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Abstract—Speculative parallelization is a technique that tries
to extract parallelism of loops that can not be parallelized at
compile time. The underlying idea is to optimistically execute
the code in parallel, while a subsystem checks that sequential
semantics have not been violated. There exist many proposals in
this field, however, to the best of our knowledge, there are not any
solution that allows to effectively parallelize those applications
that use pointer arithmetic. In a previous work, the authors of this
paper presented a software library that allow the parallelization
of this kind of applications. Nevertheless, the software developed
had an important limitation: Execution time of the parallelized
versions was higher than the sequential one. In this work, this
limitation has been addressed, finding and solving the reasons of
this lack of efficiency. Experimental results obtained allow us to
affirm that these limitations have been overcome.
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I. INTRODUCTION

ESPITE of the high speeds of sequential processors,

there is the need of increase it even more. However, due
to technology advances, we are beginning to reach barriers
that can not be overcome. Chips are becoming more and
more sophisticated. Moreover, they are full of transistors and
heat dissipation is becoming a big problem. In this context,
computers with more than one processor have emerged to
minimize heat centralization and to perform several task at
the same time, in other words, to parallelize the work. In
order to exploit this kind of processors in a single code, we
need programs whose instructions can be executed at the same
time, i.e., programs whose instructions do not have to be
executed sequentially. To decide if a sequential code fulfill
this requirement is a tedious task because we need to take into
account many factors to avoid synchronization errors. There
exist some specific languages to develop this tasks, but some
knowledge about underlying hardware and about the problem
to be parallelized is still needed. In addition, it is not useful
to develop software to specific architectures if it will not be
portable to other machines. So, the best way to parallelize
a source code is allowing compilers to do this task. At the
present time, there exist some compilers that may parallelize a
code. However compilers are intrinsically conservative and the
result is far from optimum. The main reason of this fact is the
existence of dependence violations among accesses to program
data. An algorithm should have independent instructions to
allow its concurrent execution, nevertheless, predict this task is
not a easy. So, in fact, if compilers have the slightest suspicion
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for (i=1; i<MAX; i++) |
if (i==k)
for (i=0; 1i<MAX; i++) { v[i] = func(v[i-2]);
v[i] = func(vI[i]); else

} v[i] = func(v[il]);

}
(@) (b)
Fig. 1. (a) Example of a loop without dependences within its iterations. (b)

Loop with dependences.

of the existence of a dependence violation, they do not create
parallel codes. Figure 1(a) shows a loop without dependence
violations: All the instructions are independent, so, compiler
may directly order its parallel execution. On the other hand,
Figure 1(b) contains a loop that may produce some dependence
violations.

Thread-level speculation (TLS) [1], [2], [3], [4], [5], [6],
[7] aims to extract loop- and task-level parallelism when
a compile-time dependence analysis can not guarantee that
a given sequential code is safely parallelizable. Speculative
parallelization procedure assumes that sequential code can be
optimistically executed in parallel, and relies on a runtime
monitor to ensure that no dependence violations are produced.
A dependence violation appears when a datum is produced
that has been already used by a successor of the thread. In
this case, results calculated so far by the successor (called the
offending thread) are not valid and should be discarded, and
then, this thread is restarted with the correct values. So, the
less dependence violations, the better results are obtained.

There are many approaches that support TLS, however, to
the best of our knowledge none of them support the use of
complex structures. Therefore, in a previous work [8], [9] we
developed a library that implements TLS ideas in software,
however experimental results were not good enough to improve
the time spent by the sequential version of the benchmarks
used. So, in this paper we describe the mechanism followed
to improve its performance in order to achieve better results
than the sequential versions of the benchmarks.

We have improved a TLS runtime library that handles
the parallel execution of loops with speculative variables,
including support for speculative access of pointer-based data
of any size without the need of a compile-time analysis. This
runtime library not only manages accesses to speculative data,
but also handles the scheduling of iterations among threads



and ensures correctness in the parallel execution of the loop.
Our previous version had a bad performance, not being useful
in practice. After the improvements described in this paper,
experimental results lead us to affirm that new scheme is good
enough to extract parallelism of both benchmarks and real
programs.

The rest of this paper is structured as follows: Section II
provides a perspective of the state of the art in the field of TLS.
Section III introduces the initial library in order to obtain an
idea of the main bottlenecks that it had. Section IV explains
three different improvements applied to the library. After that,
in section V we will show the experimental results achieved
after the application of that optimizations. Finally, section VI
draws some conclusions extracted from the analysis carried
out in this paper.

II. RELATED WORK

Thread-level speculation (TLS) is an aggressive paralleliza-
tion technique that is applied to regions of code that, although
contain a good amount of parallelism, can not be proven
at compile time to preserve the sequential semantics under
parallel execution. This section reviews several thread-level
speculation solutions.

The main precursor of TLS is located in the work of
Rauchwerger and Padua [6]. They proposed the use of LRPD
tests in conjunction with speculative parallelization of loops,
in this way, loops were executed in parallel and if some errors
were found, the involved loop was re-executed. This approach
was based on software. Several proposals used hardware to
develop a scheme to exploit TLS [10], [11], [12], [13], [14],
[15]. However we are going to center our revision in software
approaches because our solution is fully software-based.

In this way, Cintra and Llanos in [1] contribute with a
scheme based in an aggressive sliding window, with checks for
data dependence violations on speculative stores with reduced
synchronization constraints.

Kelsey et al. developed a system called FastTrack that
performs an unsafe optimization of sequential code [16],
i.e., they created a software system that manages speculative
parallelization. Specifically, their programming interface en-
ables programming by suggestions, so, user can suggest faster
implementations based on partial knowledge about a program
and its usage. They divide code in two branches, the fast track
and the normal track, and programmers can change between
both tracks when they want. Oancea et al. [17] proposed a TLS
system whose main design principle was to decrease overheads
of speculative operations.

In 2008, Tian et al. in [18] proposed the Copy-or-Discard
(CorD) execution model, in which the state of speculative par-
allel threads is maintained separately from the non-speculative
computation state. If speculation is successful, the results of
the speculative computation are committed by copying them
into the non-speculative state. If misspeculation is detected, no
costly state recovery mechanisms are needed as the speculative
state can be simply discarded. Some years later, Tian et al.
developed mechanisms that enable CorD to efficiently supports
speculative execution of programs that operate on heap based
linked dynamic data structures. Their are described in [19].
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In particular, they proposed a copy-on-write scheme which
limits the copying to only those nodes in the dynamic data
structure that are modified by the speculative computation.
When a speculative thread writes to a node in a dynamic data
structure for the first time, the node is copied into speculative
state. If a speculative thread only reads a node in the non-
speculative state, it is allowed to directly access the node from
the non-speculative state.

Another work of Tian et al. is [20]. In this paper they
developed an approach for incremental recovery in which,
instead of discarding all of the results and re-executing the
speculative computation in its entirety, the computation is
restarted from the earliest point at which a mis-speculation
causing value is read. With those advances the cost of recovery
is reduced as only part of the computation is re-executed, and,
since recovery takes less time, the likelihood of future mis-
speculations is reduced. The main idea to decouple the space
allocation from thread creation is to create a new subspace
when a speculate value is first read.

There exist some out-of-order engines that try to extract
parallelism of sequential programs with the use of a look-ahead
guide that examines “future instructions” of the program to
perform a parallel execution. However, several times the guide
itself is the main bottleneck of the program. In [21] Garg et
al. use TLS to avoid some of the mentioned overheads.

Feng et al. developed a system that deals with efficient
parallelization of hybrid loops in [22], that is, those loops that
contain a mix of computation and I/O operations. They tried
to get that purpose by applying DOALL parallelism to hybrid
loops by breaking the cross-iteration dependences caused by
I/O operations. Authors developed a support to enable spec-
ulative parallelization of hybrid loops by performing some
modifications to the code. To effectively parallelize hybrid
loops they developed techniques for reducing bus contention,
specifically, they proposed the use of helper threading.

Fan et al. in [23] developed a software-based speculative
framework that implements value prediction, value checking
and dynamic task partition and scheduling.

Yiapanis et al. in [24] introduced a new structure that
optimizes memory overheads of classical approaches based
on the idea of mapping every user-accessed addresses into an
array of integers using a hash function, and applied it to a new
speculative library called MiniTLS.

Current researches are centered in the application of TLS
to different context, i.e., Jang et al. [25] described a way to
decompress data through the use of speculative parallelism.
In this way, their algorithms are improved with the use TLS.
Also Martinsen et al. [26] used speculative mechanism in a
Web context, for this task, they developed a software through
Squirrelfish JavaScript environment. The use of TLS in this
context let them to achieve high levels of speedups. GPUs
models are also benefited with the use of TLS, in this way,
Zhang et al. introduces in 2013 a new library based on sliding
windows that supports TLS in GPUs [27].

III. BASELINE RUNTIME LIBRARY FOR TLS

We developed a new TLS runtime library that supports the
speculative execution of for loops. A preliminary work on this
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1: char a; float b; 1: char a;
2:
3: threads
4: #pragma
pri
5: for (i=0; i<NUM_ITERATIONS; i++) { 5: for (ti
6: whi
7:
’Original loop code, part l‘
8: a = f(b); 8: s
9: t
10: s
‘Original loop code, part 2‘
11:
12:
13: }
14: } 14: }
(a)

specbegin (NUM_ITERATIONS) ;

float b; char temp; float value, int tid, threads;

omp_get_num_threads();
openmp parallel for \

vate (i,tid,temp,value, ..

d=0; tid<threads;
le (true) {

i assign_following_chunk (tid, NUM_ITERATIONS, ...);

’Original loop code, part l‘

.) shared

tid++) {

(a,b,threads, ...)

pecload (&b, sizeof(b),..., &value);
emp = f(value);
pecstore (&a, sizeof(a),..., &temp);

‘Original loop code, part 2‘

commit_or_discard_data(tid,...);
if (no_chunks_left (tid, NUM_ITERATIONS, ...)) break;

(b)

Fig. 2. Loop transformation to allow its speculative execution: Original (a)

topic was published in [9]. The library architecture followed
the design principles of the speculative parallelization library
developed by Cintra and Llanos [1]. That TLS runtime library
allows to speculatively access variables of any data type, both
by name or by address, and managing the space needed for
version copies on demand. In this section we will briefly show
the general architecture of this library that will be used as the
baseline to test some improvements proposed in this paper.

A. Loop transformation for speculative execution

Figure 2 briefly shows the transformation of a parallel loop
that the user should carry out to allow its speculative execution.
Changes are briefly described below:

Line 1: Additional, internal variables are defined.

Line 2: A call to specbegin() initializes the runtime
speculative library. This speculative library uses some data
structures that should be initialized before the execution
of any speculative code, and the function responsible is
specbegin(UINT num_iterations). This function should assign the
static, or dynamic, block size that slots will use, and allocates
the memory needed by dynamic data structures used by this
library. It also initializes non-speculative and most-speculative
pointers, states of the sliding window to the FREE state, and
assigns the limit value of iterations at run-time with the use
of the single integer argument used by this function.

Line 3: Before the loop, the omp_get_num_threads() func-
tion is called to obtain the number of available threads.

Line 4: Following the specifications of OpenMP [28], all
variables of the loop should be classified as private or shared.
In addition, internal variables needed by the runtime systems
should be labeled, such as tid and threads in our example.

Line 5: The original loop structure is replaced with a
parallel for loop with just “threads” iterations. This launches
the number of desired threads.

Line 6: A while(true) loop ensures that each thread repeat-
edly requires a chunk of iterations from the original loop to be
processed. If no chunks are left, a break statement exits this
loop and the end of the thread is reached (see line 12).

and transformed (b) code.

Line 7: Inside the loop, each thread receives the index of
the first iteration of its assigned chunk and proceeds with the
original loop body.

Lines 8-10: The read of b variable in line 8 of Fig. 2(a)
is replaced with a call to the specload() function, that recovers
the most up-to-date value for this variable. The exact behavior
of specload() is described later in this section. The value is
stored in a private, temporal location. Line 8 of Fig. 2(a) also
performs a write on a. This write is replaced with a call to
specstore() (line 10 of Fig. 2(b)), that first stores the value in
a local version copy and then checks whether a successor has
already consumed an outdated value of a. If so, the offending
thread and some or all of its successors (depending on the
squash policy being defined [29]) are squashed.

It is important to highlight that only the lines of the original
loop body that involve speculative variables are changed,
therefore, the remaining code is left with no changes.

Line 11: Once finished the original loop body, a call
to commit_or_discard_data() checks whether the thread has
been squashed or not. If a squash operation was issued by a
predecessor, local copies of speculative data will be discarded.
If the thread has not been squashed and it is the not-spec one,
a partial commit will occur. Partial commits will be described
in Sect. III-D.

Line 12: After finishing their tasks related to the current
chunk, all threads check whether there are no pending chunks
to be executed. If there is no pending work, threads leave the
while loop.

When all threads have exited the while(true) loop, the end
of the parallel section has been reached and (despite the
number of needed attempts) all chunks of iterations have
been successfully executed, and their results committed to the
speculative variables.

B. Data structures

The data structures needed by the baseline speculative li-
brary are depicted in Fig. 3(a). The sliding window mechanism
is implemented by a matrix with W window slots (four in
the figure). Each slot acts as a “blackboard” used to handle
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Spec. load
Non-spec window slot Most-spec window slot s ~
User—labeled Modified
speculative L (MOD) )
variables | | Sliding window Spec.
char a float b R R store
STATE Running Done Running Free s ~
double ¢ Pointer to versioncopy | — Not Accessed
5288 Slot 1 Slot 2 Slot 3 Slot 4 - J
Spec. load Spec.
load
&a 1 &l |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD Exposed Loaded
&b 4 &bt MOD &b 4 &b2 | EXPLD &a 1 &a3 EXPLD (EXPLD)
&a 1 &a2 MOD ~ ~ Spec
Pointer  Data  Pointer Version Pointer ~ Data  Pointer Version store‘
to ref. size tolocal state to ref. size tolocal state r
copy version Pointer ~ Data  Pointer Version copy version Exp. Loaded and Updated
to ref. size  tolocal state 5 ’
at b1 copy version a b3 L (ELUP) )
[B) [eser 02 e w
Version copy data structures [18997 | [ 128215 ] Spec. load
(@) (b)

Fig. 3.

the speculative execution of a particular chunk of iterations.
Two global variables, non-spec and most-spec, indicate the slot
assigned to the execution of the non-speculative and most-
speculative chunks of iterations at the moment. The STATE
field indicates the state of the execution being carried out in
each slot.

The figure represents the parallel execution of a loop. The
loop has been divided into three chunks of iterations, and it will
executed in parallel using three threads. It is very important
to understand that there is not a fixed association between
threads and slots. Whenever a thread is assigned a new chunk
of iterations, it is also assigned the corresponding slot to work
in. This allows to maintain an order relationship among the
chunks being executed.

In our example, thread working in slot 1 is executing the
non-speculative chunk of iterations (as indicated by its RUN-
NING state); the following chunk has been already executed
and its data has been left there to be committed after the
non-spec chunk finishes (since it is in DONE state), while the
last one, the most-speculative chunk launched so far, is also
RUNNING. In other words, the thread in charge of the second
chunk has already finished, while the non-spec and most-spec
threads are working. If more chunks were pending, the freed
thread would be assigned the following chunk, starting its
execution in slot 4. Slot 2 can not be re-used yet, because
the execution of chunk 2 left changes to speculative variables
that are yet to be committed. As we will see in Sect. III-D,
when the non-speculative thread working in slot 1 finishes, it
will commit its results and the results stored in all subsequent
DONE slots, since commits should be carried out in order. After
that, in our example, the non-spec pointer will be advanced to
slot 3 to reflect the new situation.

In addition to its STATE, each slot points to a data structure
that holds the version copies of the data being speculatively
accessed. Figure 3(a) represents a loop with three specula-
tive variables. At a given moment, the thread executing the
non-speculative chunk has speculatively accessed variables a
and b. Each row of the version copy data structure keeps
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(a) Data structures of our new speculative library. (b) State transition diagram for speculative data.

the information needed to manage the access to a different
speculative variable. The first column indicates the address of
the original variable, known as the reference copy. The second
one indicates the data size. The third one indicates the address
of the local copy of this variable associated to this window slot.
Finally, the fourth column indicates the state associated to this
local copy. Once accessed by a thread, the version copies of
the speculative data can be in three different states: Exposed
Loaded, indicating that the thread has forwarded its value from
a predecessor or from the main copy; Modified, indicating that
the thread has written to that variable without having consumed
its original value; and Exposed Loaded and Updated, where a
thread has first forwarded the value for a variable and has later
modified it. The transition diagram for these states is shown
in Fig. 3(b).

Figure 3(a) represents a situation where the thread working
in slot 1 has performed a speculative load from variable a
(obtaining its value from the reference copy) and a speculative
store to variable b. Regarding a, the figure shows that thread
working in slot 3 has forwarded its value. With respect to
variable b, the information in the figure shows that b have
been overwritten both by threads working in slots 1 and 3.

C. Speculative loads and stores

The interface of our implementation of specload() (see line
8 of figure 2(b)) is as follows:

specload(VOID* addr, UINT size, UINT chunk_number, VOID* value)

The first parameter is the address of the speculative variable;
the second one is the size of the variable; the third one is the
number of the chunk being executed (needed to infer the slot
being used); and the fourth one is a pointer to a place to store
the datum requested.

Recall that specload() should return the most up-to-date
value available for the speculative variable, to do so, the thread
traverses sequentially its data structure and those of their
predecessor to find the most up-to-date value.



The interface of specstore() is similar as specload()’s, but in
this case the last parameter is a pointer to the value to be stored.
Recall that specstore() should not only store the new value,
but also check whether a successor has consumed an outdated
value for it. To do so, this operation also traverses sequentially
its version copy data structure to find and update the value, and
then searches sequentially in all successors’ data structures to
find a possible RAW read-after-write) dependency. As we will
see, this was the main source of inefficiencies of this library
version.

D. Partial commit operation

The partial commit operation is exclusively carried out
by the non-speculative thread. Every time a thread executes
commit_or_discard() (line 11 of figure 2(b)), it first checks if
it has not been squashed and if is the non-speculative. If the
thread is speculative, the slot is left to be committed by the
non-spec thread.

It is interesting to note that each thread only writes on its
local version copy data structure, so no critical sections are
needed to protect them. The only critical section used protects
the sliding window data structure, where a thread can overwrite
another thread’s state.

IV. PERFORMANCE IMPROVEMENTS
A. Reducing operating system calls

One of the problems detected was the excessive number
of calls to the malloc() and free() functions. To better under-
standing the reasons, we will use an example. Suppose that
a thread executes one of the main speculative functions, i.e.,
specload() or specstore(). In this context, thread searches in its
matrix for the address of the datum being accessed. Imagine
that the datum has not been used yet, so it should be added
to the matrix. In this process of attaching the new data to the
matrix of the thread, we have to allocate some memory to store
the local copy of this datum, therefore, the malloc() function
should be called. Specifically, each thread reserves memory
with malloc always that works with a datum that has never
been used before.

On the other hand, there is also the need of freeing all
the reserved memory, therefore, threads call free() to free the
memory used by them when they want to reuse the slot of
the sliding window. Data are not freed when a slot reaches
the FREE state. Instead, data are freed when a new thread is
assigned to a new slot, becoming a RUN slot. Therefore, to
perform this operation, all the values should be freed one by
one.

Obviously, these operations spend much time because they
are called very frequently. We devised that all of these opera-
tions could be changed by the implementation of a container
for all the data used by each thread. Hence, a new dynamic
vector was developed that allows to avoid almost all malloc()
and free() operations: Local Version Data.

This new vector is needed by all the available threads.
We have to perform an initial call to the malloc() function to
allocate the memory of the vector of each thread, and a final
free() call is used to free the memory allocated. In this way, we
only have to call malloc() again if the vector is full, and this
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occurs rarely. This solution greatly improves the performance
observed.

Howeyver, the new structure modifies the basic structures of
the architecture: Initially we had an structure with four entries,
where one of them was a pointer to the local copy of the
datum. Instead, the new approximation manages an offset for
each datum. In this way, each datum will be stored in the Local
Version Data vector in the position pointed by its offset, from
this position to the same position plus the size of the datum,
i.e., each position of the vector would store a byte, so, a datum
that require four bytes to be stored would need four positions
in the vector.

Also, each slot of the sliding window requires an additional
pointer to the actual offset of its vector. Hence, the sliding
window is augmented with another element to indicate the
first free position of this new vector.

This ideas will be better understood with the use of a
graphical example. Instead of having many data elements lying
around (see data al, bl, b2, etc. in Fig. 3(a), bottom) Figure 4
shows solution. In this way, suppose that a single thread is in
execution (to avoid an unnecessarily complex situation) and
it has managed three data, ¢, b and a, with a size of 8, 4
and 1 respectively. So, taking into account that this library is
implemented in C language (vectors begin at 0 position), the
current offset of this thread (that points to free space) will be
13.

Regarding free() operations, threads of the baseline solution
needed to access sequentially to all the elements of its version
copy, to free separately each datum, and finally to mark the first
position as free. However, with the new version of the library,
it is only needed to set to O the first free position in the local
data vector, thus making the first position of the version copy
as free.

Therefore, this optimization avoids the need of separate
accesses to the elements of the version copy of the threads.
Specifically, being 7' the number of threads, and [N the number
of data elements stored locally, this operation was initially in
T x O(N) = O(TN). With the new scheme the free is done
in T x O(1) = O(T), this optimization will asymptotically
improve the library performance.

B. Commit optimization

Commit operations in the original library required to check
all the local elements accessed by the thread, both modified,
and unmodified items. So, in addition to the other modifi-
cations, we performed an optimization inspired in the work
described in [1], [2], an Indirection Matrix. This matrix aims
to optimize commit operations because it will be used to store
a list of updated elements, in order to only commit them.

With this solution, each thread will have its own vector
of modified items, where positions of this vector will point
to the position of the updated item. Moreover, a fail pointer
that will point out the position of the last modified item of the
Indirection Matrix is implemented. This new variable will ease
the addition of new elements to the vector. Now, to perform
the commit operation it is only needed to copy the elements
of this list.
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Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
chara float b
STATE Running Free Free Free
double ¢ Pointer to version copy |
32.88 .
ocal version data
Indirection Matrix Slot 1 Slot 2 Slot 3 Slot 4
1 &c 8 0 ELUP
2 &b 4 8 EXPLD c' b a'
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0 1 3 4 5 6 7 8 9 10 11 12 13
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Pointer Data Offset Version
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copy version

vector Actual first free position

Version copy data structures

Fig. 4. Reducing operating system calls: Example with the new data structures

Figure 4 shows this new structures in the updated archi-
tecture, including the optimization of the vector with the local
data. Imagine that, in the situation depicted in the example,
thread finishes the execution of its chunk of iterations, as
long as the thread is the non-spec, it will begin to commit
its elements. Therefore, it scans its Indirection Matrix to locate
those variables in ELUP or MOD state. In our example, ¢ has
been loaded and updated, and a has been modified so it would
copy the content of a’ into a, and the content of ¢’ into c. In
this way, the attempt of committing the content of b is avoided,
unlike what happened in the original solution.

C. Reducing search time

One of the main advantages of our baseline speculative
parallelization library is that each thread only allocates the
memory needed to store local copies of the data being spec-
ulatively accessed. This design decision comes at the cost of
longer times to find the most-up-to-date value in speculative
loads, and longer times to detect dependence violations in
speculative stores, since both operations should traverse all
the values accessed by all the predecessors and successors,
respectively. Being 7' the number of threads, and N the
number of data elements stored locally, the search is done
in T x O(N) = O(TN). Therefore, the performance figures
for our library with this mechanism were severely limited.

The main bottleneck comes from the sequential checks
performed during specload() and specstore() functions, where
each element should be inspected to be compared with one of
the arguments, to detect if it has been used before, or to get the
most updated value of it. One way to speed up these searches
is to switch to a different data structure to hold local version
copies of data. Instead of using a single table per thread as
version copy data structure, we have developed an alternative
structure with X tables.

Before accessing the data, an AND operation on the address
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of the user-defined speculative variable obtains a hash H, in
the range 0. .. (X —1). This hash is used to look into the Hth
tables of all predecessors and successors, effectively speeding
up the search by an average factor of H without increasing
the time needed to add a new row to the corresponding table,
leading to O(LX) search times. Note that, while N is a
relatively small number (typically up to 64 for current shared
memory architectures), it can be set as big as needed.

Figure 5(right) shows the new 3D version copy structure
with an example. Suppose that the baseline version copy of a
thread has the values depicted on the left of the figure. With
the new 3D structure, this version copy is transformed into
the structure shown on the right of the picture, supposing that
the hash of ¢ and b is 0, and the hash of a is X-1. Also, the
first value of each hash row that has not been previously used,
is marked as void. The same occurs with the third position
(depth) of the 0 hash position, and the second position (depth)
of the X-1 hash position.

In the practice, these ideas have been implemented with the
mentioned third dimensional structure but, in order to have a
better understanding of this optimization, another point of view
could be used: Imagine the structure with three dimensions as
if exists a vector with H positions where each one of them
have H pointers to H version copy structures, i.e., instead of
using a version copy for each slot, use H version copies for
each slot. This idea, conceptually similar to the one explained
in the previous paragraph and the same example that is shown
in Figure 5, is depicted in Figure 6.

The concepts introduced by the first optimization continue
to apply, so, a single local version data structure is used by each
slot. In this way, variables used in Figures 5 and 6 preserve the
same offset values in the version without the third optimization
and in the new version.

On the other hand, the second optimization, that is, include
an Indirection Matrix to the schema, can not be used without the
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Fig. 6. Optimization 3: Structures with three dimensions, another point of view.

application of some modifications to allow that the mentioned
matrix has the same functionality than the previous one.

D. Implementation issues

As we stated previously the new version of the speculative
parallelization library uses an additional dimension to improve
performance, therefore, the Indirection Matrix also needs to
include an additional dimension to its structure. In the previous
version of the scheme a single version copy was managed by
each slot, consequently, if no changes were performed in the
mentioned matrix, each position of the Indirection Matrix will
point to a single version copy instead of taking into account
existing H version copies. On the other hand, perform changes
in the basis of the indirection matrix by including the hash
position H in order to maintain a single vector, instead of the
position of the datum in the version copy, is not desirable
because a hash position will point to several data and some of
them will not be modified.

Another problem detected when we followed this approach
is that the same row will be attached several times in the
same column of the mentioned matrix. This case will be better
understood with the use of an example. Suppose that a thread
update a datum from the hash position 30, that points to the

address 5000 of the memory. In order to follow the semantics
of the specstore() operation, this thread will add the datum to
its matrix in the 30th hash position. Finally, this hash position
is added to the Indirection Matrix, and the pointer to the last
data of this matrix is augmented. On the other hand, suppose
that in the next operation, the same thread update another
datum, with the same hash, 30, but now, the address pointed
is, for example, 6000. Then the datum will be added to the
matrix of the thread, and then, erroneously the hash position
of this datum, 30, is attached again to the Indirection Matrix.

Hence, we should attach a new dimension to the mentioned
Indirection Matrix. This implementation will allow to commit
only the elements of the hash position that have been used,
instead of all of them. In this way, each one of the version
copies used will have its own indirection matrix, and the
process of adding a datum to this matrix is similar than the
previous method, with the only difference that now, H hash
positions are used to obtain the third dimension of this new
indirection cube.

By extension, it is needed to add a new dimension to the tail
position of the indirection matrix because each H hash position
of the structure has its own number of modified items.
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V. EXPERIMENTAL RESULTS

Experiments were carried out on an Intel ST000FC4URE
server, equipped with four quad-core Intel Xeon MPE7310
processors at 1.6GHz and 32GB of RAM. The system runs
Ubuntu Linux operating system. All threads had exclusive
access to the processors during the execution of the experi-
ments, and we used wall-clock times in our measurements.
We have used gcc 4.6.2 for all applications. Times shown in
the following sections represent the time spent in the execution
of the parallelized loop for each application. The time needed
to read the input set and the time needed to output the results
have not been taken into account.

To test the new library three synthetic benchmarks and
the 2-dimensional Convex Hull problem (2D-Hull) have been
used. We will compare four different versions:

e  Original version (v-40): This is considered the initial
version of the library, that is, the version without any
optimizations.

e Indirection Matrix Version (v-43): This version
implements one of the described optimizations, the
Indirection Matrix.

e Two-dimensional version with no system calls (v-
44): This version incorporates the Indirection Matrix,
and a second optimization, it removes all malloc() and
free() functions related to memory allocation of local
variables of the threads.

e  Three-dimensional version with no system calls
(v-45): The last version used implements Indirection
Matrices, removes all the functions mentioned in the
previous point, and implements a three-dimensional
structure in order to avoid the sequential access to all
the local elements of the threads.

A. Convex hull

In this case, two different set of points have been used,
both composed of 10000000 points, one that contains a
uniformly-distributed, square-shaped set of points, and another
that contains a uniformly-distributed, disc-shaped set of points
that follows a Kuzmin distribution. Sequential accesses was a
big bottleneck because this application used a big number of
speculative variables. In this way, other versions had to perform
accesses element by element, and their results are worse than
the three-dimensional version (v-45).

Figure 7 shows the results obtained with the square-shaped
input set. Execution times achieved with this version are on
average a 421.4% faster than those obtained with the original
version.

On the other hand, Figure 8 summarizes the results ob-
tained with the disc-shaped input set. Execution times achieved
with this version are on average a 314.7% faster than those
obtained with the original version.

B. Synthetic benchmarks evaluation

Figure 9 shows the code of three synthetic benchmarks:
Complete, Tough and Fast.
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Fig. 7. Speed-up obtained after executing 2D-Hull with the speculative library
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Fig. 8. Speed-up obtained after executing 2D-Hull with the speculative library
with the Kuzmin input set.

The Complete benchmark, shown in Fig. 9(a), aims to
concurrently test the most useful features of our solution, in-
cluding (1) speculative access of data with different sizes, and
(2) speculative access to data structures. While executing this
loop in parallel, all the iterations lead to dependence violation.
Consequently, the speedup obtained is extremely poor, but the
parallel execution finishes successfully. Figure 10(a) depict the
speed-up obtained with this application.

The Tough benchmark, depicted in Fig. 9(b), was designed
to heavily test the robustness of our solution and of the under-
lying consistency protocol used. All of its iterations perform
a load and a store on the same speculative data structure,
with almost no computational load on private variables. This
situation adversely affects performance, although the number
of dependence violations during parallel execution is relatively
small (4.46%). Despite of this, the parallel execution is also
successful. Figure 10(b) depicts the speed-up obtained with
this application.

Finally, the Fast benchmark, shown in Fig. 9(c), has been
designed to test the efficiency of the speculative scheduling
mechanism. In this benchmark, only one of the 30000 it-
erations (0.003%) lead to a dependence violation. Note that
this single dependence is enough to prevent the compile-time
parallelization of this loop. The parallel execution of this
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CO00: #define NITER 6000 T00: #define NITER 1000000, MAX 100 FO0O: #define NITER 30000
CO01: int array[MAX], array2[MAX]; TO1: int array[MAX]; FO1: int array[MAX];
C02: struct card{ int field; }; FO2: int i,j,k;
C03: struct card p1 = {3}, p2 = {99999}, p3 = {11111}; T02: #pragma omp parallel default(none) \ FO03: int spec1=0, spec2=0;
C04: char aux_char =’a’; T03: private(P)\ FO4: intitert, iter2;
CO05: double aux_double = 3.435; T04: speculative(array)
CO06: inti, j; T05: for (P=0;P <NITER; P++){ F06: #pragma omp parallel default(none) \
T06: Q=P % (MAX) + 1; FO7: private(i,k) shared(array,iter1,iter2) \
C07: #pragma omp parallel for default(none) \ TO07: aux = array[Q-1]; F08: speculative(spec1,spec2)
C08: private(i,j) shared(array1,p2) \ T08: Q= (4*aux) % (MAX) + 1; F09: for (i=0;i{s<NITER ;i++) {
C09: speculative(p1,p3,aux_char,aux_double,array2) T09: array[Q-1] = aux; F10: if (i ==iter1) j = spec1;
C10: for (i=0;i<NITER ;i++) { T10: } F11: if (i==iter2) | = spec2;
C11: for(j=0;j<NITER ;j++){ F12: for (k = 0; k<array[i%MAX]+j; k++) {
C12: if (i <= 1000) p1.field = array[i%4] + j; F13: if (k >=29900)
C13: else array2[i%4] = p1.field; F14: spec1 = (k + array[(i+k)%MAX] ) \
C14: if (i >2000) aux_char = %20 + 48 + aux_char%48; % NITER;
C15: else aux_char = %20 + array[i%4]%10 + 48; F15: if (k <= 200) spec2 = array[i%MAX];
C16: if (i > 1500) F16: }
C17: aux_double = array[i%4]/(i+1) + aux_double; F17: if (i== NITER-1) spec1 = spec2;
C18: else array2[i%4] = (int) (aux_double / i*j) +\ F18: }
(array2[(i+j)%4] +i*))%1234545;
C19: if (i*j > 10000) p1 = p2; else p3 = p1;
C20: }
C21: }
(a) (b) (c)
Fig. 9. Synthetic benchmarks used: (a) Complete; (b) Tough; (c) Fast.
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Fig. 10. (a) Speed-up obtained after executing synthetic benchmarks with the speculative library. (a) Complete, (b) Tough and (c) Fast.

benchmark with 16 processors leads to a 15.16x speedup
with the version v-44. The obtained efficiency, 94.75% for
16 threads, indicates that the overhead due to the speculative
scheduling mechanism itself is negligible. Figure 10(c) depicts
the speed-up obtained with this application.

VI. CONCLUSIONS

In this paper, we have shown how we have improved the
performance of our pointer-based TLS library. To do so, we
have implemented some optimizations such as the reduction
in the number of memory management system calls, and the
replacement of data structures to avoid their sequential travers-
ing. In this way, experimental results in terms of execution
time clearly show that the improvements applied to the library
have a direct impact on performance: All applications tested
had better execution times than those obtained in the previous
version [8], [9]. Therefore, experimental results lead us to
conclude that current version of the engine is faster that the
original one.

This work is result of a Master Thesis [30].
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