes back to 
Gottlob Frege (1848-1925). Set theory was founded by Georg Cantor (1845-
1918) and the most important defender of axiomatization in foundational stud-
ies was the mathematician David Hilbert (1862-1943). The revolution dis-
cussed here springs from the realization that all these three paradigmatic ideas 
have been used and developed in an inadequate way, with disastrous results. 

This certainly is especially dramatic in the case of the most fundamental 
of the three, our basic logic. The central part of logic is the theory of the 
quantifiers “every” and “some”. This theory was first systematized and for-
malized by Frege in the form of the first-order part of his overall logic. Later 
logicians have mostly followed the main features of Frege’s approach. Its 
most common form is the well-known received first-order logic (RFOL). 
This logic comprehends much, but not all, of the modes of reasoning used by 
practicing mathematicians. The rest Frege proposed to capture by means of 
the higher-order part of his logic. Others have tried to capture this part of the 
reasoning in mathematics in terms of set theory. 

Independently of Frege, quantificational reasoning played a crucial role 
in the nineteenth-century development of a rigorous calculus and in its arith-
metization. Mathematicians are familiar with this informal logic of quantifi-
ers in the form of the “epsilon-delta” technique of calculus texts. It has been 
assumed by practically everybody that this quantificational reasoning can be 
captured in Frege’s and his followers’ symbolic logic. 
 
 

II. WHICH MATHEMATICAL LOGIC IS THE LOGIC OF MATHEMATICS? 
 

This belief has been shown to be mistaken. In fact, Frege failed to un-
derstand adequately the unformalized logic of quantifiers that his fellow 
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mathematicians like Karl Weierstrass (1815-1897) were using. This is spelled 
out in my 2012 paper, “Which Mathematical Logic is the Logic of Mathe-
matics?” [Hintikka (2012a)]. As a consequence, Frege’s own logic of quanti-
fiers is not incorrect, but it is unnecessarily weak. For a historically significant 
example, most of the so-called uniformity concepts (uniform convergence, uni-
form differentiability, etc.) that are important in analysis cannot be expressed in 
Frege’s Begriffsschrift [Frege (1879)] or in the RFOL. Amazingly, there does 
not seem to be any account of the meaning of uniformity concepts in the litera-
ture of logic, and even the best mathematicians have made mistakes when 
trying to spell out their meaning in logical terms.  

As a consequence, the vast majority of logicians and philosophers (as 
well as those mathematicians who use explicitly formulated logic) have for 
well over a century been using unnecessarily weak logic, meaning weak in 
representative power, not necessarily weak deductively. 

Of course, using too weak a logic is not per se a mistake. However, you 
are liable to philosophical mistakes if you think that your weak logic is the 
whole story. Moreover, Frege’s real mistake is a far deeper one than a failure 
to locate fully the principles of logical inference. The deeper mistake is a 
failure to understand the semantical nature of quantifiers. Frege assumed that 
the semantical job description of quantifiers is exhausted by their ranging 
over a class of values. For him, quantifiers were higher-order predicates ex-
pressing the non-emptiness or the exceptionlessness of lower-order predi-
cates. For other thinkers, the same fallacious idea has taken other forms, such 
as constructing quantified sentences as long disjunctions or conjunctions or 
the theory of rigid designation. 

In reality, quantifiers have another, hugely important semantical func-
tion. By their formal (syntactical) dependencies on each other, they express 
the dependence relations between their respective variables. 

In mathematicians’ pre-symbolic jargon, such dependencies are handled 
by constructing the relevant variables, not as being “bound” to a quantifier, 
but as slots for a choice term, as in mathematical textbooks’ “epsilon-delta” 
technique for defining the basic concepts of calculus, say the differentiability 
of f x at x. “For any ε, however small, one can choose δ such that…” What 
separates uniform concepts from pointwise ones is that in their case “choice” 
is independent of x (for some specified interval x1 < x < x2). Semantically, 
this means that the variable for δ is independent of x in the intended sense. 

Such independencies cannot in general be expressed by means of 
RFOL, and remained uninvestigated in the mainstream logic tradition. At the 
same time, mathematicians, even though they handled uniformity relations in 
practice, never recognized their logical nature. 

In the light of hindsight we can now see that the logic that mathemati-
cians had already been using before symbolic logic was explicitly formulated 
only around 1990 largely by Jaakko Hintikka and Gabriel Sandu under the ti-
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tle “independence-friendly logic” (IF logic). Strictly speaking, what is known 
and studied under this title is only a partial liberalization of dependence rela-
tions, crucially the possibility of freeing existential quantifiers from a de-
pendence on universal quantifiers. Various further modes of liberalization are 
nevertheless possible. 

This shows vividly the systematic and historical status of IF logic. It is 
neither a further development of RFO logic nor an “alternative logic”. It re-
places RFO logic by eliminating some of its limitations. It should not carry 
any particular epithet. It would be more accurate to rename instead RFOL 
and call it “dependence handicapped” or “independence challenged” logic. 
 
 

III. THE INCONCLUSIVENESS OF INCOMPLETENESS RESULTS 
 

This thumbnail history suffices to show that the current conceptions 
concerning the philosophical and other general theoretical significance of 
contemporary symbolic logic are inaccurate. Its great achievement in the 20th 
century are generally taken to include the famous incompleteness and other 
impossibility results by Kurt Gödel (1906-1978), Alfred Tarski (1901-1983), 
and Paul Cohen (1934-2007). On a closer scrutiny, these famous results turn 
out to be as much symptoms of the weakness of the logic these ingenious 
gentlemen were using as indications of the limits of logic, mathematics, axi-
omatic method or human reason in general. For instance, Tarski proved that 
the concept of truth cannot be defined for a first-order language in the same 
language. This impossibility holds only if one is using RFO logic. In contrast, 
such truth definitions are possible for an IF first-order language. 

Gödel’s so-called second incompleteness theory says that the consisten-
cy of elementary arithmetic cannot be proved by means of the resources of 
elementary arithmetic itself. Again, such a proof is possible if IF logic is 
used, as is shown in [Hintikka and Karakadilar (2006)].  

Gödel’s first incompleteness theorem will be discussed later in this re-
port, and so will be the reasons why Gödel’s and Cohen’s results concerning 
set theory have no relevance to the question whether the continuum hypothe-
sis or any other set theoretical theorem holds. Whatever general theoretical 
significance symbolic logic has, it does not lie in such impossibility results, 
except perhaps for their role as warning signs about mathematical and logical 
misconceptions. 

In light of this overall development of logic, the entire twentieth-
century analytic philosophy is beginning to look different. One major aspect 
of this development was the gradual decline of logical positivism. There does 
not seem to be any particular mystery about it, even if we restrict ourselves to 
the internal rather than external reasons. For what did the logical positivists 
promise? In effect, to solve all the problems in the foundations of science and 
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of mathematics by studying the logical syntax of the language of science and 
of mathematics. In spite of all the solid work they did, they cannot be said to 
have succeeded. But as I have tried to dramatize history, imagine that Carnap 
and his friends had definitively solved the foundational problems of science 
and mathematics. Where would we be then? I dare say, we would all be logi-
cal empiricists. 

The reason for the failure of the logical positivists is usually taken to be 
the inadequacy of their logical and formal apparatus. Yes, we can now see 
that the logic of logical positivists was inadequate, but not because of any 
general limitations of logical analysis, but because the particular logic they 
were using was too weak. If this is the case, what philosophers should have 
done was not just to give up the Vienna Circle’s logical methodology, but to 
build a better one. 
 
 

IV. LOGIC OF WHAT ORDER? 
 

But the implications of Frege’s mistake were not restricted to general 
philosophical issues. It affected the prospects of his projects in logic and the 
foundation of the mathematics. The expressive poverty of Frege’s quantifica-
tion theory was not architectonic, but affected his theory and practice of logic 
in a variety of ways. For his theory of number, Frege needed the concept of the 
equinumerosity (equicardinality) of the extensions of two predicates A (x) and 
B (y). By means of IF logic, this equicardinality can be expressed as follows: 
 

(1) (� x) (� z) (� y /� z) (� u /� x) ((A (x) � B(y)) & (B (z) � A(u))& 
(( y = z) � (x = u))). 

 
In a Skolem form, it equals 
 

(2) (� f) (� g) ((� x) (� z) (A(x) � B (f (x)) & (B (z) � A(g(z))) & ((f (x) = 
z) � (x = g (z))). 

 
The last equivalence in (2) shows that f and g are inverse functions, and (1) 
says therefore that the sets �x : A(x)� and �y : B (y)� can be mapped on each 
other one-one.  

The independence-indicating slash / is not eliminable from (1). Hence 
equicardinality is not expressible in RFOL languages, including the language 
of the usual first order set theories. 

Frege’s failure to recognize the dependence indicating task of the quan-
tifiers encouraged another oversight, which may very well have been the 
most widespread one. If all that matters in a quantifier was ranging over a 
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class of values, first-order and higher-order quantification could be expected 
to behave in the same way. For on this view of the logic of quantifiers, all 
quantifiers do ultimately the same job of ranging over some domain. 

But when quantifiers are thought of as proxies of choice functions, a 
conceptual difference opens between first-order ones, for to choose a set or 
other second-order entity is conceptually different from choosing a particular 
object. Hence, the logical laws of higher-order quantifiers are not exhausted 
by the laws of first-order logic. You simply cannot apply traditional first-
order logic in the study of sets or other kinds of higher-order entities and 
merely stipulate that one’s (first-order) quantifiers range over such entities. 

Yet this is precisely what logicians have repeatedly done. The main as-
sumption of Frege’s higher-order version of set theory, Frege’s Basic Law V 
says essentially only that one can deal with sets (extension of concepts) by 
means of first-order quantifiers. It is this assumption that led him into paradoxes. 

Likewise, the great majority of work in set theory has used as its logic 
RFO logic. This work is therefore of dubious value (see sec. VI below). 

On Frege’s construal of quantifiers, the difference between first-order and 
second-order quantifiers can be in the metaphysical and logical status of their 
respective values: particulars versus sets or other higher-order entities. The 
quantifiers themselves would presumably have to behave in the same way. 

In reality, as soon as the independencies examined in IF logic are rec-
ognized, it can be seen that the logical laws governing first- and second-order 
logic are intertwined. Hence to use first-order quantifiers in the role of sec-
ond-order ones smuggles in a wealth of assumptions and accordingly cannot 
produce a presuppositionless analysis of higher-order quantification. 

A striking example of this entanglement is the so-called axiom of 
choice. It is typically considered as one of the modes of reasoning that are vi-
tal in classical mathematics but not captured by RFO logic. It is typically 
formulated as a set-theoretical axiom, consequently a higher-order assump-
tion. This is again a self-inflicted impossibility, due to logicians’ custom of 
formulating rules of logical inference by inference to the governing (“out-
most”) quantifier or other logical operator. As soon as we allow one of the 
most fundamental rules, the rule of existential instantiation, to operate on 
sub-formulas of larger formulas, the “axiom” of choice becomes a purely log-
ical and even first-order principle. 

The same conceptual entanglement of the two kinds of quantifiers is 
exemplified by the following pair of sentences, one first-order and the other 
second-order: 
 

(3) (� f) S [–– A (f(t) ––] 
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(4) (� x) (� z) (� y /(� z)) (� u /(� x)) (((x = z) � (y = u)) & S [– (� w) 
((x = w) � (A (y)) –]). 

 
In (3) and (4), S is a formula in which f occurs only in atomic subformulas 
A(f(t)) with identities of the form Ai (f(tj)). Clearly in (4) y is a function of x 
and u a function of z. The equivalence clause of (4) shows that they are the 
same function. This enables us to see that (3) and (4) are logically equivalent. 
In other words, we have in (4) a translation of a second-order formula (3) into 
IF first-order language. 

This translation can be extended easily to all sigma one-one formulas of 
a second-order language. The translation depends essentially on the use of IF 
logic. By means of quantifier independencies that go beyond the usual basic 
IF logic, we can express also contradictory negation of any RFO or IF formula. 
These two results put together enable us to translate second-order logic into a 
sufficiently enriched IF logic. In principle, the entire second-order logic can for 
foundational purposes be reduced to an enriched first-order IF logic. 

The details of this reduction are presented in [Hintikka and Symons 
(forthcoming)]. A tentative formulation of the reduction is found in my pa-
per, “A Proof of Nominalism” [Hintikka (2009)]. It needs a further explana-
tion, however. The relation obviously works if we can translate into the IF 
first-order notation both sigma one-one formulas and also contradictory nega-
tions. The possibility of the former was just explained informally. However, 
it might seem impossible to define contradictory negation �S in terms of IF 
logic. Such a negation says game-theoretically that for any strategy by the 
“verifier” in a semantical game, there is a counterstrategy that prevents the 
verifier from winning. This involves in effect quantification over strategies, 
and hence second-order quantifiers. 

The surprising way out is the insight that to allow the verifier to use an 
arbitrary (“any”) strategy, amounts to making such player’s moves complete-
ly free from restrictions in the sense of absence of all slashed independence 
requirements.  

Such a liberalization is possible in an extended form of IF logic in 
which further independencies between quantifiers are allowed. Thus over-
coming Frege’s mistake opens wide new theoretical vistas. It turns out that at 
least for foundational purposes, higher-order logics as well as set theory are 
dispensable. For instance, we need not ask what the existence of higher-order 
entities means and how it can be established as a problem separate from ex-
istence simpliciter. A purely nominalistic theory of mathematics is in princi-
ple possible in the sense of Hilbert’s dream that all mathematical reasoning 
can be understood in terms of structures of particular objects. 
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V. REVOLUTION IN PROBABILITY 
 

The revolution described here is not restricted to pure logic and pure 
mathematics, but affects their applied uses as well. A fascinating perspective 
into those uses is offered by no lesser a figure than John von Neumann 
(1903-1957). Among his many feats, he largely created the widely used Hil-
bert space formalism for quantum theory, but he did not think that it was the 
right mathematics for quantum phenomena. This was not a casual opinion, ei-
ther. von Neumann made a tremendous effort in trying to find a better one, 
among other things developing his extensive theory of operator algebras for 
the purpose. He even formulated guidelines as to what the better mathematics 
would have to be like. It would have to be so deeply different as to include a 
new “quantum logic”. Its centerpiece seems to have been a new concept of 
probability, based directly on logic and facilitating among other things a gen-
eral logical definition of entropy. Alas, von Neumann never found what he 
was seeking, and even the real significance of his search escaped most scien-
tists. This story is told in the volume edited by [Rédei and Stöltzner (2001)].  

Around 2005, Sandu and Hintikka discovered that IF logic comes with 
a completely explicit new concept of probability, actually in a most natural 
way. The crucial idea is to allow in the by this time well-known game-
theoretical truth definitions the players to use mixed strategies. [See here 
Hintikka (2008) and Mann et al. (2011)]. The so-defined probability behaves 
rather like the “classical” one, but with apparently inconspicuous exceptions 
due to the failure of tertium non datur in IF logic. 

Inconspicuous or not, this new IF probability calculus and its applica-
tions remain largely uninvestigated. It is nevertheless becoming patent that it 
opens extremely important doors for conceptualization and theorizing not on-
ly in logic and mathematics but in science. It is hard not to see it as an answer 
to von Neumann’s question. 

The way the connection was discovered is a telling illustration of the 
connection. von Neumann points out that in order for a logic space to match 
the structure of a physical space (a state space), it must have a counterpart to 
the geometrical notion of orthogonality. It is here that logicians became alert-
ed of something significant when they noticed that the strong negation char-
acteristic of IF logic behaves just like orthogonality. 

Even though most detailed research remains to be done, there are con-
vincing indications that the new logic and the new conception of probability 
can be as useful in applications of mathematics as in physical sciences. IF 
probability enables us to define a more general notion of entropy than the cur-
rent ones. It is also suggestive that the notorious Bell’s inequality does not hold 
in IF probabilities that are used instead of classical ones. It seems therefore that 
the problem of entanglement can be dealt with the help of IF probability. 
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VI. THE CRASH OF FIRST-ODER AXIOMATIC SET THEORY 
 

Rightly understood, the way quantifiers operate logically includes rep-
resentation of material dependencies between variables through the formal 
(syntactical) dependence relations between the quantifiers to which they are 
bound. By so doing, quantifiers can be involved in other kinds of dependence 
and independence relations. An important case is found in the logical theory 
of definitions. There it must be required that the definiens must be independ-
ent of the definiendum. 
What does this requirement imply? In a case study, consider the axiom sche-
ma of comprehension in set theory. In a completely unrestricted version it has 
the form 
 

(5) (� y) (� x) ((x 	 y) � (D [x])). 
 
This can be looked upon as a definition of a set [y] combined with the asser-
tion of its existence. In (5), the definiens D [x] is a formula with x as its only 
free variable. In order to avoid circularity, y must not occur in D [x]. There 
can of course be quantifiers and connectives in D [x]. 

In the usual accounts of definitions this is the whole story. But it should 
not be. For the definiens D [x] to be independent of the definiendum, the 
quantifiers in it must obviously be independent of (� y). A moment’s thought 
shows that they must also be independent of (� x) and that (� x)  must like-
wise be independent of (� y).Yet in the usual discussion of definitions and 
definability, no attention has been paid to these independencies. The reason 
for this neglect is implicit in what has been said. Those independence rela-
tions are not expressible in RFO logic. 

What horrible things can happen if these independencies are not heed-
ed? A partial answer is that, among other mistakes, set-theoretical paradoxes 
can arise. And historically speaking they did arise. This is spelled out in my 
2012 paper, “IF Logic, Definitions and the Vicious Circle Principle” [Hin-
tikka (2012b)]. The paradoxes of set theory are consequences of the same 
mistake about quantifiers and dependence as Frege committed. This mistake 
was therefore the source of the Grundlagenkrisis of mathematics. In a bird’s 
eye view on the history, logicians never found a way for set theorists to es-
cape the problems and paradoxes of set-theoretical reasoning. What happened 
was that in the absence of a correct diagnosis of the problem logicians and 
mathematicians were forced to weaken their other presuppositions in set the-
ory, in the first place to restrict the admissible choices for D [x] in the com-
prehension schema (5). Unfortunately, the restrictions involved in the 
currently used axiomatizations of set theory do not eliminate the real source 
of trouble. One can literally say that for instance the Zermelo-Fraenkel sys-
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tem of set theory violates the rightly understood Vicious Circle Principle. In 
other words, set theorists could escape outright contradictions only by weak-
ening their reasoning methods. This undermined the purpose of set theory. 
For instance, one of Zermelo’s aims in his first axiomatizations of set theory 
was to vindicate the reasoning principle misleadingly known as the “axiom” 
of choice (AC), by incorporating it into an axiom system. (Zermelo did use 
AC in a crucial way in his proof of the well-ordering theorem.) It turns out, 
however, that the unrestricted form of the AC is incompatible with the other 
axioms of the Zermelo-Fraenkel set theory. The fact that AC is arguable a 
purely logical and even first-order principle makes the prospects of Zermelo-
Fraenkel type set theories even dimmer. 

Together with other reasons this shows that the current way of ap-
proaching set theory as a first-order axiom system is a dead end street. In my 
old slogan, axiomatic set theory has become a “Fraenkelstein’s Monster” that 
destroys its own original purpose. This is argued in greater detail in my forth-
coming paper, “Axiomatic Set Theory in memoriam” [Hintikka (forthcom-
ing)]. And if the giving up of the current axiomatic set theories is not a 
scientific revolution, it is hard to imagine what could be. 

 
 

VII. AXIOM SYSTEMS ARE NOT “LOGICAL SYSTEMS” 
 

One reason for the wrong turn that set theory has taken can be seen in a 
confusion as to the nature of the axiomatic method. One common defense of 
set theory as it is currently practiced is that it can at the very least be cultivat-
ed as one possible mathematical theory in its own right. The conception of 
mathematical theorizing underlying this defense construes mathematical theo-
ries as logical systems. A logical system in its simplest form is supposed to 
consist of a finite number of axioms plus a finite set of rules of inference. In 
keeping with the idea (ideal) of symbolic logic, these rules of inference are 
purely formal. A mathematician’s task is mainly to prove theorems from axi-
oms by means of the given rules of inference. 

In other words, mathematical theories are taken to be examples of logi-
cal systems. It is widely assumed, albeit in most cases tacitly, that applica-
tions of logic to mathematical or scientific theorizing should take the form of 
such a “logical system” or “formal system”. This is among other things in 
keeping with the current dogma that the alpha and omega of mathematical 
practice are proofs of theorems. For another instance, different set theories 
are formulated as so many logical systems. 

This conception of a formal system might look like a contemporary 
form of the idea of an axiomatic system. In reality, it is a distinctly different 
notion, and a dangerously misleading one. 
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According to the idea of a logical system the purpose of axiomatiza-
tions is interpreted as deductive systematization. Axioms are the ultimate first 
premises of all deductions of theorems. Theorems are simply different logical 
consequences of the axioms. By proving such theorems we extend our 
knowledge of the subject matter in question. 

A more realistic view is found in that great theorist and practitioner of 
axiomatic method, David Hilbert. It is no accident that Hilbert paid special 
attention to the axiomatizations of scientific theories, even listing among his 
famous list of important open systematical problems number 6: Axiomatize 
physical (sic) theories. 

Such an axiomatization can be characterized as studying a class of struc-
tures, for example electromagnetic systems, as models of a number of axioms. 
Then a scientist can study those structures by studying the axiom system purely 
logically and mathematically without having to acquire further empirical in-
formation. For instance, all electromagnetic systems are solutions of Maxwell’s 
equation, in other words, models of the system of those equations. 

This conception might at first seem to be essentially the same as the un-
fortunate idea of a “logical system”. For instance, the requirement that the 
rules of inference of a logical system be purely formal seems nothing but an 
implementation of the obvious supposition of the success of an axiom system 
and presupposes that the logic used in the investigation of the models of an 
axiom system do not smuggle in new information. 

The purely formal character of the derivation of theorems was indeed 
vigorously maintained by Hilbert. But what does “purely formal” mean? It 
means that the validity of a rule of inference depends only on its logical form. 
But the formal character of rules in this sense does not presuppose that in a 
given system we can get along with only a finite number of formal rules of 
inference. From results like Gödel’s first incompleteness theorem it follows 
that such finitism is possible on only very poor mathematical theories. The 
cold truth is that “logical systems” do not cut much ice theoretically or by 
way of applications. 

Rightly understood, what an axiom system is calculated to help us to 
master are not deduction relative between propositions, but certain structures, 
the models of the axioms. And they can be studied by means of logic even 
when the deductive relationships of propositions about them cannot be han-
dled by a finite number of rules of inference. This shows clearly the real im-
port of Gödel’s first incompleteness theorem – and the limits of its theoretical 
significance. 

Thus the characteristic activity of an axiomatizer is not to deduce theo-
rems from axioms (and earlier theorems). Such deductions are in any case 
among the lesser accomplishments of an axiomatic theory in that they can on-
ly reveal what all the structures under scrutiny have in common. Among the 
uses of logical arguments in an axiomatic theory is to show what structures 
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are possible according to the given theory, not just to show what all the mod-
els of the theory must be like. 

It follows that the task of finding a proof for a theorem is not a matter 
of combining applications of a fixed number of rules in different formal ways 
with each other as in computation. In nontrivial cases, it involves in effect 
finding a new rule (or new rules) of inference. 

A failure to see this point has quietly created a dangerously biased idea 
of what causes the differences in the difficulty of different mathematical and 
logical problems. To put the main point in simple terms, the mistake is to 
think of theoretical problems in mathematics and logic in the same way as 
computational problems. For instance, finding a proof for a hypothesis is ac-
cording to this mistaken view like constructing an algorithm that produces in 
order the different steps of a formal proof. 

As pretty much everybody knows by this time, from our collective ex-
perience of computing including the computer industry, to develop such algo-
rithms (“software”) requires in a typical nontrivial case major collective 
effort by a team of computer scientists working over long periods of time. If 
problems of theoretical mathematics are essentially computational, the same 
will hold of them. If so, there is little realistic hope that an individual mathe-
matician could solve any major problem on her or his own, except perhaps by 
decade-long effort. The history of such famous problems as the four-color 
problem seems to feed such a pessimistic view. 

Concrete evidence is hard to come by, but anecdotal evidence suggests 
that this defeatist view has taken over to an extraordinary degree. A famous 
mathematical logician who is also the president of the mathematical society 
of his important metropolitan area was asked recently what would happen if 
his society announced a meeting where a guest lecturer would present a solu-
tion to the P vs. NP problem, one of the Clay Foundation’s millennium prob-
lems. The unhesitating answer was, “Nobody would come.” Nobody would 
as much as entertain the possibility that the visitor might have a solution 
enough to be curious. 

As a consequence, logicians and mathematicians have largely lost the 
sense of important common enterprise when it comes to mathematical theo-
rizing and problem solving. This threatens to undermine the work ethic in 
mathematical sciences. While acknowledging the complexity and elusiveness 
of human motivation, it seems to me unmistakable that this lack of commit-
ment on the part of members of the mathematical community is what drove 
Grigori Perelman (who solved the Poincaré problem, the first millennium 
problem to be solved) to his self-imposed intellectual exile. [See here Gessen 
(2009)]. 

This loss of courage on the part of logicians and mathematicians is 
shown to be premature by the scientific revolution here discussed. Admitted-
ly, some famous classical problems have been studied so much that the solu-
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tions to those remaining open are likely to be hugely labor-intensive. But we 
can now see that in some cases at least difficulties have been partly self-
inflicted. For one instance, the continuum hypothesis has been approached 
axiomatically as a question of whether the hypothesis is provable in the Zer-
melo-Fraenkel set theory with the help of suitable further axioms. What was 
seen in sec. VI above shows that such a proof would not even be relevant to 
the real continuum problem. And even the deductive problem has been ap-
proached in a hapless manner. How can anyone realistically expect success 
when (as in Zermelo-Fraenkel system) you do not even have the full force of 
the “axiom” of choice available to you? 

Thus the long-term impact of the scientific revolution discussed here is 
not only negative. On the contrary, it opens tremendous opportunities for 
progress. There already exists a model-theoretical proof of the continuum 
hypothesis on the net, although not in print. 

A crucial step in unblocking these constructive possibilities would be to 
abandon the disastrous idea of a “logical system” as the standard format of a 
mathematical or logical theory. 

 
 

VIII. LOGIC AND COMPUTABILITY 
 

The promise of progress applies also to the areas where logic and com-
puter science overlap. An overview is currently difficult to reach, but some of 
the main features of the situation are reasonable clear [see Hintikka (2011)]. 
At first sight, a logical theory and a theory of computability should merge 
with each other seamlessly, via a formalized logical theory of arithmetical 
computation. In order to calculate the value of f (x) for (x = b), it should be 
necessary and sufficient to prove formally an equation of the form f (b) = a. 
The computation proceeds largely from equations involving auxiliary func-
tions while conventional logical deduction uses formulas with quantifiers. 

The two are not quite equivalent, however. The auxiliary functions are in 
effect the choice functions of the corresponding quantificational formulas. 
Skolem functions are the truthmakers of quantified sentences. They provide the 
“witness individuals” which would show its truth. For instance a Skolem func-
tion of (� x) (� y) F [x, y] satisfies (� x) F [x, f (x)]. They form the underlying 
structure of the logic of quantification, so much so that a quantificational sen-
tence is true if and only if there exists a full set of “truthmaking” (i.e. Skolem) 
functions for it. These choice functions were mentioned in sec. II above. They 
are the Skolem functions (named after the Norwegian mathematician Thoralf 
Skolem, 1887-1963) mentioned earlier. This example shows how Skolem func-
tions and existential quantifiers do the same job in their two different ways.  

Now the fact is that if RFO logic is used, there are not always sets of 
Skolem functions available for the purpose. This is because a Skolem func-
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tion comes from an existential quantifier in the labeled tree that a formula is 
while its arguments come from terms occurring earlier in the same branch. 
This means that the argument sets of Skolem functions must have a related 
tree structure too. Not all sets of auxiliary functions for an algorithm never-
theless have such a structure. Hence arbitrary algorithms cannot be captured 
as deductions in the sense of RFO logic. 

However, in IF logic this restriction is removed. By using IF logic, we 
can therefore build a general theory of numerical computability in parallel 
with deductive first-order IF logic. This among other things allows us to use 
all the resources of logical proof theory in the theory of computability. 

The opportunities in this direction largely remain unexploited [see never-
theless my paper “Function Logic and the Theory of Computability”, Hintikka 
(2013a)]. In a slightly different direction, attention to the independence relations 
computable in IF logic helps to correct important mistakes in the current litera-
ture. An example is offered by the interesting theorem of Paris and Harrington 
(1977). When Gödel published his first incompleteness result, mathematicians, 
philosophers, logicians and questioning minds in general were puzzled. What 
are Gödel’s strange creatures like, arithmetical propositions that are true, but not 
provable? Gödel’s own examples seemed artificial and uninformative. It created 
therefore a great deal of interest when Paris and Harrington published a modi-
fied version of a well-known finite Ramsey theorem in combinatorial mathemat-
ics, a theorem that could only be proved by an infinitistic argument. 

This theorem has been taken to exemplify (and hopefully to illuminate) 
the incompleteness phenomenon that Gödel was exploring. In my paper, 
“The modified Ramsey theorem is not a Gödel sentence” [Hintikka (2013b)], 
I show that the Paris-Harrington theorem is not representable in the language 
Gödel used and hence not an instance of a Gödel sentence. 

Indirectly, this mistake nevertheless illustrates the nature of Gödelian 
incompleteness. What Gödel brings out is that the set of true arithmetical sen-
tences is not recursively enumerable. No computer can be programmed to list 
all and only arithmetical truths. Now an instance of Gödel sentences would 
be relative to a particular axiomatization, in other words, to one particular at-
tempt to enumerate recursively truths and only truths. As such, it would help 
to show only why it is that that particular enumeration fails. It is unlikely to 
yield any insight into why any such attempted enumeration must fail. 
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